| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldlfcntref | Structured version Visualization version GIF version | ||
| Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
| Ref | Expression |
|---|---|
| ldlfcntref.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ldlfcntref | ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldlfcntref.x | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | df-ldlf 33866 | . 2 ⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} | |
| 3 | vex 3440 | . . . 4 ⊢ 𝑣 ∈ V | |
| 4 | breq1 5092 | . . . 4 ⊢ (𝑥 = 𝑣 → (𝑥 ≼ ω ↔ 𝑣 ≼ ω)) | |
| 5 | 3, 4 | elab 3630 | . . 3 ⊢ (𝑣 ∈ {𝑥 ∣ 𝑥 ≼ ω} ↔ 𝑣 ≼ ω) |
| 6 | 5 | biimpi 216 | . 2 ⊢ (𝑣 ∈ {𝑥 ∣ 𝑥 ≼ ω} → 𝑣 ≼ ω) |
| 7 | 1, 2, 6 | crefdf 33861 | 1 ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 class class class wbr 5089 ωcom 7796 ≼ cdom 8867 Refcref 23417 Ldlfcldlf 33865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-cref 33856 df-ldlf 33866 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |