| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-ldlf | Structured version Visualization version GIF version | ||
| Description: Definition of a Lindelöf space. A Lindelöf space is a topological space in which every open cover has a countable subcover. Definition 1 of [BourbakiTop2] p. 195. (Contributed by Thierry Arnoux, 30-Jan-2020.) |
| Ref | Expression |
|---|---|
| df-ldlf | ⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldlf 33851 | . 2 class Ldlf | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 4 | com 7887 | . . . . 5 class ω | |
| 5 | cdom 8983 | . . . . 5 class ≼ | |
| 6 | 3, 4, 5 | wbr 5143 | . . . 4 wff 𝑥 ≼ ω |
| 7 | 6, 2 | cab 2714 | . . 3 class {𝑥 ∣ 𝑥 ≼ ω} |
| 8 | 7 | ccref 33841 | . 2 class CovHasRef{𝑥 ∣ 𝑥 ≼ ω} |
| 9 | 1, 8 | wceq 1540 | 1 wff Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} |
| Colors of variables: wff setvar class |
| This definition is referenced by: ldlfcntref 33853 |
| Copyright terms: Public domain | W3C validator |