| Metamath
Proof Explorer Theorem List (p. 329 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dp2clq 32801 | Closure for a decimal fraction. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℚ ⇒ ⊢ _𝐴𝐵 ∈ ℚ | ||
| Theorem | rpdp2cl 32802 | Closure for a decimal fraction in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ ⇒ ⊢ _𝐴𝐵 ∈ ℝ+ | ||
| Theorem | rpdp2cl2 32803 | Closure for a decimal fraction with no decimal expansion in the positive real numbers. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ _𝐴0 ∈ ℝ+ | ||
| Theorem | dp2lt10 32804 | Decimal fraction builds real numbers less than 10. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐴 < ;10 & ⊢ 𝐵 < ;10 ⇒ ⊢ _𝐴𝐵 < ;10 | ||
| Theorem | dp2lt 32805 | Comparing two decimal fractions (equal unit places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℝ+ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ _𝐴𝐵 < _𝐴𝐶 | ||
| Theorem | dp2ltsuc 32806 | Comparing a decimal fraction with the next integer. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐵 < ;10 & ⊢ (𝐴 + 1) = 𝐶 ⇒ ⊢ _𝐴𝐵 < 𝐶 | ||
| Theorem | dp2ltc 32807 | Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℝ+ & ⊢ 𝐵 < ;10 & ⊢ 𝐴 < 𝐶 ⇒ ⊢ _𝐴𝐵 < _𝐶𝐷 | ||
Define the decimal point operator and the decimal fraction constructor. This can model traditional decimal point notation, and serve as a convenient way to write some fractional numbers. See df-dp 32809 and df-dp2 32792 for more information; dpval2 32813 and dpfrac1 32812 provide a more convenient way to obtain a value. This is intentionally similar to df-dec 12707. | ||
| Syntax | cdp 32808 | Decimal point operator. See df-dp 32809. |
| class . | ||
| Definition | df-dp 32809* |
Define the . (decimal point) operator. For example,
(1.5) = (3 / 2), and
-(;32._7_18) =
-(;;;;32718 / ;;;1000)
Unary minus, if applied, should normally be applied in front of the
parentheses.
Metamath intentionally does not have a built-in construct for numbers, so it can show that numbers are something you can build based on set theory. However, that means that Metamath has no built-in way to parse and handle decimal numbers as traditionally written, e.g., "2.54". Here we create a system for modeling traditional decimal point notation; it is not syntactically identical, but it is sufficiently similar so it is a reasonable model of decimal point notation. It should also serve as a convenient way to write some fractional numbers. The RHS is ℝ, not ℚ; this should simplify some proofs. The LHS is ℕ0, since that is what is used in practice. The definition intentionally does not allow negative numbers on the LHS; if it did, nonzero fractions would produce the wrong results. (It would be possible to define the decimal point to do this, but using it would be more complicated, and the expression -(𝐴.𝐵) is just as convenient.) (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ _𝑥𝑦) | ||
| Theorem | dpval 32810 | Define the value of the decimal point operator. See df-dp 32809. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) | ||
| Theorem | dpcl 32811 | Prove that the closure of the decimal point is ℝ as we have defined it. See df-dp 32809. (Contributed by David A. Wheeler, 15-May-2015.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) ∈ ℝ) | ||
| Theorem | dpfrac1 32812 | Prove a simple equivalence involving the decimal point. See df-dp 32809 and dpcl 32811. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = (;𝐴𝐵 / ;10)) | ||
| Theorem | dpval2 32813 | Value of the decimal point construct. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴.𝐵) = (𝐴 + (𝐵 / ;10)) | ||
| Theorem | dpval3 32814 | Value of the decimal point construct. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴.𝐵) = _𝐴𝐵 | ||
| Theorem | dpmul10 32815 | Multiply by 10 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((𝐴.𝐵) · ;10) = ;𝐴𝐵 | ||
| Theorem | decdiv10 32816 | Divide a decimal number by 10. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (;𝐴𝐵 / ;10) = (𝐴.𝐵) | ||
| Theorem | dpmul100 32817 | Multiply by 100 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 | ||
| Theorem | dp3mul10 32818 | Multiply by 10 a decimal expansion with 3 digits. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴._𝐵𝐶) · ;10) = (;𝐴𝐵.𝐶) | ||
| Theorem | dpmul1000 32819 | Multiply by 1000 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℝ ⇒ ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;;1000) = ;;;𝐴𝐵𝐶𝐷 | ||
| Theorem | dpval3rp 32820 | Value of the decimal point construct. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ ⇒ ⊢ (𝐴.𝐵) = _𝐴𝐵 | ||
| Theorem | dp0u 32821 | Add a zero in the tenths place. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (𝐴.0) = 𝐴 | ||
| Theorem | dp0h 32822 | Remove a zero in the units places. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℝ+ ⇒ ⊢ (0.𝐴) = (𝐴 / ;10) | ||
| Theorem | rpdpcl 32823 | Closure of the decimal point in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ ⇒ ⊢ (𝐴.𝐵) ∈ ℝ+ | ||
| Theorem | dplt 32824 | Comparing two decimal expansions (equal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℝ+ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ (𝐴.𝐵) < (𝐴.𝐶) | ||
| Theorem | dplti 32825 | Comparing a decimal expansions with the next higher integer. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐵 < ;10 & ⊢ (𝐴 + 1) = 𝐶 ⇒ ⊢ (𝐴.𝐵) < 𝐶 | ||
| Theorem | dpgti 32826 | Comparing a decimal expansions with the next lower integer. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ ⇒ ⊢ 𝐴 < (𝐴.𝐵) | ||
| Theorem | dpltc 32827 | Comparing two decimal integers (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℝ+ & ⊢ 𝐴 < 𝐶 & ⊢ 𝐵 < ;10 ⇒ ⊢ (𝐴.𝐵) < (𝐶.𝐷) | ||
| Theorem | dpexpp1 32828 | Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ (𝑃 + 1) = 𝑄 & ⊢ 𝑃 ∈ ℤ & ⊢ 𝑄 ∈ ℤ ⇒ ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) | ||
| Theorem | 0dp2dp 32829 | Multiply by 10 a decimal expansion which starts with a zero. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ ⇒ ⊢ ((0._𝐴𝐵) · ;10) = (𝐴.𝐵) | ||
| Theorem | dpadd2 32830 | Addition with one decimal, no carry. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℝ+ & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈ ℝ+ & ⊢ 𝐺 ∈ ℕ0 & ⊢ 𝐻 ∈ ℕ0 & ⊢ (𝐺 + 𝐻) = 𝐼 & ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) ⇒ ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = (𝐼._𝐸𝐹) | ||
| Theorem | dpadd 32831 | Addition with one decimal. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ (;𝐴𝐵 + ;𝐶𝐷) = ;𝐸𝐹 ⇒ ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) | ||
| Theorem | dpadd3 32832 | Addition with two decimals. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐻 ∈ ℕ0 & ⊢ 𝐼 ∈ ℕ0 & ⊢ (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) = ;;𝐺𝐻𝐼 ⇒ ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼) | ||
| Theorem | dpmul 32833 | Multiplication with one decimal point. (Contributed by Thierry Arnoux, 26-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ 𝐽 ∈ ℕ0 & ⊢ 𝐾 ∈ ℕ0 & ⊢ (𝐴 · 𝐶) = 𝐹 & ⊢ (𝐴 · 𝐷) = 𝑀 & ⊢ (𝐵 · 𝐶) = 𝐿 & ⊢ (𝐵 · 𝐷) = ;𝐸𝐾 & ⊢ ((𝐿 + 𝑀) + 𝐸) = ;𝐺𝐽 & ⊢ (𝐹 + 𝐺) = 𝐼 ⇒ ⊢ ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼._𝐽𝐾) | ||
| Theorem | dpmul4 32834 | An upper bound to multiplication of decimal numbers with 4 digits. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ 𝐽 ∈ ℕ0 & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐻 ∈ ℕ0 & ⊢ 𝐼 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑂 ∈ ℕ0 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝑄 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ0 & ⊢ 𝑆 ∈ ℕ0 & ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑈 ∈ ℕ0 & ⊢ 𝑊 ∈ ℕ0 & ⊢ 𝑋 ∈ ℕ0 & ⊢ 𝑌 ∈ ℕ0 & ⊢ 𝑍 ∈ ℕ0 & ⊢ 𝑈 < ;10 & ⊢ 𝑃 < ;10 & ⊢ 𝑄 < ;10 & ⊢ (;;𝐿𝑀𝑁 + 𝑂) = ;;;𝑅𝑆𝑇𝑈 & ⊢ ((𝐴.𝐵) · (𝐸.𝐹)) = (𝐼._𝐽𝐾) & ⊢ ((𝐶.𝐷) · (𝐺.𝐻)) = (𝑂._𝑃𝑄) & ⊢ (;;;𝐼𝐽𝐾1 + ;;𝑅𝑆𝑇) = ;;;𝑊𝑋𝑌𝑍 & ⊢ (((𝐴.𝐵) + (𝐶.𝐷)) · ((𝐸.𝐹) + (𝐺.𝐻))) = (((𝐼._𝐽𝐾) + (𝐿._𝑀𝑁)) + (𝑂._𝑃𝑄)) ⇒ ⊢ ((𝐴._𝐵_𝐶𝐷) · (𝐸._𝐹_𝐺𝐻)) < (𝑊._𝑋_𝑌𝑍) | ||
| Theorem | threehalves 32835 | Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
| ⊢ (3 / 2) = (1.5) | ||
| Theorem | 1mhdrd 32836 | Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
| ⊢ ((0._99) + (0._01)) = 1 | ||
| Syntax | cxdiv 32837 | Extend class notation to include division of extended reals. |
| class /𝑒 | ||
| Definition | df-xdiv 32838* | Define division over extended real numbers. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
| ⊢ /𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ (ℝ ∖ {0}) ↦ (℩𝑧 ∈ ℝ* (𝑦 ·e 𝑧) = 𝑥)) | ||
| Theorem | xdivval 32839* | Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is nonzero. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) | ||
| Theorem | xrecex 32840* | Existence of reciprocal of nonzero real number. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 ·e 𝑥) = 1) | ||
| Theorem | xmulcand 32841 | Cancellation law for extended multiplication. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | xreceu 32842* | Existential uniqueness of reciprocals. Theorem I.8 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) | ||
| Theorem | xdivcld 32843 | Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ ℝ*) | ||
| Theorem | xdivcl 32844 | Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) ∈ ℝ*) | ||
| Theorem | xdivmul 32845 | Relationship between division and multiplication. (Contributed by Thierry Arnoux, 24-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ((𝐴 /𝑒 𝐶) = 𝐵 ↔ (𝐶 ·e 𝐵) = 𝐴)) | ||
| Theorem | rexdiv 32846 | The extended real division operation when both arguments are real. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵)) | ||
| Theorem | xdivrec 32847 | Relationship between division and reciprocal. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵))) | ||
| Theorem | xdivid 32848 | A number divided by itself is one. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 /𝑒 𝐴) = 1) | ||
| Theorem | xdiv0 32849 | Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 /𝑒 𝐴) = 0) | ||
| Theorem | xdiv0rp 32850 | Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (0 /𝑒 𝐴) = 0) | ||
| Theorem | eliccioo 32851 | Membership in a closed interval of extended reals versus the same open interval. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))) | ||
| Theorem | elxrge02 32852 | Elementhood in the set of nonnegative extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| ⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 = 0 ∨ 𝐴 ∈ ℝ+ ∨ 𝐴 = +∞)) | ||
| Theorem | xdivpnfrp 32853 | Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞) | ||
| Theorem | rpxdivcld 32854 | Closure law for extended division of positive reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ ℝ+) | ||
| Theorem | xrpxdivcld 32855 | Closure law for extended division of positive extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) | ||
| Theorem | wrdres 32856 | Condition for the restriction of a word to be a word itself. (Contributed by Thierry Arnoux, 5-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ↾ (0..^𝑁)) ∈ Word 𝑆) | ||
| Theorem | wrdsplex 32857* | Existence of a split of a word at a given index. (Contributed by Thierry Arnoux, 11-Oct-2018.) (Proof shortened by AV, 3-Nov-2022.) |
| ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣)) | ||
| Theorem | wrdfsupp 32858 | A word has finite support. (Contributed by Thierry Arnoux, 27-May-2025.) |
| ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) ⇒ ⊢ (𝜑 → 𝑊 finSupp 𝑍) | ||
| Theorem | wrdpmcl 32859 | Closure of a word with permuted symbols. (Contributed by Thierry Arnoux, 27-May-2025.) |
| ⊢ 𝐽 = (0..^(♯‘𝑊)) & ⊢ (𝜑 → 𝐸:𝐽–1-1-onto→𝐽) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) ⇒ ⊢ (𝜑 → (𝑊 ∘ 𝐸) ∈ Word 𝑆) | ||
| Theorem | pfx1s2 32860 | The prefix of length 1 of a length 2 word. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (〈“𝐴𝐵”〉 prefix 1) = 〈“𝐴”〉) | ||
| Theorem | pfxrn2 32861 | The range of a prefix of a word is a subset of the range of that word. Stronger version of pfxrn 14701. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐿) ⊆ ran 𝑊) | ||
| Theorem | pfxrn3 32862 | Express the range of a prefix of a word. Stronger version of pfxrn2 32861. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐿) = (𝑊 “ (0..^𝐿))) | ||
| Theorem | pfxf1 32863 | Condition for a prefix to be injective. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
| ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝑆) & ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝑊))) ⇒ ⊢ (𝜑 → (𝑊 prefix 𝐿):dom (𝑊 prefix 𝐿)–1-1→𝑆) | ||
| Theorem | s1f1 32864 | Conditions for a length 1 string to be a one-to-one function. (Contributed by Thierry Arnoux, 11-Dec-2023.) |
| ⊢ (𝜑 → 𝐼 ∈ 𝐷) ⇒ ⊢ (𝜑 → 〈“𝐼”〉:dom 〈“𝐼”〉–1-1→𝐷) | ||
| Theorem | s2rnOLD 32865 | Obsolete version of s2rn 14980 as of 1-Aug-2025. Range of a length 2 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) ⇒ ⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) | ||
| Theorem | s2f1 32866 | Conditions for a length 2 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) ⇒ ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) | ||
| Theorem | s3rnOLD 32867 | Obsolete version of s2rn 14980 as of 1-Aug-2025. Range of a length 3 string. (Contributed by Thierry Arnoux, 19-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) ⇒ ⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) | ||
| Theorem | s3f1 32868 | Conditions for a length 3 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐾 ≠ 𝐼) ⇒ ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) | ||
| Theorem | s3clhash 32869 | Closure of the words of length 3 in a preimage using the hash function. (Contributed by Thierry Arnoux, 27-Sep-2023.) |
| ⊢ 〈“𝐼𝐽𝐾”〉 ∈ (◡♯ “ {3}) | ||
| Theorem | ccatf1 32870 | Conditions for a concatenation to be injective. (Contributed by Thierry Arnoux, 11-Dec-2023.) |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐴:dom 𝐴–1-1→𝑆) & ⊢ (𝜑 → 𝐵:dom 𝐵–1-1→𝑆) & ⊢ (𝜑 → (ran 𝐴 ∩ ran 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 ++ 𝐵):dom (𝐴 ++ 𝐵)–1-1→𝑆) | ||
| Theorem | ccatdmss 32871 | The domain of a concatenated word is a superset of the domain of the first word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) ⇒ ⊢ (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵)) | ||
| Theorem | pfxlsw2ccat 32872 | Reconstruct a word from its prefix and its last two symbols. (Contributed by Thierry Arnoux, 26-Sep-2023.) |
| ⊢ 𝑁 = (♯‘𝑊) ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉)) | ||
| Theorem | ccatws1f1o 32873 | Conditions for the concatenation of a word and a singleton word to be bijective. (Contributed by Thierry Arnoux, 27-May-2025.) |
| ⊢ 𝑁 = (♯‘𝑇) & ⊢ 𝐽 = (0..^(𝑁 + 1)) & ⊢ (𝜑 → 𝑇:(0..^𝑁)–1-1-onto→(0..^𝑁)) ⇒ ⊢ (𝜑 → (𝑇 ++ 〈“𝑁”〉):𝐽–1-1-onto→𝐽) | ||
| Theorem | ccatws1f1olast 32874 | Two ways to reorder symbols in a word 𝑊 according to permutation 𝑇, and add a last symbol 𝑋. (Contributed by Thierry Arnoux, 27-May-2025.) |
| ⊢ 𝑁 = (♯‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑇:(0..^𝑁)–1-1-onto→(0..^𝑁)) ⇒ ⊢ (𝜑 → ((𝑊 ++ 〈“𝑋”〉) ∘ (𝑇 ++ 〈“𝑁”〉)) = ((𝑊 ∘ 𝑇) ++ 〈“𝑋”〉)) | ||
| Theorem | wrdt2ind 32875* | Perform an induction over the structure of a word of even length. (Contributed by Thierry Arnoux, 26-Sep-2023.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ++ 〈“𝑖𝑗”〉) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝐴 ∈ Word 𝐵 ∧ 2 ∥ (♯‘𝐴)) → 𝜏) | ||
| Theorem | swrdrn2 32876 | The range of a subword is a subset of the range of that word. Stronger version of swrdrn 14668. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) ⊆ ran 𝑊) | ||
| Theorem | swrdrn3 32877 | Express the range of a subword. Stronger version of swrdrn2 32876. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) = (𝑊 “ (𝑀..^𝑁))) | ||
| Theorem | swrdf1 32878 | Condition for a subword to be injective. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
| ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) ⇒ ⊢ (𝜑 → (𝑊 substr 〈𝑀, 𝑁〉):dom (𝑊 substr 〈𝑀, 𝑁〉)–1-1→𝐷) | ||
| Theorem | swrdrndisj 32879 | Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
| ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) & ⊢ (𝜑 → 𝑂 ∈ (𝑁...𝑃)) & ⊢ (𝜑 → 𝑃 ∈ (𝑁...(♯‘𝑊))) ⇒ ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ∅) | ||
| Theorem | splfv3 32880 | Symbols to the right of a splice are unaffected. (Contributed by Thierry Arnoux, 14-Dec-2023.) |
| ⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝐹 ∈ (0...𝑇)) & ⊢ (𝜑 → 𝑇 ∈ (0...(♯‘𝑆))) & ⊢ (𝜑 → 𝑅 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ (0..^((♯‘𝑆) − 𝑇))) & ⊢ (𝜑 → 𝐾 = (𝐹 + (♯‘𝑅))) ⇒ ⊢ (𝜑 → ((𝑆 splice 〈𝐹, 𝑇, 𝑅〉)‘(𝑋 + 𝐾)) = (𝑆‘(𝑋 + 𝑇))) | ||
| Theorem | 1cshid 32881 | Cyclically shifting a single letter word keeps it unchanged. (Contributed by Thierry Arnoux, 21-Nov-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 𝑁) = 𝑊) | ||
| Theorem | cshw1s2 32882 | Cyclically shifting a length 2 word swaps its symbols. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (〈“𝐴𝐵”〉 cyclShift 1) = 〈“𝐵𝐴”〉) | ||
| Theorem | cshwrnid 32883 | Cyclically shifting a word preserves its range. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊) | ||
| Theorem | cshf1o 32884 | Condition for the cyclic shift to be a bijection. (Contributed by Thierry Arnoux, 4-Oct-2023.) |
| ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran 𝑊) | ||
| Theorem | ressplusf 32885 | The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ ⨣ = (+g‘𝐺) & ⊢ ⨣ Fn (𝐵 × 𝐵) & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) | ||
| Theorem | ressnm 32886 | The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (norm‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (norm‘𝐻)) | ||
| Theorem | abvpropd2 32887 | Weaker version of abvpropd 20793. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) & ⊢ (𝜑 → (.r‘𝐾) = (.r‘𝐿)) ⇒ ⊢ (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿)) | ||
| Theorem | oppgle 32888 | less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ ≤ = (le‘𝑅) ⇒ ⊢ ≤ = (le‘𝑂) | ||
| Theorem | oppglt 32889 | less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ < = (lt‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → < = (lt‘𝑂)) | ||
| Theorem | ressprs 32890 | The restriction of a proset is a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ Proset ) | ||
| Theorem | posrasymb 32891 | A poset ordering is asymetric. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | ||
| Theorem | resspos 32892 | The restriction of a Poset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Poset) | ||
| Theorem | resstos 32893 | The restriction of a Toset is a Toset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Toset) | ||
| Theorem | odutos 32894 | Being a toset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
| ⊢ 𝐷 = (ODual‘𝐾) ⇒ ⊢ (𝐾 ∈ Toset → 𝐷 ∈ Toset) | ||
| Theorem | tlt2 32895 | In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) | ||
| Theorem | tlt3 32896 | In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋)) | ||
| Theorem | trleile 32897 | In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) | ||
| Theorem | toslublem 32898* | Lemma for toslub 32899 and xrsclat 32949. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) | ||
| Theorem | toslub 32899 | In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(𝐴, 𝐵, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < )) | ||
| Theorem | tosglblem 32900* | Lemma for tosglb 32901 and xrsclat 32949. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |