Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldlfcntref Structured version   Visualization version   GIF version

Theorem ldlfcntref 33364
Description: Every open cover of a LindelΓΆf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.)
Hypothesis
Ref Expression
ldlfcntref.x 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
ldlfcntref ((𝐽 ∈ Ldlf ∧ π‘ˆ βŠ† 𝐽 ∧ 𝑋 = βˆͺ π‘ˆ) β†’ βˆƒπ‘£ ∈ 𝒫 𝐽(𝑣 β‰Ό Ο‰ ∧ 𝑣Refπ‘ˆ))
Distinct variable groups:   𝑣,𝐽   𝑣,π‘ˆ
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem ldlfcntref
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 ldlfcntref.x . 2 𝑋 = βˆͺ 𝐽
2 df-ldlf 33363 . 2 Ldlf = CovHasRef{π‘₯ ∣ π‘₯ β‰Ό Ο‰}
3 vex 3472 . . . 4 𝑣 ∈ V
4 breq1 5144 . . . 4 (π‘₯ = 𝑣 β†’ (π‘₯ β‰Ό Ο‰ ↔ 𝑣 β‰Ό Ο‰))
53, 4elab 3663 . . 3 (𝑣 ∈ {π‘₯ ∣ π‘₯ β‰Ό Ο‰} ↔ 𝑣 β‰Ό Ο‰)
65biimpi 215 . 2 (𝑣 ∈ {π‘₯ ∣ π‘₯ β‰Ό Ο‰} β†’ 𝑣 β‰Ό Ο‰)
71, 2, 6crefdf 33358 1 ((𝐽 ∈ Ldlf ∧ π‘ˆ βŠ† 𝐽 ∧ 𝑋 = βˆͺ π‘ˆ) β†’ βˆƒπ‘£ ∈ 𝒫 𝐽(𝑣 β‰Ό Ο‰ ∧ 𝑣Refπ‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  {cab 2703  βˆƒwrex 3064   βŠ† wss 3943  π’« cpw 4597  βˆͺ cuni 4902   class class class wbr 5141  Ο‰com 7852   β‰Ό cdom 8939  Refcref 23361  Ldlfcldlf 33362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-cref 33353  df-ldlf 33363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator