Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldlfcntref | Structured version Visualization version GIF version |
Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
Ref | Expression |
---|---|
ldlfcntref.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ldlfcntref | ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldlfcntref.x | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
2 | df-ldlf 31803 | . 2 ⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} | |
3 | vex 3436 | . . . 4 ⊢ 𝑣 ∈ V | |
4 | breq1 5077 | . . . 4 ⊢ (𝑥 = 𝑣 → (𝑥 ≼ ω ↔ 𝑣 ≼ ω)) | |
5 | 3, 4 | elab 3609 | . . 3 ⊢ (𝑣 ∈ {𝑥 ∣ 𝑥 ≼ ω} ↔ 𝑣 ≼ ω) |
6 | 5 | biimpi 215 | . 2 ⊢ (𝑣 ∈ {𝑥 ∣ 𝑥 ≼ ω} → 𝑣 ≼ ω) |
7 | 1, 2, 6 | crefdf 31798 | 1 ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 class class class wbr 5074 ωcom 7712 ≼ cdom 8731 Refcref 22653 Ldlfcldlf 31802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-cref 31793 df-ldlf 31803 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |