Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-ldlf | Structured version Visualization version GIF version |
Description: Definition of a Lindelöf space. A Lindelöf space is a topological space in which every open cover has a countable subcover. Definition 1 of [BourbakiTop2] p. 195. (Contributed by Thierry Arnoux, 30-Jan-2020.) |
Ref | Expression |
---|---|
df-ldlf | ⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldlf 31802 | . 2 class Ldlf | |
2 | vx | . . . . . 6 setvar 𝑥 | |
3 | 2 | cv 1538 | . . . . 5 class 𝑥 |
4 | com 7712 | . . . . 5 class ω | |
5 | cdom 8731 | . . . . 5 class ≼ | |
6 | 3, 4, 5 | wbr 5074 | . . . 4 wff 𝑥 ≼ ω |
7 | 6, 2 | cab 2715 | . . 3 class {𝑥 ∣ 𝑥 ≼ ω} |
8 | 7 | ccref 31792 | . 2 class CovHasRef{𝑥 ∣ 𝑥 ≼ ω} |
9 | 1, 8 | wceq 1539 | 1 wff Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} |
Colors of variables: wff setvar class |
This definition is referenced by: ldlfcntref 31804 |
Copyright terms: Public domain | W3C validator |