| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-lhyp | Structured version Visualization version GIF version | ||
| Description: Define the set of lattice hyperplanes, which are all lattice elements covered by 1 (i.e., all co-atoms). We call them "hyperplanes" instead of "co-atoms" in analogy with projective geometry hyperplanes. (Contributed by NM, 11-May-2012.) |
| Ref | Expression |
|---|---|
| df-lhyp | ⊢ LHyp = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ 𝑥( ⋖ ‘𝑘)(1.‘𝑘)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clh 39986 | . 2 class LHyp | |
| 2 | vk | . . 3 setvar 𝑘 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 2 | cv 1539 | . . . . . 6 class 𝑘 |
| 7 | cp1 18469 | . . . . . 6 class 1. | |
| 8 | 6, 7 | cfv 6561 | . . . . 5 class (1.‘𝑘) |
| 9 | ccvr 39263 | . . . . . 6 class ⋖ | |
| 10 | 6, 9 | cfv 6561 | . . . . 5 class ( ⋖ ‘𝑘) |
| 11 | 5, 8, 10 | wbr 5143 | . . . 4 wff 𝑥( ⋖ ‘𝑘)(1.‘𝑘) |
| 12 | cbs 17247 | . . . . 5 class Base | |
| 13 | 6, 12 | cfv 6561 | . . . 4 class (Base‘𝑘) |
| 14 | 11, 4, 13 | crab 3436 | . . 3 class {𝑥 ∈ (Base‘𝑘) ∣ 𝑥( ⋖ ‘𝑘)(1.‘𝑘)} |
| 15 | 2, 3, 14 | cmpt 5225 | . 2 class (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ 𝑥( ⋖ ‘𝑘)(1.‘𝑘)}) |
| 16 | 1, 15 | wceq 1540 | 1 wff LHyp = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ 𝑥( ⋖ ‘𝑘)(1.‘𝑘)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: lhpset 39997 |
| Copyright terms: Public domain | W3C validator |