![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldlfcntref | Structured version Visualization version GIF version |
Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
Ref | Expression |
---|---|
ldlfcntref.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ldlfcntref | ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldlfcntref.x | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
2 | df-ldlf 33814 | . 2 ⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} | |
3 | vex 3482 | . . . 4 ⊢ 𝑣 ∈ V | |
4 | breq1 5151 | . . . 4 ⊢ (𝑥 = 𝑣 → (𝑥 ≼ ω ↔ 𝑣 ≼ ω)) | |
5 | 3, 4 | elab 3681 | . . 3 ⊢ (𝑣 ∈ {𝑥 ∣ 𝑥 ≼ ω} ↔ 𝑣 ≼ ω) |
6 | 5 | biimpi 216 | . 2 ⊢ (𝑣 ∈ {𝑥 ∣ 𝑥 ≼ ω} → 𝑣 ≼ ω) |
7 | 1, 2, 6 | crefdf 33809 | 1 ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 class class class wbr 5148 ωcom 7887 ≼ cdom 8982 Refcref 23526 Ldlfcldlf 33813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-cref 33804 df-ldlf 33814 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |