| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldlfcntref | Structured version Visualization version GIF version | ||
| Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
| Ref | Expression |
|---|---|
| ldlfcntref.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ldlfcntref | ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldlfcntref.x | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | df-ldlf 33849 | . 2 ⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} | |
| 3 | vex 3454 | . . . 4 ⊢ 𝑣 ∈ V | |
| 4 | breq1 5112 | . . . 4 ⊢ (𝑥 = 𝑣 → (𝑥 ≼ ω ↔ 𝑣 ≼ ω)) | |
| 5 | 3, 4 | elab 3648 | . . 3 ⊢ (𝑣 ∈ {𝑥 ∣ 𝑥 ≼ ω} ↔ 𝑣 ≼ ω) |
| 6 | 5 | biimpi 216 | . 2 ⊢ (𝑣 ∈ {𝑥 ∣ 𝑥 ≼ ω} → 𝑣 ≼ ω) |
| 7 | 1, 2, 6 | crefdf 33844 | 1 ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 ⊆ wss 3916 𝒫 cpw 4565 ∪ cuni 4873 class class class wbr 5109 ωcom 7844 ≼ cdom 8918 Refcref 23395 Ldlfcldlf 33848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-cref 33839 df-ldlf 33849 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |