![]() |
Metamath
Proof Explorer Theorem List (p. 329 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | iundisjfi 32801* | Rewrite a countable union as a disjoint union, finite version. Cf. iundisj 25602. (Contributed by Thierry Arnoux, 15-Feb-2017.) |
⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ ∪ 𝑛 ∈ (1..^𝑁)𝐴 = ∪ 𝑛 ∈ (1..^𝑁)(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
Theorem | iundisj2fi 32802* | A disjoint union is disjoint, finite version. Cf. iundisj2 25603. (Contributed by Thierry Arnoux, 16-Feb-2017.) |
⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ Disj 𝑛 ∈ (1..^𝑁)(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
Theorem | iundisjcnt 32803* | Rewrite a countable union as a disjoint union. (Contributed by Thierry Arnoux, 16-Feb-2017.) |
⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀))) ⇒ ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) | ||
Theorem | iundisj2cnt 32804* | A countable disjoint union is disjoint. Cf. iundisj2 25603. (Contributed by Thierry Arnoux, 16-Feb-2017.) |
⊢ Ⅎ𝑛𝐵 & ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝑀))) ⇒ ⊢ (𝜑 → Disj 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) | ||
Theorem | fzone1 32805 | Elementhood in a half-open interval, except its lower bound. (Contributed by Thierry Arnoux, 1-Jan-2024.) |
⊢ ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝐾 ≠ 𝑀) → 𝐾 ∈ ((𝑀 + 1)..^𝑁)) | ||
Theorem | fzom1ne1 32806 | Elementhood in a half-open interval, except the lower bound, shifted by one. (Contributed by Thierry Arnoux, 1-Jan-2024.) |
⊢ ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝐾 ≠ 𝑀) → (𝐾 − 1) ∈ (𝑀..^(𝑁 − 1))) | ||
Theorem | f1ocnt 32807* | Given a countable set 𝐴, number its elements by providing a one-to-one mapping either with ℕ or an integer range starting from 1. The domain of the function can then be used with iundisjcnt 32803 or iundisj2cnt 32804. (Contributed by Thierry Arnoux, 25-Jul-2020.) |
⊢ (𝐴 ≼ ω → ∃𝑓(𝑓:dom 𝑓–1-1-onto→𝐴 ∧ (dom 𝑓 = ℕ ∨ dom 𝑓 = (1..^((♯‘𝐴) + 1))))) | ||
Theorem | fz1nnct 32808 | NN and integer ranges starting from 1 are countable. (Contributed by Thierry Arnoux, 25-Jul-2020.) |
⊢ ((𝐴 = ℕ ∨ 𝐴 = (1..^𝑀)) → 𝐴 ≼ ω) | ||
Theorem | fz1nntr 32809 | NN and integer ranges starting from 1 are a transitive family of set. (Contributed by Thierry Arnoux, 25-Jul-2020.) |
⊢ (((𝐴 = ℕ ∨ 𝐴 = (1..^𝑀)) ∧ 𝑁 ∈ 𝐴) → (1..^𝑁) ⊆ 𝐴) | ||
Theorem | fzo0opth 32810 | Equality for a half open integer range starting at zero is the same as equality of its upper bound, analogous to fzopth 13621 and fzoopth 13812. (Contributed by Thierry Arnoux, 27-May-2025.) |
⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((0..^𝑀) = (0..^𝑁) ↔ 𝑀 = 𝑁)) | ||
Theorem | nn0difffzod 32811 | A nonnegative integer that is not in the half-open range from 0 to 𝑁 is at least 𝑁. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ (ℕ0 ∖ (0..^𝑁))) ⇒ ⊢ (𝜑 → ¬ 𝑀 < 𝑁) | ||
Theorem | suppssnn0 32812* | Show that the support of a function is contained in an half-open nonnegative integer range. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ (𝜑 → 𝐹 Fn ℕ0) & ⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑁 ≤ 𝑘) → (𝐹‘𝑘) = 𝑍) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (0..^𝑁)) | ||
Theorem | hashunif 32813* | The cardinality of a disjoint finite union of finite sets. Cf. hashuni 15874. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ Fin) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝑥) ⇒ ⊢ (𝜑 → (♯‘∪ 𝐴) = Σ𝑥 ∈ 𝐴 (♯‘𝑥)) | ||
Theorem | hashxpe 32814 | The size of the Cartesian product of two finite sets is the product of their sizes. This is a version of hashxp 14483 valid for infinite sets, which uses extended real numbers. (Contributed by Thierry Arnoux, 27-May-2023.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) ·e (♯‘𝐵))) | ||
Theorem | hashgt1 32815 | Restate "set contains at least two elements" in terms of elementhood. (Contributed by Thierry Arnoux, 21-Nov-2023.) |
⊢ (𝐴 ∈ 𝑉 → (¬ 𝐴 ∈ (◡♯ “ {0, 1}) ↔ 1 < (♯‘𝐴))) | ||
Theorem | znumd 32816 | Numerator of an integer. (Contributed by Thierry Arnoux, 4-May-2025.) |
⊢ (𝜑 → 𝑍 ∈ ℤ) ⇒ ⊢ (𝜑 → (numer‘𝑍) = 𝑍) | ||
Theorem | zdend 32817 | Denominator of an integer. (Contributed by Thierry Arnoux, 4-May-2025.) |
⊢ (𝜑 → 𝑍 ∈ ℤ) ⇒ ⊢ (𝜑 → (denom‘𝑍) = 1) | ||
Theorem | numdenneg 32818 | Numerator and denominator of the negative. (Contributed by Thierry Arnoux, 27-Oct-2017.) |
⊢ (𝑄 ∈ ℚ → ((numer‘-𝑄) = -(numer‘𝑄) ∧ (denom‘-𝑄) = (denom‘𝑄))) | ||
Theorem | divnumden2 32819 | Calculate the reduced form of a quotient using gcd. This version extends divnumden 16795 for the negative integers. (Contributed by Thierry Arnoux, 25-Oct-2017.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵)))) | ||
Theorem | expgt0b 32820 | A real number 𝐴 raised to an odd integer power is positive iff it is positive. (Contributed by SN, 4-Mar-2023.) Use the more standard ¬ 2 ∥ 𝑁 (Revised by Thierry Arnoux, 14-Jun-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) ⇒ ⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴↑𝑁))) | ||
Theorem | nn0split01 32821 | Split 0 and 1 from the nonnegative integers. (Contributed by Thierry Arnoux, 8-Jun-2025.) |
⊢ ℕ0 = ({0, 1} ∪ (ℤ≥‘2)) | ||
Theorem | nn0disj01 32822 | The pair {0, 1} does not overlap the rest of the nonnegative integers. (Contributed by Thierry Arnoux, 8-Jun-2025.) |
⊢ ({0, 1} ∩ (ℤ≥‘2)) = ∅ | ||
Theorem | nnindf 32823* | Principle of Mathematical Induction, using a bound-variable hypothesis instead of distinct variables. (Contributed by Thierry Arnoux, 6-May-2018.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
Theorem | nn0min 32824* | Extracting the minimum positive integer for which a property 𝜒 does not hold. This uses substitutions similar to nn0ind 12738. (Contributed by Thierry Arnoux, 6-May-2018.) |
⊢ (𝑛 = 0 → (𝜓 ↔ 𝜒)) & ⊢ (𝑛 = 𝑚 → (𝜓 ↔ 𝜃)) & ⊢ (𝑛 = (𝑚 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝜑 → ¬ 𝜒) & ⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℕ0 (¬ 𝜃 ∧ 𝜏)) | ||
Theorem | subne0nn 32825 | A nonnegative difference is positive if the two numbers are not equal. (Contributed by Thierry Arnoux, 17-Dec-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℂ) & ⊢ (𝜑 → (𝑀 − 𝑁) ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ≠ 𝑁) ⇒ ⊢ (𝜑 → (𝑀 − 𝑁) ∈ ℕ) | ||
Theorem | ltesubnnd 32826 | Subtracting an integer number from another number decreases it. See ltsubrpd 13131. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝑀 + 1) − 𝑁) ≤ 𝑀) | ||
Theorem | fprodeq02 32827* | If one of the factors is zero the product is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
⊢ (𝑘 = 𝐾 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 = 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) | ||
Theorem | pr01ssre 32828 | The range of the indicator function is a subset of ℝ. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
⊢ {0, 1} ⊆ ℝ | ||
Theorem | fprodex01 32829* | A product of factors equal to zero or one is zero exactly when one of the factors is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
⊢ (𝑘 = 𝑙 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ {0, 1}) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = if(∀𝑙 ∈ 𝐴 𝐶 = 1, 1, 0)) | ||
Theorem | prodpr 32830* | A product over a pair is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) & ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐸 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹)) | ||
Theorem | prodtp 32831* | A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) & ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐸 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺)) | ||
Theorem | fsumub 32832* | An upper bound for a term of a positive finite sum. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ (𝑘 = 𝐾 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐷 ≤ 𝐶) | ||
Theorem | fsumiunle 32833* | Upper bound for a sum of nonnegative terms over an indexed union. The inequality may be strict if the indexed union is non-disjoint, since in the right hand side, a summand may be counted several times. (Contributed by Thierry Arnoux, 1-Jan-2021.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℝ) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 0 ≤ 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝐶 ≤ Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) | ||
Theorem | dfdec100 32834 | Split the hundreds from a decimal value. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ;;𝐴𝐵𝐶 = ((;;100 · 𝐴) + ;𝐵𝐶) | ||
Define a decimal expansion constructor. The decimal expansions built with this constructor are not meant to be used alone outside of this chapter. Rather, they are meant to be used exclusively as part of a decimal number with a decimal fraction, for example (3._1_4_1_59). That decimal point operator is defined in the next section. The bulk of these constructions have originally been proposed by David A. Wheeler on 12-May-2015, and discussed with Mario Carneiro in this thread: https://groups.google.com/g/metamath/c/2AW7T3d2YiQ. | ||
Syntax | cdp2 32835 | Constant used for decimal fraction constructor. See df-dp2 32836. |
class _𝐴𝐵 | ||
Definition | df-dp2 32836 | Define the "decimal fraction constructor", which is used to build up "decimal fractions" in base 10. This is intentionally similar to df-dec 12759. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | ||
Theorem | dp2eq1 32837 | Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ (𝐴 = 𝐵 → _𝐴𝐶 = _𝐵𝐶) | ||
Theorem | dp2eq2 32838 | Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ (𝐴 = 𝐵 → _𝐶𝐴 = _𝐶𝐵) | ||
Theorem | dp2eq1i 32839 | Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ _𝐴𝐶 = _𝐵𝐶 | ||
Theorem | dp2eq2i 32840 | Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ _𝐶𝐴 = _𝐶𝐵 | ||
Theorem | dp2eq12i 32841 | Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ _𝐴𝐶 = _𝐵𝐷 | ||
Theorem | dp20u 32842 | Add a zero in the tenths (lower) place. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ _𝐴0 = 𝐴 | ||
Theorem | dp20h 32843 | Add a zero in the unit places. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℝ+ ⇒ ⊢ _0𝐴 = (𝐴 / ;10) | ||
Theorem | dp2cl 32844 | Closure for the decimal fraction constructor if both values are reals. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → _𝐴𝐵 ∈ ℝ) | ||
Theorem | dp2clq 32845 | Closure for a decimal fraction. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℚ ⇒ ⊢ _𝐴𝐵 ∈ ℚ | ||
Theorem | rpdp2cl 32846 | Closure for a decimal fraction in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ ⇒ ⊢ _𝐴𝐵 ∈ ℝ+ | ||
Theorem | rpdp2cl2 32847 | Closure for a decimal fraction with no decimal expansion in the positive real numbers. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ _𝐴0 ∈ ℝ+ | ||
Theorem | dp2lt10 32848 | Decimal fraction builds real numbers less than 10. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐴 < ;10 & ⊢ 𝐵 < ;10 ⇒ ⊢ _𝐴𝐵 < ;10 | ||
Theorem | dp2lt 32849 | Comparing two decimal fractions (equal unit places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℝ+ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ _𝐴𝐵 < _𝐴𝐶 | ||
Theorem | dp2ltsuc 32850 | Comparing a decimal fraction with the next integer. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐵 < ;10 & ⊢ (𝐴 + 1) = 𝐶 ⇒ ⊢ _𝐴𝐵 < 𝐶 | ||
Theorem | dp2ltc 32851 | Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℝ+ & ⊢ 𝐵 < ;10 & ⊢ 𝐴 < 𝐶 ⇒ ⊢ _𝐴𝐵 < _𝐶𝐷 | ||
Define the decimal point operator and the decimal fraction constructor. This can model traditional decimal point notation, and serve as a convenient way to write some fractional numbers. See df-dp 32853 and df-dp2 32836 for more information; dpval2 32857 and dpfrac1 32856 provide a more convenient way to obtain a value. This is intentionally similar to df-dec 12759. | ||
Syntax | cdp 32852 | Decimal point operator. See df-dp 32853. |
class . | ||
Definition | df-dp 32853* |
Define the . (decimal point) operator. For example,
(1.5) = (3 / 2), and
-(;32._7_18) =
-(;;;;32718 / ;;;1000)
Unary minus, if applied, should normally be applied in front of the
parentheses.
Metamath intentionally does not have a built-in construct for numbers, so it can show that numbers are something you can build based on set theory. However, that means that Metamath has no built-in way to parse and handle decimal numbers as traditionally written, e.g., "2.54". Here we create a system for modeling traditional decimal point notation; it is not syntactically identical, but it is sufficiently similar so it is a reasonable model of decimal point notation. It should also serve as a convenient way to write some fractional numbers. The RHS is ℝ, not ℚ; this should simplify some proofs. The LHS is ℕ0, since that is what is used in practice. The definition intentionally does not allow negative numbers on the LHS; if it did, nonzero fractions would produce the wrong results. (It would be possible to define the decimal point to do this, but using it would be more complicated, and the expression -(𝐴.𝐵) is just as convenient.) (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ _𝑥𝑦) | ||
Theorem | dpval 32854 | Define the value of the decimal point operator. See df-dp 32853. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = _𝐴𝐵) | ||
Theorem | dpcl 32855 | Prove that the closure of the decimal point is ℝ as we have defined it. See df-dp 32853. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) ∈ ℝ) | ||
Theorem | dpfrac1 32856 | Prove a simple equivalence involving the decimal point. See df-dp 32853 and dpcl 32855. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ) → (𝐴.𝐵) = (;𝐴𝐵 / ;10)) | ||
Theorem | dpval2 32857 | Value of the decimal point construct. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴.𝐵) = (𝐴 + (𝐵 / ;10)) | ||
Theorem | dpval3 32858 | Value of the decimal point construct. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴.𝐵) = _𝐴𝐵 | ||
Theorem | dpmul10 32859 | Multiply by 10 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((𝐴.𝐵) · ;10) = ;𝐴𝐵 | ||
Theorem | decdiv10 32860 | Divide a decimal number by 10. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (;𝐴𝐵 / ;10) = (𝐴.𝐵) | ||
Theorem | dpmul100 32861 | Multiply by 100 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴._𝐵𝐶) · ;;100) = ;;𝐴𝐵𝐶 | ||
Theorem | dp3mul10 32862 | Multiply by 10 a decimal expansion with 3 digits. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴._𝐵𝐶) · ;10) = (;𝐴𝐵.𝐶) | ||
Theorem | dpmul1000 32863 | Multiply by 1000 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℝ ⇒ ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;;1000) = ;;;𝐴𝐵𝐶𝐷 | ||
Theorem | dpval3rp 32864 | Value of the decimal point construct. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ ⇒ ⊢ (𝐴.𝐵) = _𝐴𝐵 | ||
Theorem | dp0u 32865 | Add a zero in the tenths place. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (𝐴.0) = 𝐴 | ||
Theorem | dp0h 32866 | Remove a zero in the units places. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℝ+ ⇒ ⊢ (0.𝐴) = (𝐴 / ;10) | ||
Theorem | rpdpcl 32867 | Closure of the decimal point in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ ⇒ ⊢ (𝐴.𝐵) ∈ ℝ+ | ||
Theorem | dplt 32868 | Comparing two decimal expansions (equal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℝ+ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ (𝐴.𝐵) < (𝐴.𝐶) | ||
Theorem | dplti 32869 | Comparing a decimal expansions with the next higher integer. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐵 < ;10 & ⊢ (𝐴 + 1) = 𝐶 ⇒ ⊢ (𝐴.𝐵) < 𝐶 | ||
Theorem | dpgti 32870 | Comparing a decimal expansions with the next lower integer. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ ⇒ ⊢ 𝐴 < (𝐴.𝐵) | ||
Theorem | dpltc 32871 | Comparing two decimal integers (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℝ+ & ⊢ 𝐴 < 𝐶 & ⊢ 𝐵 < ;10 ⇒ ⊢ (𝐴.𝐵) < (𝐶.𝐷) | ||
Theorem | dpexpp1 32872 | Add one zero to the mantisse, and a one to the exponent in a scientific notation. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ (𝑃 + 1) = 𝑄 & ⊢ 𝑃 ∈ ℤ & ⊢ 𝑄 ∈ ℤ ⇒ ⊢ ((𝐴.𝐵) · (;10↑𝑃)) = ((0._𝐴𝐵) · (;10↑𝑄)) | ||
Theorem | 0dp2dp 32873 | Multiply by 10 a decimal expansion which starts with a zero. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ ⇒ ⊢ ((0._𝐴𝐵) · ;10) = (𝐴.𝐵) | ||
Theorem | dpadd2 32874 | Addition with one decimal, no carry. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℝ+ & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℝ+ & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈ ℝ+ & ⊢ 𝐺 ∈ ℕ0 & ⊢ 𝐻 ∈ ℕ0 & ⊢ (𝐺 + 𝐻) = 𝐼 & ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) ⇒ ⊢ ((𝐺._𝐴𝐵) + (𝐻._𝐶𝐷)) = (𝐼._𝐸𝐹) | ||
Theorem | dpadd 32875 | Addition with one decimal. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ (;𝐴𝐵 + ;𝐶𝐷) = ;𝐸𝐹 ⇒ ⊢ ((𝐴.𝐵) + (𝐶.𝐷)) = (𝐸.𝐹) | ||
Theorem | dpadd3 32876 | Addition with two decimals. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐻 ∈ ℕ0 & ⊢ 𝐼 ∈ ℕ0 & ⊢ (;;𝐴𝐵𝐶 + ;;𝐷𝐸𝐹) = ;;𝐺𝐻𝐼 ⇒ ⊢ ((𝐴._𝐵𝐶) + (𝐷._𝐸𝐹)) = (𝐺._𝐻𝐼) | ||
Theorem | dpmul 32877 | Multiplication with one decimal point. (Contributed by Thierry Arnoux, 26-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ 𝐽 ∈ ℕ0 & ⊢ 𝐾 ∈ ℕ0 & ⊢ (𝐴 · 𝐶) = 𝐹 & ⊢ (𝐴 · 𝐷) = 𝑀 & ⊢ (𝐵 · 𝐶) = 𝐿 & ⊢ (𝐵 · 𝐷) = ;𝐸𝐾 & ⊢ ((𝐿 + 𝑀) + 𝐸) = ;𝐺𝐽 & ⊢ (𝐹 + 𝐺) = 𝐼 ⇒ ⊢ ((𝐴.𝐵) · (𝐶.𝐷)) = (𝐼._𝐽𝐾) | ||
Theorem | dpmul4 32878 | An upper bound to multiplication of decimal numbers with 4 digits. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ 𝐽 ∈ ℕ0 & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐻 ∈ ℕ0 & ⊢ 𝐼 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑂 ∈ ℕ0 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝑄 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ0 & ⊢ 𝑆 ∈ ℕ0 & ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑈 ∈ ℕ0 & ⊢ 𝑊 ∈ ℕ0 & ⊢ 𝑋 ∈ ℕ0 & ⊢ 𝑌 ∈ ℕ0 & ⊢ 𝑍 ∈ ℕ0 & ⊢ 𝑈 < ;10 & ⊢ 𝑃 < ;10 & ⊢ 𝑄 < ;10 & ⊢ (;;𝐿𝑀𝑁 + 𝑂) = ;;;𝑅𝑆𝑇𝑈 & ⊢ ((𝐴.𝐵) · (𝐸.𝐹)) = (𝐼._𝐽𝐾) & ⊢ ((𝐶.𝐷) · (𝐺.𝐻)) = (𝑂._𝑃𝑄) & ⊢ (;;;𝐼𝐽𝐾1 + ;;𝑅𝑆𝑇) = ;;;𝑊𝑋𝑌𝑍 & ⊢ (((𝐴.𝐵) + (𝐶.𝐷)) · ((𝐸.𝐹) + (𝐺.𝐻))) = (((𝐼._𝐽𝐾) + (𝐿._𝑀𝑁)) + (𝑂._𝑃𝑄)) ⇒ ⊢ ((𝐴._𝐵_𝐶𝐷) · (𝐸._𝐹_𝐺𝐻)) < (𝑊._𝑋_𝑌𝑍) | ||
Theorem | threehalves 32879 | Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ (3 / 2) = (1.5) | ||
Theorem | 1mhdrd 32880 | Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ ((0._99) + (0._01)) = 1 | ||
Syntax | cxdiv 32881 | Extend class notation to include division of extended reals. |
class /𝑒 | ||
Definition | df-xdiv 32882* | Define division over extended real numbers. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
⊢ /𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ (ℝ ∖ {0}) ↦ (℩𝑧 ∈ ℝ* (𝑦 ·e 𝑧) = 𝑥)) | ||
Theorem | xdivval 32883* | Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is nonzero. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) | ||
Theorem | xrecex 32884* | Existence of reciprocal of nonzero real number. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 ·e 𝑥) = 1) | ||
Theorem | xmulcand 32885 | Cancellation law for extended multiplication. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | xreceu 32886* | Existential uniqueness of reciprocals. Theorem I.8 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) | ||
Theorem | xdivcld 32887 | Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ ℝ*) | ||
Theorem | xdivcl 32888 | Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) ∈ ℝ*) | ||
Theorem | xdivmul 32889 | Relationship between division and multiplication. (Contributed by Thierry Arnoux, 24-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ((𝐴 /𝑒 𝐶) = 𝐵 ↔ (𝐶 ·e 𝐵) = 𝐴)) | ||
Theorem | rexdiv 32890 | The extended real division operation when both arguments are real. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵)) | ||
Theorem | xdivrec 32891 | Relationship between division and reciprocal. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 ·e (1 /𝑒 𝐵))) | ||
Theorem | xdivid 32892 | A number divided by itself is one. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 /𝑒 𝐴) = 1) | ||
Theorem | xdiv0 32893 | Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (0 /𝑒 𝐴) = 0) | ||
Theorem | xdiv0rp 32894 | Division into zero is zero. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝐴 ∈ ℝ+ → (0 /𝑒 𝐴) = 0) | ||
Theorem | eliccioo 32895 | Membership in a closed interval of extended reals versus the same open interval. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴 ∨ 𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))) | ||
Theorem | elxrge02 32896 | Elementhood in the set of nonnegative extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝐴 ∈ (0[,]+∞) ↔ (𝐴 = 0 ∨ 𝐴 ∈ ℝ+ ∨ 𝐴 = +∞)) | ||
Theorem | xdivpnfrp 32897 | Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞) | ||
Theorem | rpxdivcld 32898 | Closure law for extended division of positive reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ ℝ+) | ||
Theorem | xrpxdivcld 32899 | Closure law for extended division of positive extended reals. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ (0[,]+∞)) | ||
Theorem | wrdfd 32900 | A word is a zero-based sequence with a recoverable upper limit, deduction version. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
⊢ (𝜑 → 𝑁 = (♯‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) ⇒ ⊢ (𝜑 → 𝑊:(0..^𝑁)⟶𝑆) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |