Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldlfcntref Structured version   Visualization version   GIF version

Theorem ldlfcntref 33794
Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.)
Hypothesis
Ref Expression
ldlfcntref.x 𝑋 = 𝐽
Assertion
Ref Expression
ldlfcntref ((𝐽 ∈ Ldlf ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈))
Distinct variable groups:   𝑣,𝐽   𝑣,𝑈
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem ldlfcntref
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ldlfcntref.x . 2 𝑋 = 𝐽
2 df-ldlf 33793 . 2 Ldlf = CovHasRef{𝑥𝑥 ≼ ω}
3 vex 3468 . . . 4 𝑣 ∈ V
4 breq1 5128 . . . 4 (𝑥 = 𝑣 → (𝑥 ≼ ω ↔ 𝑣 ≼ ω))
53, 4elab 3663 . . 3 (𝑣 ∈ {𝑥𝑥 ≼ ω} ↔ 𝑣 ≼ ω)
65biimpi 216 . 2 (𝑣 ∈ {𝑥𝑥 ≼ ω} → 𝑣 ≼ ω)
71, 2, 6crefdf 33788 1 ((𝐽 ∈ Ldlf ∧ 𝑈𝐽𝑋 = 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  {cab 2712  wrex 3059  wss 3933  𝒫 cpw 4582   cuni 4889   class class class wbr 5125  ωcom 7870  cdom 8966  Refcref 23475  Ldlfcldlf 33792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-cref 33783  df-ldlf 33793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator