Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldlfcntref Structured version   Visualization version   GIF version

Theorem ldlfcntref 32834
Description: Every open cover of a LindelΓΆf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.)
Hypothesis
Ref Expression
ldlfcntref.x 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
ldlfcntref ((𝐽 ∈ Ldlf ∧ π‘ˆ βŠ† 𝐽 ∧ 𝑋 = βˆͺ π‘ˆ) β†’ βˆƒπ‘£ ∈ 𝒫 𝐽(𝑣 β‰Ό Ο‰ ∧ 𝑣Refπ‘ˆ))
Distinct variable groups:   𝑣,𝐽   𝑣,π‘ˆ
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem ldlfcntref
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 ldlfcntref.x . 2 𝑋 = βˆͺ 𝐽
2 df-ldlf 32833 . 2 Ldlf = CovHasRef{π‘₯ ∣ π‘₯ β‰Ό Ο‰}
3 vex 3479 . . . 4 𝑣 ∈ V
4 breq1 5152 . . . 4 (π‘₯ = 𝑣 β†’ (π‘₯ β‰Ό Ο‰ ↔ 𝑣 β‰Ό Ο‰))
53, 4elab 3669 . . 3 (𝑣 ∈ {π‘₯ ∣ π‘₯ β‰Ό Ο‰} ↔ 𝑣 β‰Ό Ο‰)
65biimpi 215 . 2 (𝑣 ∈ {π‘₯ ∣ π‘₯ β‰Ό Ο‰} β†’ 𝑣 β‰Ό Ο‰)
71, 2, 6crefdf 32828 1 ((𝐽 ∈ Ldlf ∧ π‘ˆ βŠ† 𝐽 ∧ 𝑋 = βˆͺ π‘ˆ) β†’ βˆƒπ‘£ ∈ 𝒫 𝐽(𝑣 β‰Ό Ο‰ ∧ 𝑣Refπ‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  {cab 2710  βˆƒwrex 3071   βŠ† wss 3949  π’« cpw 4603  βˆͺ cuni 4909   class class class wbr 5149  Ο‰com 7855   β‰Ό cdom 8937  Refcref 23006  Ldlfcldlf 32832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-cref 32823  df-ldlf 32833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator