Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldlfcntref Structured version   Visualization version   GIF version

Theorem ldlfcntref 31706
Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.)
Hypothesis
Ref Expression
ldlfcntref.x 𝑋 = 𝐽
Assertion
Ref Expression
ldlfcntref ((𝐽 ∈ Ldlf ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈))
Distinct variable groups:   𝑣,𝐽   𝑣,𝑈
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem ldlfcntref
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ldlfcntref.x . 2 𝑋 = 𝐽
2 df-ldlf 31705 . 2 Ldlf = CovHasRef{𝑥𝑥 ≼ ω}
3 vex 3426 . . . 4 𝑣 ∈ V
4 breq1 5073 . . . 4 (𝑥 = 𝑣 → (𝑥 ≼ ω ↔ 𝑣 ≼ ω))
53, 4elab 3602 . . 3 (𝑣 ∈ {𝑥𝑥 ≼ ω} ↔ 𝑣 ≼ ω)
65biimpi 215 . 2 (𝑣 ∈ {𝑥𝑥 ≼ ω} → 𝑣 ≼ ω)
71, 2, 6crefdf 31700 1 ((𝐽 ∈ Ldlf ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  wss 3883  𝒫 cpw 4530   cuni 4836   class class class wbr 5070  ωcom 7687  cdom 8689  Refcref 22561  Ldlfcldlf 31704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-cref 31695  df-ldlf 31705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator