| Metamath
Proof Explorer Theorem List (p. 392 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eqlkr3 39101 | Two functionals with the same kernel are equal if they are equal at any nonzero value. (Contributed by NM, 2-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) & ⊢ (𝜑 → (𝐺‘𝑋) = (𝐻‘𝑋)) & ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) ⇒ ⊢ (𝜑 → 𝐺 = 𝐻) | ||
| Theorem | lkrlsp 39102 | The subspace sum of a kernel and the span of a vector not in the kernel (by ellkr 39089) is the whole vector space. (Contributed by NM, 19-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) | ||
| Theorem | lkrlsp2 39103 | The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) | ||
| Theorem | lkrlsp3 39104 | The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = 𝑉) | ||
| Theorem | lkrshp 39105 | The kernel of a nonzero functional is a hyperplane. (Contributed by NM, 29-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (𝐾‘𝐺) ∈ 𝐻) | ||
| Theorem | lkrshp3 39106 | The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 17-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ↔ 𝐺 ≠ (𝑉 × { 0 }))) | ||
| Theorem | lkrshpor 39107 | The kernel of a functional is either a hyperplane or the full vector space. (Contributed by NM, 7-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) | ||
| Theorem | lkrshp4 39108 | A kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ≠ 𝑉 ↔ (𝐾‘𝐺) ∈ 𝐻)) | ||
| Theorem | lshpsmreu 39109* | Lemma for lshpkrex 39118. Show uniqueness of ring multiplier 𝑘 when a vector 𝑋 is broken down into components, one in a hyperplane and the other outside of it . TODO: do we need the cbvrexv 3341 for 𝑎 to 𝑐? (Contributed by NM, 4-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ (𝜑 → ∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) | ||
| Theorem | lshpkrlem1 39110* | Lemma for lshpkrex 39118. The value of tentative functional 𝐺 is zero iff its argument belongs to hyperplane 𝑈. (Contributed by NM, 14-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝐺‘𝑋) = 0 )) | ||
| Theorem | lshpkrlem2 39111* | Lemma for lshpkrex 39118. The value of tentative functional 𝐺 is a scalar. (Contributed by NM, 16-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐾) | ||
| Theorem | lshpkrlem3 39112* | Lemma for lshpkrex 39118. Defining property of 𝐺‘𝑋. (Contributed by NM, 15-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) | ||
| Theorem | lshpkrlem4 39113* | Lemma for lshpkrex 39118. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑉 ∧ 𝑠 ∈ 𝑉) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)) · 𝑍))) | ||
| Theorem | lshpkrlem5 39114* | Lemma for lshpkrex 39118. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) | ||
| Theorem | lshpkrlem6 39115* | Lemma for lshpkrex 39118. Show linearlity of 𝐺. (Contributed by NM, 17-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) | ||
| Theorem | lshpkrcl 39116* | The set 𝐺 defined by hyperplane 𝑈 is a linear functional. (Contributed by NM, 17-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐹) | ||
| Theorem | lshpkr 39117* | The kernel of functional 𝐺 is the hyperplane defining it. (Contributed by NM, 17-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) & ⊢ 𝐿 = (LKer‘𝑊) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) = 𝑈) | ||
| Theorem | lshpkrex 39118* | There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.) |
| ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) | ||
| Theorem | lshpset2N 39119* | The set of all hyperplanes of a left module or left vector space equals the set of all kernels of nonzero functionals. (Contributed by NM, 17-Jul-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) | ||
| Theorem | islshpkrN 39120* | The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 𝑈 = (𝐾‘𝑔) or (𝐾‘𝑔) = 𝑈 as in lshpkrex 39118? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) | ||
| Theorem | lfl1dim 39121* | Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∣ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))}) | ||
| Theorem | lfl1dim2N 39122* | Equivalent expressions for a 1-dim subspace (ray) of functionals. TODO: delete this if not useful; lfl1dim 39121 may be more compatible with lspsn 20915. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∈ 𝐹 ∣ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))}) | ||
| Syntax | cld 39123 | Extend class notation with left dualvector space. |
| class LDual | ||
| Definition | df-ldual 39124* | Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows to reuse our existing collection of left vector space theorems. The restriction on ∘f (+g‘𝑣) allows it to be a set; see ofmres 7966. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.) |
| ⊢ LDual = (𝑣 ∈ V ↦ ({〈(Base‘ndx), (LFnl‘𝑣)〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑣))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉})) | ||
| Theorem | ldualset 39125* | Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = ( ∘f + ↾ (𝐹 × 𝐹)) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f · (𝑉 × {𝑘}))) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ✚ 〉, 〈(Scalar‘ndx), 𝑂〉} ∪ {〈( ·𝑠 ‘ndx), ∙ 〉})) | ||
| Theorem | ldualvbase 39126 | The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑉 = (Base‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑉 = 𝐹) | ||
| Theorem | ldualelvbase 39127 | Utility theorem for converting a functional to a vector of the dual space in order to use standard vector theorems. (Contributed by NM, 6-Jan-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑉 = (Base‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑉) | ||
| Theorem | ldualfvadd 39128 | Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ ⨣ = ( ∘f + ↾ (𝐹 × 𝐹)) ⇒ ⊢ (𝜑 → ✚ = ⨣ ) | ||
| Theorem | ldualvadd 39129 | Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ✚ 𝐻) = (𝐺 ∘f + 𝐻)) | ||
| Theorem | ldualvaddcl 39130 | The value of vector addition in the dual of a vector space is a functional. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 + 𝐻) ∈ 𝐹) | ||
| Theorem | ldualvaddval 39131 | The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) | ||
| Theorem | ldualsca 39132 | The ring of scalars of the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝑂 = (oppr‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑅 = 𝑂) | ||
| Theorem | ldualsbase 39133 | Base set of scalar ring for the dual of a vector space. (Contributed by NM, 24-Oct-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐿 = (Base‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐾 = 𝐿) | ||
| Theorem | ldualsaddN 39134 | Scalar addition for the dual of a vector space. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ + = (+g‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ ✚ = (+g‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) ⇒ ⊢ (𝜑 → ✚ = + ) | ||
| Theorem | ldualsmul 39135 | Scalar multiplication for the dual of a vector space. (Contributed by NM, 19-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = (.r‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ ∙ = (.r‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑋 ∙ 𝑌) = (𝑌 · 𝑋)) | ||
| Theorem | ldualfvs 39136* | Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ · = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) ⇒ ⊢ (𝜑 → ∙ = · ) | ||
| Theorem | ldualvs 39137 | Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) | ||
| Theorem | ldualvsval 39138 | Value of scalar product operation value for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝐺‘𝐴) × 𝑋)) | ||
| Theorem | ldualvscl 39139 | The scalar product operation value is a functional. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐹) | ||
| Theorem | ldualvaddcom 39140 | Commutative law for vector (functional) addition. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐹) & ⊢ (𝜑 → 𝑌 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | ldualvsass 39141 | Associative law for scalar product operation. (Contributed by NM, 20-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) | ||
| Theorem | ldualvsass2 39142 | Associative law for scalar product operation, using operations from the dual space. (Contributed by NM, 20-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑄 = (Scalar‘𝐷) & ⊢ × = (.r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑋 × 𝑌) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) | ||
| Theorem | ldualvsdi1 39143 | Distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻))) | ||
| Theorem | ldualvsdi2 39144 | Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) | ||
| Theorem | ldualgrplem 39145 | Lemma for ldualgrp 39146. (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = ∘f (+g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ Grp) | ||
| Theorem | ldualgrp 39146 | The dual of a vector space is a group. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐷 ∈ Grp) | ||
| Theorem | ldual0 39147 | The zero scalar of the dual of a vector space. (Contributed by NM, 28-Dec-2014.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐷) & ⊢ 𝑂 = (0g‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑂 = 0 ) | ||
| Theorem | ldual1 39148 | The unit scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐷) & ⊢ 𝐼 = (1r‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐼 = 1 ) | ||
| Theorem | ldualneg 39149 | The negative of a scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝑀 = (invg‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐷) & ⊢ 𝑁 = (invg‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑁 = 𝑀) | ||
| Theorem | ldual0v 39150 | The zero vector of the dual of a vector space. (Contributed by NM, 24-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑂 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑂 = (𝑉 × { 0 })) | ||
| Theorem | ldual0vcl 39151 | The dual zero vector is a functional. (Contributed by NM, 5-Mar-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 0 ∈ 𝐹) | ||
| Theorem | lduallmodlem 39152 | Lemma for lduallmod 39153. (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = ∘f (+g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ LMod) | ||
| Theorem | lduallmod 39153 | The dual of a left module is also a left module. (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐷 ∈ LMod) | ||
| Theorem | lduallvec 39154 | The dual of a left vector space is also a left vector space. Note that scalar multiplication is reversed by df-oppr 20253; otherwise, the dual would be a right vector space as is sometimes the case in the literature. (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) ⇒ ⊢ (𝜑 → 𝐷 ∈ LVec) | ||
| Theorem | ldualvsub 39155 | The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) | ||
| Theorem | ldualvsubcl 39156 | Closure of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 − 𝐻) ∈ 𝐹) | ||
| Theorem | ldualvsubval 39157 | The value of the value of vector subtraction in the dual of a vector space. TODO: shorten with ldualvsub 39155? (Requires 𝐷 to oppr conversion.) (Contributed by NM, 26-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝑆 = (-g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐺 − 𝐻)‘𝑋) = ((𝐺‘𝑋)𝑆(𝐻‘𝑋))) | ||
| Theorem | ldualssvscl 39158 | Closure of scalar product in a dual subspace.) (Contributed by NM, 5-Feb-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑈) | ||
| Theorem | ldualssvsubcl 39159 | Closure of vector subtraction in a dual subspace.) (Contributed by NM, 9-Mar-2015.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ − = (-g‘𝐷) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝑈) | ||
| Theorem | ldual0vs 39160 | Scalar zero times a functional is the zero functional. (Contributed by NM, 17-Feb-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝑂 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ( 0 · 𝐺) = 𝑂) | ||
| Theorem | lkr0f2 39161 | The kernel of the zero functional is the set of all vectors. (Contributed by NM, 4-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = 0 )) | ||
| Theorem | lduallkr3 39162 | The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 22-Feb-2015.) |
| ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ↔ 𝐺 ≠ 0 )) | ||
| Theorem | lkrpssN 39163 | Proper subset relation between kernels. (Contributed by NM, 16-Feb-2015.) (New usage is discouraged.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) ↔ (𝐺 ≠ 0 ∧ 𝐻 = 0 ))) | ||
| Theorem | lkrin 39164 | Intersection of the kernels of 2 functionals is included in the kernel of their sum. (Contributed by NM, 7-Jan-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∩ (𝐾‘𝐻)) ⊆ (𝐾‘(𝐺 + 𝐻))) | ||
| Theorem | eqlkr4 39165* | Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 4-Feb-2015.) |
| ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) | ||
| Theorem | ldual1dim 39166* | Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑁 = (LSpan‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) | ||
| Theorem | ldualkrsc 39167 | The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 28-Dec-2014.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐿‘(𝑋 · 𝐺)) = (𝐿‘𝐺)) | ||
| Theorem | lkrss 39168 | The kernel of a scalar product of a functional includes the kernel of the functional. (Contributed by NM, 27-Jan-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝑋 · 𝐺))) | ||
| Theorem | lkrss2N 39169* | Two functionals with kernels in a subset relationship. (Contributed by NM, 17-Feb-2015.) (New usage is discouraged.) |
| ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ↔ ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) | ||
| Theorem | lkreqN 39170 | Proportional functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.) |
| ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ (𝑅 ∖ { 0 })) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 = (𝐴 · 𝐻)) ⇒ ⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) | ||
| Theorem | lkrlspeqN 39171 | Condition for colinear functionals to have equal kernels. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑁 = (LSpan‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) = (𝐿‘𝐻)) | ||
| Syntax | cops 39172 | Extend class notation with orthoposets. |
| class OP | ||
| Syntax | ccmtN 39173 | Extend class notation with the commutes relation. |
| class cm | ||
| Syntax | col 39174 | Extend class notation with orthlattices. |
| class OL | ||
| Syntax | coml 39175 | Extend class notation with orthomodular lattices. |
| class OML | ||
| Definition | df-oposet 39176* | Define the class of orthoposets, which are bounded posets with an orthocomplementation operation. Note that (Base p ) e. dom ( lub 𝑝) means there is an upper bound 1., and similarly for the 0. element. (Contributed by NM, 20-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
| ⊢ OP = {𝑝 ∈ Poset ∣ (((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ∧ ∃𝑜(𝑜 = (oc‘𝑝) ∧ ∀𝑎 ∈ (Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝))))} | ||
| Definition | df-cmtN 39177* | Define the commutes relation for orthoposets. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Nov-2011.) |
| ⊢ cm = (𝑝 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))}) | ||
| Definition | df-ol 39178 | Define the class of ortholattices. Definition from [Kalmbach] p. 16. (Contributed by NM, 18-Sep-2011.) |
| ⊢ OL = (Lat ∩ OP) | ||
| Definition | df-oml 39179* | Define the class of orthomodular lattices. Definition from [Kalmbach] p. 16. (Contributed by NM, 18-Sep-2011.) |
| ⊢ OML = {𝑙 ∈ OL ∣ ∀𝑎 ∈ (Base‘𝑙)∀𝑏 ∈ (Base‘𝑙)(𝑎(le‘𝑙)𝑏 → 𝑏 = (𝑎(join‘𝑙)(𝑏(meet‘𝑙)((oc‘𝑙)‘𝑎))))} | ||
| Theorem | isopos 39180* | The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011.) (Revised by NM, 14-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((( ⊥ ‘𝑥) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥 ∧ (𝑥 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑥))) ∧ (𝑥 ∨ ( ⊥ ‘𝑥)) = 1 ∧ (𝑥 ∧ ( ⊥ ‘𝑥)) = 0 ))) | ||
| Theorem | opposet 39181 | Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011.) |
| ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | ||
| Theorem | oposlem 39182 | Lemma for orthoposet properties. (Contributed by NM, 20-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) | ||
| Theorem | op01dm 39183 | Conditions necessary for zero and unity elements to exist. (Contributed by NM, 14-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) | ||
| Theorem | op0cl 39184 | An orthoposet has a zero element. (h0elch 31191 analog.) (Contributed by NM, 12-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) | ||
| Theorem | op1cl 39185 | An orthoposet has a unity element. (helch 31179 analog.) (Contributed by NM, 22-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) | ||
| Theorem | op0le 39186 | Orthoposet zero is less than or equal to any element. (ch0le 31377 analog.) (Contributed by NM, 12-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) | ||
| Theorem | ople0 39187 | An element less than or equal to zero equals zero. (chle0 31379 analog.) (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) | ||
| Theorem | opnlen0 39188 | An element not less than another is nonzero. TODO: Look for uses of necon3bd 2940 and op0le 39186 to see if this is useful elsewhere. (Contributed by NM, 5-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑌) → 𝑋 ≠ 0 ) | ||
| Theorem | lub0N 39189 | The least upper bound of the empty set is the zero element. (Contributed by NM, 15-Sep-2013.) (New usage is discouraged.) |
| ⊢ 1 = (lub‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → ( 1 ‘∅) = 0 ) | ||
| Theorem | opltn0 39190 | A lattice element greater than zero is nonzero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) | ||
| Theorem | ople1 39191 | Any element is less than the orthoposet unity. (chss 31165 analog.) (Contributed by NM, 23-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 1 ) | ||
| Theorem | op1le 39192 | If the orthoposet unity is less than or equal to an element, the element equals the unit. (chle0 31379 analog.) (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 1 ≤ 𝑋 ↔ 𝑋 = 1 )) | ||
| Theorem | glb0N 39193 | The greatest lower bound of the empty set is the unity element. (Contributed by NM, 5-Dec-2011.) (New usage is discouraged.) |
| ⊢ 𝐺 = (glb‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → (𝐺‘∅) = 1 ) | ||
| Theorem | opoccl 39194 | Closure of orthocomplement operation. (choccl 31242 analog.) (Contributed by NM, 20-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) | ||
| Theorem | opococ 39195 | Double negative law for orthoposets. (ococ 31342 analog.) (Contributed by NM, 13-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | ||
| Theorem | opcon3b 39196 | Contraposition law for orthoposets. (chcon3i 31402 analog.) (Contributed by NM, 8-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ↔ ( ⊥ ‘𝑌) = ( ⊥ ‘𝑋))) | ||
| Theorem | opcon2b 39197 | Orthocomplement contraposition law. (negcon2 11482 analog.) (Contributed by NM, 16-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ 𝑌 = ( ⊥ ‘𝑋))) | ||
| Theorem | opcon1b 39198 | Orthocomplement contraposition law. (negcon1 11481 analog.) (Contributed by NM, 24-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = 𝑌 ↔ ( ⊥ ‘𝑌) = 𝑋)) | ||
| Theorem | oplecon3 39199 | Contraposition law for orthoposets. (Contributed by NM, 13-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) | ||
| Theorem | oplecon3b 39200 | Contraposition law for orthoposets. (chsscon3 31436 analog.) (Contributed by NM, 4-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |