![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldlfcntref | Structured version Visualization version GIF version |
Description: Every open cover of a LindelΓΆf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
Ref | Expression |
---|---|
ldlfcntref.x | β’ π = βͺ π½ |
Ref | Expression |
---|---|
ldlfcntref | β’ ((π½ β Ldlf β§ π β π½ β§ π = βͺ π) β βπ£ β π« π½(π£ βΌ Ο β§ π£Refπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldlfcntref.x | . 2 β’ π = βͺ π½ | |
2 | df-ldlf 33363 | . 2 β’ Ldlf = CovHasRef{π₯ β£ π₯ βΌ Ο} | |
3 | vex 3472 | . . . 4 β’ π£ β V | |
4 | breq1 5144 | . . . 4 β’ (π₯ = π£ β (π₯ βΌ Ο β π£ βΌ Ο)) | |
5 | 3, 4 | elab 3663 | . . 3 β’ (π£ β {π₯ β£ π₯ βΌ Ο} β π£ βΌ Ο) |
6 | 5 | biimpi 215 | . 2 β’ (π£ β {π₯ β£ π₯ βΌ Ο} β π£ βΌ Ο) |
7 | 1, 2, 6 | crefdf 33358 | 1 β’ ((π½ β Ldlf β§ π β π½ β§ π = βͺ π) β βπ£ β π« π½(π£ βΌ Ο β§ π£Refπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 {cab 2703 βwrex 3064 β wss 3943 π« cpw 4597 βͺ cuni 4902 class class class wbr 5141 Οcom 7852 βΌ cdom 8939 Refcref 23361 Ldlfcldlf 33362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-cref 33353 df-ldlf 33363 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |