![]() |
Metamath
Proof Explorer Theorem List (p. 329 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | gsumsra 32801 | The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023.) |
β’ π΄ = ((subringAlg βπ )βπ΅) & β’ (π β πΉ β π) & β’ (π β π β π) & β’ (π β π΄ β π) & β’ (π β π΅ β (Baseβπ )) β β’ (π β (π Ξ£g πΉ) = (π΄ Ξ£g πΉ)) | ||
Theorem | gsummpt2co 32802* | Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
β’ π΅ = (Baseβπ) & β’ 0 = (0gβπ) & β’ (π β π β CMnd) & β’ (π β π΄ β Fin) & β’ (π β πΈ β π) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ ((π β§ π₯ β π΄) β π· β πΈ) & β’ πΉ = (π₯ β π΄ β¦ π·) β β’ (π β (π Ξ£g (π₯ β π΄ β¦ πΆ)) = (π Ξ£g (π¦ β πΈ β¦ (π Ξ£g (π₯ β (β‘πΉ β {π¦}) β¦ πΆ))))) | ||
Theorem | gsummpt2d 32803* | Express a finite sum over a two-dimensional range as a double sum. See also gsum2d 19926. (Contributed by Thierry Arnoux, 27-Apr-2020.) |
β’ β²π§πΆ & β’ β²π¦π & β’ π΅ = (Baseβπ) & β’ (π₯ = β¨π¦, π§β© β πΆ = π·) & β’ (π β Rel π΄) & β’ (π β π΄ β Fin) & β’ (π β π β CMnd) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) β β’ (π β (π Ξ£g (π₯ β π΄ β¦ πΆ)) = (π Ξ£g (π¦ β dom π΄ β¦ (π Ξ£g (π§ β (π΄ β {π¦}) β¦ π·))))) | ||
Theorem | lmodvslmhm 32804* | Scalar multiplication in a left module by a fixed element is a group homomorphism. (Contributed by Thierry Arnoux, 12-Jun-2023.) |
β’ π = (Baseβπ) & β’ πΉ = (Scalarβπ) & β’ Β· = ( Β·π βπ) & β’ πΎ = (BaseβπΉ) β β’ ((π β LMod β§ π β π) β (π₯ β πΎ β¦ (π₯ Β· π)) β (πΉ GrpHom π)) | ||
Theorem | gsumvsmul1 32805* | Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc1 20251, since every ring is a left module over itself. (Contributed by Thierry Arnoux, 12-Jun-2023.) |
β’ π΅ = (Baseβπ ) & β’ π = (Scalarβπ ) & β’ πΎ = (Baseβπ) & β’ 0 = (0gβπ) & β’ Β· = ( Β·π βπ ) & β’ (π β π β LMod) & β’ (π β π β CMnd) & β’ (π β π΄ β π) & β’ (π β π β π΅) & β’ ((π β§ π β π΄) β π β πΎ) & β’ (π β (π β π΄ β¦ π) finSupp 0 ) β β’ (π β (π Ξ£g (π β π΄ β¦ (π Β· π))) = ((π Ξ£g (π β π΄ β¦ π)) Β· π)) | ||
Theorem | gsummptres 32806* | Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β Fin) & β’ ((π β§ π₯ β π΄) β πΆ β π΅) & β’ ((π β§ π₯ β (π΄ β π·)) β πΆ = 0 ) β β’ (π β (πΊ Ξ£g (π₯ β π΄ β¦ πΆ)) = (πΊ Ξ£g (π₯ β (π΄ β© π·) β¦ πΆ))) | ||
Theorem | gsummptres2 32807* | Extend a finite group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ ((π β§ π₯ β (π΄ β π)) β π = 0 ) & β’ (π β π β Fin) & β’ ((π β§ π₯ β π΄) β π β π΅) & β’ (π β π β π΄) β β’ (π β (πΊ Ξ£g (π₯ β π΄ β¦ π)) = (πΊ Ξ£g (π₯ β π β¦ π))) | ||
Theorem | gsumzresunsn 32808 | Append an element to a finite group sum expressed as a function restriction. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) & β’ π = (CntzβπΊ) & β’ π = (πΉβπ) & β’ (π β πΉ:πΆβΆπ΅) & β’ (π β π΄ β πΆ) & β’ (π β πΊ β Mnd) & β’ (π β π΄ β Fin) & β’ (π β Β¬ π β π΄) & β’ (π β π β πΆ) & β’ (π β π β π΅) & β’ (π β (πΉ β (π΄ βͺ {π})) β (πβ(πΉ β (π΄ βͺ {π})))) β β’ (π β (πΊ Ξ£g (πΉ βΎ (π΄ βͺ {π}))) = ((πΊ Ξ£g (πΉ βΎ π΄)) + π)) | ||
Theorem | gsumpart 32809* | Express a group sum as a double sum, grouping along a (possibly infinite) partition. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β π΄ β π) & β’ (π β π β π) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) & β’ (π β Disj π₯ β π πΆ) & β’ (π β βͺ π₯ β π πΆ = π΄) β β’ (π β (πΊ Ξ£g πΉ) = (πΊ Ξ£g (π₯ β π β¦ (πΊ Ξ£g (πΉ βΎ πΆ))))) | ||
Theorem | gsumhashmul 32810* | Express a group sum by grouping by nonzero values. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
β’ π΅ = (BaseβπΊ) & β’ 0 = (0gβπΊ) & β’ Β· = (.gβπΊ) & β’ (π β πΊ β CMnd) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΉ finSupp 0 ) β β’ (π β (πΊ Ξ£g πΉ) = (πΊ Ξ£g (π₯ β (ran πΉ β { 0 }) β¦ ((β―β(β‘πΉ β {π₯})) Β· π₯)))) | ||
Theorem | xrge0tsmsd 32811* | Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 30-Jan-2017.) |
β’ πΊ = (β*π βΎs (0[,]+β)) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆ(0[,]+β)) & β’ (π β π = sup(ran (π β (π« π΄ β© Fin) β¦ (πΊ Ξ£g (πΉ βΎ π ))), β*, < )) β β’ (π β (πΊ tsums πΉ) = {π}) | ||
Theorem | xrge0tsmsbi 32812 | Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 23-Jun-2017.) |
β’ πΊ = (β*π βΎs (0[,]+β)) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆ(0[,]+β)) β β’ (π β (πΆ β (πΊ tsums πΉ) β πΆ = βͺ (πΊ tsums πΉ))) | ||
Theorem | xrge0tsmseq 32813 | Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
β’ πΊ = (β*π βΎs (0[,]+β)) & β’ (π β π΄ β π) & β’ (π β πΉ:π΄βΆ(0[,]+β)) & β’ (π β πΆ β (πΊ tsums πΉ)) β β’ (π β πΆ = βͺ (πΊ tsums πΉ)) | ||
Theorem | cntzun 32814 | The centralizer of a union is the intersection of the centralizers. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
β’ π΅ = (Baseβπ) & β’ π = (Cntzβπ) β β’ ((π β π΅ β§ π β π΅) β (πβ(π βͺ π)) = ((πβπ) β© (πβπ))) | ||
Theorem | cntzsnid 32815 | The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
β’ π΅ = (Baseβπ) & β’ π = (Cntzβπ) & β’ 0 = (0gβπ) β β’ (π β Mnd β (πβ{ 0 }) = π΅) | ||
Theorem | cntrcrng 32816 | The center of a ring is a commutative ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
β’ π = (π βΎs (Cntrβ(mulGrpβπ ))) β β’ (π β Ring β π β CRing) | ||
Syntax | comnd 32817 | Extend class notation with the class of all right ordered monoids. |
class oMnd | ||
Syntax | cogrp 32818 | Extend class notation with the class of all right ordered groups. |
class oGrp | ||
Definition | df-omnd 32819* | Define class of all right ordered monoids. An ordered monoid is a monoid with a total ordering compatible with its operation. It is possible to use this definition also for left ordered monoids, by applying it to (oppgβπ). (Contributed by Thierry Arnoux, 13-Mar-2018.) |
β’ oMnd = {π β Mnd β£ [(Baseβπ) / π£][(+gβπ) / π][(leβπ) / π](π β Toset β§ βπ β π£ βπ β π£ βπ β π£ (πππ β (πππ)π(πππ)))} | ||
Definition | df-ogrp 32820 | Define class of all ordered groups. An ordered group is a group with a total ordering compatible with its operation. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
β’ oGrp = (Grp β© oMnd) | ||
Theorem | isomnd 32821* | A (left) ordered monoid is a monoid with a total ordering compatible with its operation. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
β’ π΅ = (Baseβπ) & β’ + = (+gβπ) & β’ β€ = (leβπ) β β’ (π β oMnd β (π β Mnd β§ π β Toset β§ βπ β π΅ βπ β π΅ βπ β π΅ (π β€ π β (π + π) β€ (π + π)))) | ||
Theorem | isogrp 32822 | A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
β’ (πΊ β oGrp β (πΊ β Grp β§ πΊ β oMnd)) | ||
Theorem | ogrpgrp 32823 | A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
β’ (πΊ β oGrp β πΊ β Grp) | ||
Theorem | omndmnd 32824 | A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
β’ (π β oMnd β π β Mnd) | ||
Theorem | omndtos 32825 | A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
β’ (π β oMnd β π β Toset) | ||
Theorem | omndadd 32826 | In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ + = (+gβπ) β β’ ((π β oMnd β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ π β€ π) β (π + π) β€ (π + π)) | ||
Theorem | omndaddr 32827 | In a right ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ + = (+gβπ) β β’ (((oppgβπ) β oMnd β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ π β€ π) β (π + π) β€ (π + π)) | ||
Theorem | omndadd2d 32828 | In a commutative left ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ + = (+gβπ) & β’ (π β π β oMnd) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β€ π) & β’ (π β π β€ π) & β’ (π β π β CMnd) β β’ (π β (π + π) β€ (π + π)) | ||
Theorem | omndadd2rd 32829 | In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.) |
β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ + = (+gβπ) & β’ (π β π β oMnd) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β€ π) & β’ (π β π β€ π) & β’ (π β (oppgβπ) β oMnd) β β’ (π β (π + π) β€ (π + π)) | ||
Theorem | submomnd 32830 | A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
β’ ((π β oMnd β§ (π βΎs π΄) β Mnd) β (π βΎs π΄) β oMnd) | ||
Theorem | xrge0omnd 32831 | The nonnegative extended real numbers form an ordered monoid. (Contributed by Thierry Arnoux, 22-Mar-2018.) |
β’ (β*π βΎs (0[,]+β)) β oMnd | ||
Theorem | omndmul2 32832 | In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ Β· = (.gβπ) & β’ 0 = (0gβπ) β β’ ((π β oMnd β§ (π β π΅ β§ π β β0) β§ 0 β€ π) β 0 β€ (π Β· π)) | ||
Theorem | omndmul3 32833 | In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ Β· = (.gβπ) & β’ 0 = (0gβπ) & β’ (π β π β oMnd) & β’ (π β π β β0) & β’ (π β π β β0) & β’ (π β π β€ π) & β’ (π β π β π΅) & β’ (π β 0 β€ π) β β’ (π β (π Β· π) β€ (π Β· π)) | ||
Theorem | omndmul 32834 | In a commutative ordered monoid, the ordering is compatible with group power. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ Β· = (.gβπ) & β’ (π β π β oMnd) & β’ (π β π β CMnd) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β β0) & β’ (π β π β€ π) β β’ (π β (π Β· π) β€ (π Β· π)) | ||
Theorem | ogrpinv0le 32835 | In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
β’ π΅ = (BaseβπΊ) & β’ β€ = (leβπΊ) & β’ πΌ = (invgβπΊ) & β’ 0 = (0gβπΊ) β β’ ((πΊ β oGrp β§ π β π΅) β ( 0 β€ π β (πΌβπ) β€ 0 )) | ||
Theorem | ogrpsub 32836 | In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
β’ π΅ = (BaseβπΊ) & β’ β€ = (leβπΊ) & β’ β = (-gβπΊ) β β’ ((πΊ β oGrp β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ π β€ π) β (π β π) β€ (π β π)) | ||
Theorem | ogrpaddlt 32837 | In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
β’ π΅ = (BaseβπΊ) & β’ < = (ltβπΊ) & β’ + = (+gβπΊ) β β’ ((πΊ β oGrp β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ π < π) β (π + π) < (π + π)) | ||
Theorem | ogrpaddltbi 32838 | In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
β’ π΅ = (BaseβπΊ) & β’ < = (ltβπΊ) & β’ + = (+gβπΊ) β β’ ((πΊ β oGrp β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π < π β (π + π) < (π + π))) | ||
Theorem | ogrpaddltrd 32839 | In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
β’ π΅ = (BaseβπΊ) & β’ < = (ltβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β π) & β’ (π β (oppgβπΊ) β oGrp) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π < π) β β’ (π β (π + π) < (π + π)) | ||
Theorem | ogrpaddltrbid 32840 | In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
β’ π΅ = (BaseβπΊ) & β’ < = (ltβπΊ) & β’ + = (+gβπΊ) & β’ (π β πΊ β π) & β’ (π β (oppgβπΊ) β oGrp) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π < π β (π + π) < (π + π))) | ||
Theorem | ogrpsublt 32841 | In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
β’ π΅ = (BaseβπΊ) & β’ < = (ltβπΊ) & β’ β = (-gβπΊ) β β’ ((πΊ β oGrp β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ π < π) β (π β π) < (π β π)) | ||
Theorem | ogrpinv0lt 32842 | In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
β’ π΅ = (BaseβπΊ) & β’ < = (ltβπΊ) & β’ πΌ = (invgβπΊ) & β’ 0 = (0gβπΊ) β β’ ((πΊ β oGrp β§ π β π΅) β ( 0 < π β (πΌβπ) < 0 )) | ||
Theorem | ogrpinvlt 32843 | In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.) |
β’ π΅ = (BaseβπΊ) & β’ < = (ltβπΊ) & β’ πΌ = (invgβπΊ) β β’ (((πΊ β oGrp β§ (oppgβπΊ) β oGrp) β§ π β π΅ β§ π β π΅) β (π < π β (πΌβπ) < (πΌβπ))) | ||
Theorem | gsumle 32844 | A finite sum in an ordered monoid is monotonic. This proof would be much easier in an ordered group, where an inverse element would be available. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
β’ π΅ = (Baseβπ) & β’ β€ = (leβπ) & β’ (π β π β oMnd) & β’ (π β π β CMnd) & β’ (π β π΄ β Fin) & β’ (π β πΉ:π΄βΆπ΅) & β’ (π β πΊ:π΄βΆπ΅) & β’ (π β πΉ βr β€ πΊ) β β’ (π β (π Ξ£g πΉ) β€ (π Ξ£g πΊ)) | ||
Theorem | symgfcoeu 32845* | Uniqueness property of permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
β’ πΊ = (Baseβ(SymGrpβπ·)) β β’ ((π· β π β§ π β πΊ β§ π β πΊ) β β!π β πΊ π = (π β π)) | ||
Theorem | symgcom 32846 | Two permutations π and π commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
β’ πΊ = (SymGrpβπ΄) & β’ π΅ = (BaseβπΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β (π βΎ πΈ) = ( I βΎ πΈ)) & β’ (π β (π βΎ πΉ) = ( I βΎ πΉ)) & β’ (π β (πΈ β© πΉ) = β ) & β’ (π β (πΈ βͺ πΉ) = π΄) β β’ (π β (π β π) = (π β π)) | ||
Theorem | symgcom2 32847 | Two permutations π and π commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 17-Nov-2023.) |
β’ πΊ = (SymGrpβπ΄) & β’ π΅ = (BaseβπΊ) & β’ (π β π β π΅) & β’ (π β π β π΅) & β’ (π β (dom (π β I ) β© dom (π β I )) = β ) β β’ (π β (π β π) = (π β π)) | ||
Theorem | symgcntz 32848* | All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
β’ π = (SymGrpβπ·) & β’ π΅ = (Baseβπ) & β’ π = (Cntzβπ) & β’ (π β π΄ β π΅) & β’ (π β Disj π₯ β π΄ dom (π₯ β I )) β β’ (π β π΄ β (πβπ΄)) | ||
Theorem | odpmco 32849 | The composition of two odd permutations is even. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
β’ π = (SymGrpβπ·) & β’ π΅ = (Baseβπ) & β’ π΄ = (pmEvenβπ·) β β’ ((π· β Fin β§ π β (π΅ β π΄) β§ π β (π΅ β π΄)) β (π β π) β π΄) | ||
Theorem | symgsubg 32850 | The value of the group subtraction operation of the symmetric group. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
β’ πΊ = (SymGrpβπ΄) & β’ π΅ = (BaseβπΊ) & β’ β = (-gβπΊ) β β’ ((π β π΅ β§ π β π΅) β (π β π) = (π β β‘π)) | ||
Theorem | pmtrprfv2 32851 | In a transposition of two given points, each maps to the other. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
β’ π = (pmTrspβπ·) β β’ ((π· β π β§ (π β π· β§ π β π· β§ π β π)) β ((πβ{π, π})βπ) = π) | ||
Theorem | pmtrcnel 32852 | Composing a permutation πΉ with a transposition which results in moving at least one less point. Here the set of points moved by a permutation πΉ is expressed as dom (πΉ β I ). (Contributed by Thierry Arnoux, 16-Nov-2023.) |
β’ π = (SymGrpβπ·) & β’ π = (pmTrspβπ·) & β’ π΅ = (Baseβπ) & β’ π½ = (πΉβπΌ) & β’ (π β π· β π) & β’ (π β πΉ β π΅) & β’ (π β πΌ β dom (πΉ β I )) β β’ (π β dom (((πβ{πΌ, π½}) β πΉ) β I ) β (dom (πΉ β I ) β {πΌ})) | ||
Theorem | pmtrcnel2 32853 | Variation on pmtrcnel 32852. (Contributed by Thierry Arnoux, 16-Nov-2023.) |
β’ π = (SymGrpβπ·) & β’ π = (pmTrspβπ·) & β’ π΅ = (Baseβπ) & β’ π½ = (πΉβπΌ) & β’ (π β π· β π) & β’ (π β πΉ β π΅) & β’ (π β πΌ β dom (πΉ β I )) β β’ (π β (dom (πΉ β I ) β {πΌ, π½}) β dom (((πβ{πΌ, π½}) β πΉ) β I )) | ||
Theorem | pmtrcnelor 32854 | Composing a permutation πΉ with a transposition which results in moving one or two less points. (Contributed by Thierry Arnoux, 16-Nov-2023.) |
β’ π = (SymGrpβπ·) & β’ π = (pmTrspβπ·) & β’ π΅ = (Baseβπ) & β’ π½ = (πΉβπΌ) & β’ (π β π· β π) & β’ (π β πΉ β π΅) & β’ (π β πΌ β dom (πΉ β I )) & β’ πΈ = dom (πΉ β I ) & β’ π΄ = dom (((πβ{πΌ, π½}) β πΉ) β I ) β β’ (π β (π΄ = (πΈ β {πΌ, π½}) β¨ π΄ = (πΈ β {πΌ}))) | ||
Theorem | pmtridf1o 32855 | Transpositions of π and π (understood to be the identity when π = π), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
β’ (π β π΄ β π) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ π = if(π = π, ( I βΎ π΄), ((pmTrspβπ΄)β{π, π})) β β’ (π β π:π΄β1-1-ontoβπ΄) | ||
Theorem | pmtridfv1 32856 | Value at X of the transposition of π and π (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.) |
β’ (π β π΄ β π) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ π = if(π = π, ( I βΎ π΄), ((pmTrspβπ΄)β{π, π})) β β’ (π β (πβπ) = π) | ||
Theorem | pmtridfv2 32857 | Value at Y of the transposition of π and π (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.) |
β’ (π β π΄ β π) & β’ (π β π β π΄) & β’ (π β π β π΄) & β’ π = if(π = π, ( I βΎ π΄), ((pmTrspβπ΄)β{π, π})) β β’ (π β (πβπ) = π) | ||
Theorem | psgnid 32858 | Permutation sign of the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
β’ π = (pmSgnβπ·) β β’ (π· β Fin β (πβ( I βΎ π·)) = 1) | ||
Theorem | psgndmfi 32859 | For a finite base set, the permutation sign is defined for all permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
β’ π = (pmSgnβπ·) & β’ πΊ = (Baseβ(SymGrpβπ·)) β β’ (π· β Fin β π Fn πΊ) | ||
Theorem | pmtrto1cl 32860 | Useful lemma for the following theorems. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
β’ π· = (1...π) & β’ π = (pmTrspβπ·) β β’ ((πΎ β β β§ (πΎ + 1) β π·) β (πβ{πΎ, (πΎ + 1)}) β ran π) | ||
Theorem | psgnfzto1stlem 32861* | Lemma for psgnfzto1st 32866. Our permutation of rank (π + 1) can be written as a permutation of rank π composed with a transposition. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
β’ π· = (1...π) β β’ ((πΎ β β β§ (πΎ + 1) β π·) β (π β π· β¦ if(π = 1, (πΎ + 1), if(π β€ (πΎ + 1), (π β 1), π))) = (((pmTrspβπ·)β{πΎ, (πΎ + 1)}) β (π β π· β¦ if(π = 1, πΎ, if(π β€ πΎ, (π β 1), π))))) | ||
Theorem | fzto1stfv1 32862* | Value of our permutation π at 1. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
β’ π· = (1...π) & β’ π = (π β π· β¦ if(π = 1, πΌ, if(π β€ πΌ, (π β 1), π))) β β’ (πΌ β π· β (πβ1) = πΌ) | ||
Theorem | fzto1st1 32863* | Special case where the permutation defined in psgnfzto1st 32866 is the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
β’ π· = (1...π) & β’ π = (π β π· β¦ if(π = 1, πΌ, if(π β€ πΌ, (π β 1), π))) β β’ (πΌ = 1 β π = ( I βΎ π·)) | ||
Theorem | fzto1st 32864* | The function moving one element to the first position (and shifting all elements before it) is a permutation. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
β’ π· = (1...π) & β’ π = (π β π· β¦ if(π = 1, πΌ, if(π β€ πΌ, (π β 1), π))) & β’ πΊ = (SymGrpβπ·) & β’ π΅ = (BaseβπΊ) β β’ (πΌ β π· β π β π΅) | ||
Theorem | fzto1stinvn 32865* | Value of the inverse of our permutation π at πΌ. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
β’ π· = (1...π) & β’ π = (π β π· β¦ if(π = 1, πΌ, if(π β€ πΌ, (π β 1), π))) & β’ πΊ = (SymGrpβπ·) & β’ π΅ = (BaseβπΊ) β β’ (πΌ β π· β (β‘πβπΌ) = 1) | ||
Theorem | psgnfzto1st 32866* | The permutation sign for moving one element to the first position. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
β’ π· = (1...π) & β’ π = (π β π· β¦ if(π = 1, πΌ, if(π β€ πΌ, (π β 1), π))) & β’ πΊ = (SymGrpβπ·) & β’ π΅ = (BaseβπΊ) & β’ π = (pmSgnβπ·) β β’ (πΌ β π· β (πβπ) = (-1β(πΌ + 1))) | ||
Syntax | ctocyc 32867 | Extend class notation with the permutation cycle builder. |
class toCyc | ||
Definition | df-tocyc 32868* | Define a convenience permutation cycle builder. Given a list of elements to be cycled, in the form of a word, this function produces the corresponding permutation cycle. See definition in [Lang] p. 30. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ toCyc = (π β V β¦ (π€ β {π’ β Word π β£ π’:dom π’β1-1βπ} β¦ (( I βΎ (π β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)))) | ||
Theorem | tocycval 32869* | Value of the cycle builder. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
β’ πΆ = (toCycβπ·) β β’ (π· β π β πΆ = (π€ β {π’ β Word π· β£ π’:dom π’β1-1βπ·} β¦ (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)))) | ||
Theorem | tocycfv 32870 | Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ (π β π· β π) & β’ (π β π β Word π·) & β’ (π β π:dom πβ1-1βπ·) β β’ (π β (πΆβπ) = (( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π))) | ||
Theorem | tocycfvres1 32871 | A cyclic permutation is a cyclic shift on its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
β’ πΆ = (toCycβπ·) & β’ (π β π· β π) & β’ (π β π β Word π·) & β’ (π β π:dom πβ1-1βπ·) β β’ (π β ((πΆβπ) βΎ ran π) = ((π cyclShift 1) β β‘π)) | ||
Theorem | tocycfvres2 32872 | A cyclic permutation is the identity outside of its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
β’ πΆ = (toCycβπ·) & β’ (π β π· β π) & β’ (π β π β Word π·) & β’ (π β π:dom πβ1-1βπ·) β β’ (π β ((πΆβπ) βΎ (π· β ran π)) = ( I βΎ (π· β ran π))) | ||
Theorem | cycpmfvlem 32873 | Lemma for cycpmfv1 32874 and cycpmfv2 32875. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ (π β π· β π) & β’ (π β π β Word π·) & β’ (π β π:dom πβ1-1βπ·) & β’ (π β π β (0..^(β―βπ))) β β’ (π β ((πΆβπ)β(πβπ)) = (((π cyclShift 1) β β‘π)β(πβπ))) | ||
Theorem | cycpmfv1 32874 | Value of a cycle function for any element but the last. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ (π β π· β π) & β’ (π β π β Word π·) & β’ (π β π:dom πβ1-1βπ·) & β’ (π β π β (0..^((β―βπ) β 1))) β β’ (π β ((πΆβπ)β(πβπ)) = (πβ(π + 1))) | ||
Theorem | cycpmfv2 32875 | Value of a cycle function for the last element of the orbit. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ (π β π· β π) & β’ (π β π β Word π·) & β’ (π β π:dom πβ1-1βπ·) & β’ (π β 0 < (β―βπ)) & β’ (π β π = ((β―βπ) β 1)) β β’ (π β ((πΆβπ)β(πβπ)) = (πβ0)) | ||
Theorem | cycpmfv3 32876 | Values outside of the orbit are unchanged by a cycle. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ (π β π· β π) & β’ (π β π β Word π·) & β’ (π β π:dom πβ1-1βπ·) & β’ (π β π β π·) & β’ (π β Β¬ π β ran π) β β’ (π β ((πΆβπ)βπ) = π) | ||
Theorem | cycpmcl 32877 | Cyclic permutations are permutations. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ (π β π· β π) & β’ (π β π β Word π·) & β’ (π β π:dom πβ1-1βπ·) & β’ π = (SymGrpβπ·) β β’ (π β (πΆβπ) β (Baseβπ)) | ||
Theorem | tocycf 32878* | The permutation cycle builder as a function. (Contributed by Thierry Arnoux, 25-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ π΅ = (Baseβπ) β β’ (π· β π β πΆ:{π€ β Word π· β£ π€:dom π€β1-1βπ·}βΆπ΅) | ||
Theorem | tocyc01 32879 | Permutation cycles built from the empty set or a singleton are the identity. (Contributed by Thierry Arnoux, 21-Nov-2023.) |
β’ πΆ = (toCycβπ·) β β’ ((π· β π β§ π β (dom πΆ β© (β‘β― β {0, 1}))) β (πΆβπ) = ( I βΎ π·)) | ||
Theorem | cycpm2tr 32880 | A cyclic permutation of 2 elements is a transposition. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ (π β π· β π) & β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΌ β π½) & β’ π = (pmTrspβπ·) β β’ (π β (πΆββ¨βπΌπ½ββ©) = (πβ{πΌ, π½})) | ||
Theorem | cycpm2cl 32881 | Closure for the 2-cycles. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ (π β π· β π) & β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΌ β π½) & β’ π = (SymGrpβπ·) β β’ (π β (πΆββ¨βπΌπ½ββ©) β (Baseβπ)) | ||
Theorem | cyc2fv1 32882 | Function value of a 2-cycle at the first point. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ (π β π· β π) & β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΌ β π½) & β’ π = (SymGrpβπ·) β β’ (π β ((πΆββ¨βπΌπ½ββ©)βπΌ) = π½) | ||
Theorem | cyc2fv2 32883 | Function value of a 2-cycle at the second point. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ (π β π· β π) & β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΌ β π½) & β’ π = (SymGrpβπ·) β β’ (π β ((πΆββ¨βπΌπ½ββ©)βπ½) = πΌ) | ||
Theorem | trsp2cyc 32884* | Exhibit the word a transposition corresponds to, as a cycle. (Contributed by Thierry Arnoux, 25-Sep-2023.) |
β’ π = ran (pmTrspβπ·) & β’ πΆ = (toCycβπ·) β β’ ((π· β π β§ π β π) β βπ β π· βπ β π· (π β π β§ π = (πΆββ¨βππββ©))) | ||
Theorem | cycpmco2f1 32885 | The word U used in cycpmco2 32894 is injective, so it can represent a cycle and form a cyclic permutation (πβπ). (Contributed by Thierry Arnoux, 4-Jan-2024.) |
β’ π = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β π β dom π) & β’ (π β πΌ β (π· β ran π)) & β’ (π β π½ β ran π) & β’ πΈ = ((β‘πβπ½) + 1) & β’ π = (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) β β’ (π β π:dom πβ1-1βπ·) | ||
Theorem | cycpmco2rn 32886 | The orbit of the composition of a cyclic permutation and a well-chosen transposition is one element more than the orbit of the original permutation. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
β’ π = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β π β dom π) & β’ (π β πΌ β (π· β ran π)) & β’ (π β π½ β ran π) & β’ πΈ = ((β‘πβπ½) + 1) & β’ π = (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) β β’ (π β ran π = (ran π βͺ {πΌ})) | ||
Theorem | cycpmco2lem1 32887 | Lemma for cycpmco2 32894. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
β’ π = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β π β dom π) & β’ (π β πΌ β (π· β ran π)) & β’ (π β π½ β ran π) & β’ πΈ = ((β‘πβπ½) + 1) & β’ π = (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) β β’ (π β ((πβπ)β((πββ¨βπΌπ½ββ©)βπΌ)) = ((πβπ)βπ½)) | ||
Theorem | cycpmco2lem2 32888 | Lemma for cycpmco2 32894. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
β’ π = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β π β dom π) & β’ (π β πΌ β (π· β ran π)) & β’ (π β π½ β ran π) & β’ πΈ = ((β‘πβπ½) + 1) & β’ π = (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) β β’ (π β (πβπΈ) = πΌ) | ||
Theorem | cycpmco2lem3 32889 | Lemma for cycpmco2 32894. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
β’ π = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β π β dom π) & β’ (π β πΌ β (π· β ran π)) & β’ (π β π½ β ran π) & β’ πΈ = ((β‘πβπ½) + 1) & β’ π = (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) β β’ (π β ((β―βπ) β 1) = (β―βπ)) | ||
Theorem | cycpmco2lem4 32890 | Lemma for cycpmco2 32894. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
β’ π = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β π β dom π) & β’ (π β πΌ β (π· β ran π)) & β’ (π β π½ β ran π) & β’ πΈ = ((β‘πβπ½) + 1) & β’ π = (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) β β’ (π β ((πβπ)β((πββ¨βπΌπ½ββ©)βπΌ)) = ((πβπ)βπΌ)) | ||
Theorem | cycpmco2lem5 32891 | Lemma for cycpmco2 32894. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
β’ π = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β π β dom π) & β’ (π β πΌ β (π· β ran π)) & β’ (π β π½ β ran π) & β’ πΈ = ((β‘πβπ½) + 1) & β’ π = (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) & β’ (π β πΎ β ran π) & β’ (π β (β‘πβπΎ) = ((β―βπ) β 1)) β β’ (π β ((πβπ)βπΎ) = ((πβπ)βπΎ)) | ||
Theorem | cycpmco2lem6 32892 | Lemma for cycpmco2 32894. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
β’ π = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β π β dom π) & β’ (π β πΌ β (π· β ran π)) & β’ (π β π½ β ran π) & β’ πΈ = ((β‘πβπ½) + 1) & β’ π = (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) & β’ (π β πΎ β ran π) & β’ (π β πΎ β πΌ) & β’ (π β (β‘πβπΎ) β (πΈ..^((β―βπ) β 1))) β β’ (π β ((πβπ)βπΎ) = ((πβπ)βπΎ)) | ||
Theorem | cycpmco2lem7 32893 | Lemma for cycpmco2 32894. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
β’ π = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β π β dom π) & β’ (π β πΌ β (π· β ran π)) & β’ (π β π½ β ran π) & β’ πΈ = ((β‘πβπ½) + 1) & β’ π = (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) & β’ (π β πΎ β ran π) & β’ (π β πΎ β π½) & β’ (π β (β‘πβπΎ) β (0..^πΈ)) β β’ (π β ((πβπ)βπΎ) = ((πβπ)βπΎ)) | ||
Theorem | cycpmco2 32894 | The composition of a cyclic permutation and a transposition of one element in the cycle and one outside the cycle results in a cyclic permutation with one more element in its orbit. (Contributed by Thierry Arnoux, 2-Jan-2024.) |
β’ π = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β π β dom π) & β’ (π β πΌ β (π· β ran π)) & β’ (π β π½ β ran π) & β’ πΈ = ((β‘πβπ½) + 1) & β’ π = (π splice β¨πΈ, πΈ, β¨βπΌββ©β©) β β’ (π β ((πβπ) β (πββ¨βπΌπ½ββ©)) = (πβπ)) | ||
Theorem | cyc2fvx 32895 | Function value of a 2-cycle outside of its orbit. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΎ β π·) & β’ (π β πΌ β π½) & β’ (π β π½ β πΎ) & β’ (π β πΎ β πΌ) β β’ (π β ((πΆββ¨βπΌπ½ββ©)βπΎ) = πΎ) | ||
Theorem | cycpm3cl 32896 | Closure of the 3-cycles in the permutations. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΎ β π·) & β’ (π β πΌ β π½) & β’ (π β π½ β πΎ) & β’ (π β πΎ β πΌ) β β’ (π β (πΆββ¨βπΌπ½πΎββ©) β (Baseβπ)) | ||
Theorem | cycpm3cl2 32897 | Closure of the 3-cycles in the class of 3-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΎ β π·) & β’ (π β πΌ β π½) & β’ (π β π½ β πΎ) & β’ (π β πΎ β πΌ) β β’ (π β (πΆββ¨βπΌπ½πΎββ©) β (πΆ β (β‘β― β {3}))) | ||
Theorem | cyc3fv1 32898 | Function value of a 3-cycle at the first point. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΎ β π·) & β’ (π β πΌ β π½) & β’ (π β π½ β πΎ) & β’ (π β πΎ β πΌ) β β’ (π β ((πΆββ¨βπΌπ½πΎββ©)βπΌ) = π½) | ||
Theorem | cyc3fv2 32899 | Function value of a 3-cycle at the second point. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΎ β π·) & β’ (π β πΌ β π½) & β’ (π β π½ β πΎ) & β’ (π β πΎ β πΌ) β β’ (π β ((πΆββ¨βπΌπ½πΎββ©)βπ½) = πΎ) | ||
Theorem | cyc3fv3 32900 | Function value of a 3-cycle at the third point. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
β’ πΆ = (toCycβπ·) & β’ π = (SymGrpβπ·) & β’ (π β π· β π) & β’ (π β πΌ β π·) & β’ (π β π½ β π·) & β’ (π β πΎ β π·) & β’ (π β πΌ β π½) & β’ (π β π½ β πΎ) & β’ (π β πΎ β πΌ) β β’ (π β ((πΆββ¨βπΌπ½πΎββ©)βπΎ) = πΌ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |