![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldlfcntref | Structured version Visualization version GIF version |
Description: Every open cover of a LindelΓΆf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
Ref | Expression |
---|---|
ldlfcntref.x | β’ π = βͺ π½ |
Ref | Expression |
---|---|
ldlfcntref | β’ ((π½ β Ldlf β§ π β π½ β§ π = βͺ π) β βπ£ β π« π½(π£ βΌ Ο β§ π£Refπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldlfcntref.x | . 2 β’ π = βͺ π½ | |
2 | df-ldlf 32833 | . 2 β’ Ldlf = CovHasRef{π₯ β£ π₯ βΌ Ο} | |
3 | vex 3479 | . . . 4 β’ π£ β V | |
4 | breq1 5152 | . . . 4 β’ (π₯ = π£ β (π₯ βΌ Ο β π£ βΌ Ο)) | |
5 | 3, 4 | elab 3669 | . . 3 β’ (π£ β {π₯ β£ π₯ βΌ Ο} β π£ βΌ Ο) |
6 | 5 | biimpi 215 | . 2 β’ (π£ β {π₯ β£ π₯ βΌ Ο} β π£ βΌ Ο) |
7 | 1, 2, 6 | crefdf 32828 | 1 β’ ((π½ β Ldlf β§ π β π½ β§ π = βͺ π) β βπ£ β π« π½(π£ βΌ Ο β§ π£Refπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 {cab 2710 βwrex 3071 β wss 3949 π« cpw 4603 βͺ cuni 4909 class class class wbr 5149 Οcom 7855 βΌ cdom 8937 Refcref 23006 Ldlfcldlf 32832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-cref 32823 df-ldlf 32833 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |