Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldlfcntref | Structured version Visualization version GIF version |
Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
Ref | Expression |
---|---|
ldlfcntref.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ldlfcntref | ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldlfcntref.x | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
2 | df-ldlf 31705 | . 2 ⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} | |
3 | vex 3426 | . . . 4 ⊢ 𝑣 ∈ V | |
4 | breq1 5073 | . . . 4 ⊢ (𝑥 = 𝑣 → (𝑥 ≼ ω ↔ 𝑣 ≼ ω)) | |
5 | 3, 4 | elab 3602 | . . 3 ⊢ (𝑣 ∈ {𝑥 ∣ 𝑥 ≼ ω} ↔ 𝑣 ≼ ω) |
6 | 5 | biimpi 215 | . 2 ⊢ (𝑣 ∈ {𝑥 ∣ 𝑥 ≼ ω} → 𝑣 ≼ ω) |
7 | 1, 2, 6 | crefdf 31700 | 1 ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 class class class wbr 5070 ωcom 7687 ≼ cdom 8689 Refcref 22561 Ldlfcldlf 31704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-cref 31695 df-ldlf 31705 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |