| Metamath
Proof Explorer Theorem List (p. 392 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lshpne 39101 | A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) ⇒ ⊢ (𝜑 → 𝑈 ≠ 𝑉) | ||
| Theorem | lshpnel 39102 | A hyperplane's generating vector does not belong to the hyperplane. (Contributed by NM, 3-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) ⇒ ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | ||
| Theorem | lshpnelb 39103 | The subspace sum of a hyperplane and the span of an element equals the vector space iff the element is not in the hyperplane. (Contributed by NM, 2-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (¬ 𝑋 ∈ 𝑈 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) | ||
| Theorem | lshpnel2N 39104 | Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) | ||
| Theorem | lshpne0 39105 | The member of the span in the hyperplane definition does not belong to the hyperplane. (Contributed by NM, 14-Jul-2014.) (Proof shortened by AV, 19-Jul-2022.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) ⇒ ⊢ (𝜑 → 𝑋 ≠ 0 ) | ||
| Theorem | lshpdisj 39106 | A hyperplane and the span in the hyperplane definition are disjoint. (Contributed by NM, 3-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) ⇒ ⊢ (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) = { 0 }) | ||
| Theorem | lshpcmp 39107 | If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014.) |
| ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑇 ∈ 𝐻) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) ⇒ ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈)) | ||
| Theorem | lshpinN 39108 | The intersection of two different hyperplanes is not a hyperplane. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑇 ∈ 𝐻) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) ⇒ ⊢ (𝜑 → ((𝑇 ∩ 𝑈) ∈ 𝐻 ↔ 𝑇 = 𝑈)) | ||
| Theorem | lsatset 39109* | The set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝐴 = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣}))) | ||
| Theorem | islsat 39110* | The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥}))) | ||
| Theorem | lsatlspsn2 39111 | The span of a nonzero singleton is an atom. TODO: make this obsolete and use lsatlspsn 39112 instead? (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) ∈ 𝐴) | ||
| Theorem | lsatlspsn 39112 | The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴) | ||
| Theorem | islsati 39113* | A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝑈 ∈ 𝐴) → ∃𝑣 ∈ 𝑉 𝑈 = (𝑁‘{𝑣})) | ||
| Theorem | lsateln0 39114* | A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) | ||
| Theorem | lsatlss 39115 | The set of 1-dim subspaces is a set of subspaces. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐴 ⊆ 𝑆) | ||
| Theorem | lsatlssel 39116 | An atom is a subspace. (Contributed by NM, 25-Aug-2014.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝑆) | ||
| Theorem | lsatssv 39117 | An atom is a set of vectors. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑄 ⊆ 𝑉) | ||
| Theorem | lsatn0 39118 | A 1-dim subspace (atom) of a left module or left vector space is nonzero. (atne0 32327 analog.) (Contributed by NM, 25-Aug-2014.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑈 ≠ { 0 }) | ||
| Theorem | lsatspn0 39119 | The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ↔ 𝑋 ≠ 0 )) | ||
| Theorem | lsator0sp 39120 | The span of a vector is either an atom or the zero subspace. (Contributed by NM, 15-Mar-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ∨ (𝑁‘{𝑋}) = { 0 })) | ||
| Theorem | lsatssn0 39121 | A subspace (or any class) including an atom is nonzero. (Contributed by NM, 3-Feb-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑈 ≠ { 0 }) | ||
| Theorem | lsatcmp 39122 | If two atoms are comparable, they are equal. (atsseq 32329 analog.) TODO: can lspsncmp 21055 shorten this? (Contributed by NM, 25-Aug-2014.) |
| ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑇 ∈ 𝐴) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈)) | ||
| Theorem | lsatcmp2 39123 | If an atom is included in at-most an atom, they are equal. More general version of lsatcmp 39122. TODO: can lspsncmp 21055 shorten this? (Contributed by NM, 3-Feb-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑇 ∈ 𝐴) & ⊢ (𝜑 → (𝑈 ∈ 𝐴 ∨ 𝑈 = { 0 })) ⇒ ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ 𝑇 = 𝑈)) | ||
| Theorem | lsatel 39124 | A nonzero vector in an atom determines the atom. (Contributed by NM, 25-Aug-2014.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → 𝑈 = (𝑁‘{𝑋})) | ||
| Theorem | lsatelbN 39125 | A nonzero vector in an atom determines the atom. (Contributed by NM, 3-Feb-2015.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑈 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ 𝑈 = (𝑁‘{𝑋}))) | ||
| Theorem | lsat2el 39126 | Two atoms sharing a nonzero vector are equal. (Contributed by NM, 8-Mar-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑃 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑄) ⇒ ⊢ (𝜑 → 𝑃 = 𝑄) | ||
| Theorem | lsmsat 39127* | Convert comparison of atom with sum of subspaces to a comparison to sum with atom. (elpaddatiN 39924 analog.) TODO: any way to shorten this? (Contributed by NM, 15-Jan-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ≠ { 0 }) & ⊢ (𝜑 → 𝑄 ⊆ (𝑇 ⊕ 𝑈)) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 ∧ 𝑄 ⊆ (𝑝 ⊕ 𝑈))) | ||
| Theorem | lsatfixedN 39128* | Show equality with the span of the sum of two vectors, one of which (𝑋) is fixed in advance. Compare lspfixed 21067. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑄 ≠ (𝑁‘{𝑋})) & ⊢ (𝜑 → 𝑄 ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → 𝑄 ⊆ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)})) | ||
| Theorem | lsmsatcv 39129 | Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 31634 analog.) Explicit atom version of lsmcv 21080. (Contributed by NM, 29-Oct-2014.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ 𝑄)) → 𝑈 = (𝑇 ⊕ 𝑄)) | ||
| Theorem | lssatomic 39130* | The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 32340 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ≠ { 0 }) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) | ||
| Theorem | lssats 39131* | The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 32343 analog.) (Contributed by NM, 9-Apr-2014.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = (𝑁‘∪ {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝑈})) | ||
| Theorem | lpssat 39132* | Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (chpssati 32345 analog.) (Contributed by NM, 11-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ⊊ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇)) | ||
| Theorem | lrelat 39133* | Subspaces are relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 32346 analog.) (Contributed by NM, 11-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ⊊ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) | ||
| Theorem | lssatle 39134* | The ordering of two subspaces is determined by the atoms under them. (chrelat3 32353 analog.) (Contributed by NM, 29-Oct-2014.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑇 ⊆ 𝑈 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑇 → 𝑝 ⊆ 𝑈))) | ||
| Theorem | lssat 39135* | Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. (chpssati 32345 analog.) (Contributed by NM, 9-Apr-2014.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑉 ∈ 𝑆) ∧ 𝑈 ⊊ 𝑉) → ∃𝑝 ∈ 𝐴 (𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ 𝑈)) | ||
| Theorem | islshpat 39136* | Hyperplane properties expressed with subspace sum and an atom. TODO: can proof be shortened? Seems long for a simple variation of islshpsm 39099. (Contributed by NM, 11-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑞 ∈ 𝐴 (𝑈 ⊕ 𝑞) = 𝑉))) | ||
| Syntax | clcv 39137 | Extend class notation with the covering relation for a left module or left vector space. |
| class ⋖L | ||
| Definition | df-lcv 39138* | Define the covering relation for subspaces of a left vector space. Similar to Definition 3.2.18 of [PtakPulmannova] p. 68. Ptak/Pulmannova's notation 𝐴( ⋖L ‘𝑊)𝐵 is read "𝐵 covers 𝐴 " or "𝐴 is covered by 𝐵 " , and it means that 𝐵 is larger than 𝐴 and there is nothing in between. See lcvbr 39140 for binary relation. (df-cv 32261 analog.) (Contributed by NM, 7-Jan-2015.) |
| ⊢ ⋖L = (𝑤 ∈ V ↦ {〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))}) | ||
| Theorem | lcvfbr 39139* | The covers relation for a left vector space (or a left module). (Contributed by NM, 7-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐶 = {〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ 𝑆 ∧ 𝑢 ∈ 𝑆) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))}) | ||
| Theorem | lcvbr 39140* | The covers relation for a left vector space (or a left module). (cvbr 32264 analog.) (Contributed by NM, 9-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)))) | ||
| Theorem | lcvbr2 39141* | The covers relation for a left vector space (or a left module). (cvbr2 32265 analog.) (Contributed by NM, 9-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊆ 𝑈) → 𝑠 = 𝑈)))) | ||
| Theorem | lcvbr3 39142* | The covers relation for a left vector space (or a left module). (Contributed by NM, 9-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) → (𝑠 = 𝑇 ∨ 𝑠 = 𝑈))))) | ||
| Theorem | lcvpss 39143 | The covers relation implies proper subset. (cvpss 32267 analog.) (Contributed by NM, 7-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑇𝐶𝑈) ⇒ ⊢ (𝜑 → 𝑇 ⊊ 𝑈) | ||
| Theorem | lcvnbtwn 39144 | The covers relation implies no in-betweenness. (cvnbtwn 32268 analog.) (Contributed by NM, 7-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑅𝐶𝑇) ⇒ ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) | ||
| Theorem | lcvntr 39145 | The covers relation is not transitive. (cvntr 32274 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑅𝐶𝑇) & ⊢ (𝜑 → 𝑇𝐶𝑈) ⇒ ⊢ (𝜑 → ¬ 𝑅𝐶𝑈) | ||
| Theorem | lcvnbtwn2 39146 | The covers relation implies no in-betweenness. (cvnbtwn2 32269 analog.) (Contributed by NM, 7-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑅𝐶𝑇) & ⊢ (𝜑 → 𝑅 ⊊ 𝑈) & ⊢ (𝜑 → 𝑈 ⊆ 𝑇) ⇒ ⊢ (𝜑 → 𝑈 = 𝑇) | ||
| Theorem | lcvnbtwn3 39147 | The covers relation implies no in-betweenness. (cvnbtwn3 32270 analog.) (Contributed by NM, 7-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑅𝐶𝑇) & ⊢ (𝜑 → 𝑅 ⊆ 𝑈) & ⊢ (𝜑 → 𝑈 ⊊ 𝑇) ⇒ ⊢ (𝜑 → 𝑈 = 𝑅) | ||
| Theorem | lsmcv2 39148 | Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 32275 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑈𝐶(𝑈 ⊕ (𝑁‘{𝑋}))) | ||
| Theorem | lcvat 39149* | If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. (cvati 32348 analog.) (Contributed by NM, 11-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑇𝐶𝑈) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊕ 𝑞) = 𝑈) | ||
| Theorem | lsatcv0 39150 | An atom covers the zero subspace. (atcv0 32324 analog.) (Contributed by NM, 7-Jan-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → { 0 }𝐶𝑄) | ||
| Theorem | lsatcveq0 39151 | A subspace covered by an atom must be the zero subspace. (atcveq0 32330 analog.) (Contributed by NM, 7-Jan-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑈𝐶𝑄 ↔ 𝑈 = { 0 })) | ||
| Theorem | lsat0cv 39152 | A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑈 ∈ 𝐴 ↔ { 0 }𝐶𝑈)) | ||
| Theorem | lcvexchlem1 39153 | Lemma for lcvexch 39158. (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) ⊊ 𝑈)) | ||
| Theorem | lcvexchlem2 39154 | Lemma for lcvexch 39158. (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) ⊆ 𝑅) & ⊢ (𝜑 → 𝑅 ⊆ 𝑈) ⇒ ⊢ (𝜑 → ((𝑅 ⊕ 𝑇) ∩ 𝑈) = 𝑅) | ||
| Theorem | lcvexchlem3 39155 | Lemma for lcvexch 39158. (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑆) & ⊢ (𝜑 → 𝑇 ⊆ 𝑅) & ⊢ (𝜑 → 𝑅 ⊆ (𝑇 ⊕ 𝑈)) ⇒ ⊢ (𝜑 → ((𝑅 ∩ 𝑈) ⊕ 𝑇) = 𝑅) | ||
| Theorem | lcvexchlem4 39156 | Lemma for lcvexch 39158. (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑇𝐶(𝑇 ⊕ 𝑈)) ⇒ ⊢ (𝜑 → (𝑇 ∩ 𝑈)𝐶𝑈) | ||
| Theorem | lcvexchlem5 39157 | Lemma for lcvexch 39158. (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → (𝑇 ∩ 𝑈)𝐶𝑈) ⇒ ⊢ (𝜑 → 𝑇𝐶(𝑇 ⊕ 𝑈)) | ||
| Theorem | lcvexch 39158 | Subspaces satisfy the exchange axiom. Lemma 7.5 of [MaedaMaeda] p. 31. (cvexchi 32351 analog.) TODO: combine some lemmas. (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝑇 ∩ 𝑈)𝐶𝑈 ↔ 𝑇𝐶(𝑇 ⊕ 𝑈))) | ||
| Theorem | lcvp 39159 | Covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 32357 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝑈 ∩ 𝑄) = { 0 } ↔ 𝑈𝐶(𝑈 ⊕ 𝑄))) | ||
| Theorem | lcv1 39160 | Covering property of a subspace plus an atom. (chcv1 32337 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ 𝑈𝐶(𝑈 ⊕ 𝑄))) | ||
| Theorem | lcv2 39161 | Covering property of a subspace plus an atom. (chcv2 32338 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑈 ⊊ (𝑈 ⊕ 𝑄) ↔ 𝑈𝐶(𝑈 ⊕ 𝑄))) | ||
| Theorem | lsatexch 39162 | The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 32363 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) & ⊢ (𝜑 → (𝑈 ∩ 𝑄) = { 0 }) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (𝑈 ⊕ 𝑄)) | ||
| Theorem | lsatnle 39163 | The meet of a subspace and an incomparable atom is the zero subspace. (atnssm0 32358 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) ⇒ ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ (𝑈 ∩ 𝑄) = { 0 })) | ||
| Theorem | lsatnem0 39164 | The meet of distinct atoms is the zero subspace. (atnemeq0 32359 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑄 ≠ 𝑅 ↔ (𝑄 ∩ 𝑅) = { 0 })) | ||
| Theorem | lsatexch1 39165 | The atom exch1ange property. (hlatexch1 39514 analog.) (Contributed by NM, 14-Jan-2015.) |
| ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ⊆ (𝑆 ⊕ 𝑅)) & ⊢ (𝜑 → 𝑄 ≠ 𝑆) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (𝑆 ⊕ 𝑄)) | ||
| Theorem | lsatcv0eq 39166 | If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 32361 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) ⇒ ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) ↔ 𝑄 = 𝑅)) | ||
| Theorem | lsatcv1 39167 | Two atoms covering the zero subspace are equal. (atcv1 32362 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑈𝐶(𝑄 ⊕ 𝑅)) ⇒ ⊢ (𝜑 → (𝑈 = { 0 } ↔ 𝑄 = 𝑅)) | ||
| Theorem | lsatcvatlem 39168 | Lemma for lsatcvat 39169. (Contributed by NM, 10-Jan-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑈 ≠ { 0 }) & ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) & ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝐴) | ||
| Theorem | lsatcvat 39169 | A nonzero subspace less than the sum of two atoms is an atom. (atcvati 32368 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑈 ≠ { 0 }) & ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝐴) | ||
| Theorem | lsatcvat2 39170 | A subspace covered by the sum of two distinct atoms is an atom. (atcvat2i 32369 analog.) (Contributed by NM, 10-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ≠ 𝑅) & ⊢ (𝜑 → 𝑈𝐶(𝑄 ⊕ 𝑅)) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝐴) | ||
| Theorem | lsatcvat3 39171 | A condition implying that a certain subspace is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 32378 analog.) (Contributed by NM, 11-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ≠ 𝑅) & ⊢ (𝜑 → ¬ 𝑅 ⊆ 𝑈) & ⊢ (𝜑 → 𝑄 ⊆ (𝑈 ⊕ 𝑅)) ⇒ ⊢ (𝜑 → (𝑈 ∩ (𝑄 ⊕ 𝑅)) ∈ 𝐴) | ||
| Theorem | islshpcv 39172 | Hyperplane properties expressed with covers relation. (Contributed by NM, 11-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) ⇒ ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈𝐶𝑉))) | ||
| Theorem | l1cvpat 39173 | A subspace covered by the set of all vectors, when summed with an atom not under it, equals the set of all vectors. (1cvrjat 39594 analog.) (Contributed by NM, 11-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑈𝐶𝑉) & ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) ⇒ ⊢ (𝜑 → (𝑈 ⊕ 𝑄) = 𝑉) | ||
| Theorem | l1cvat 39174 | Create an atom under an element covered by the lattice unity. Part of proof of Lemma B in [Crawley] p. 112. (1cvrat 39595 analog.) (Contributed by NM, 11-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ 𝐶 = ( ⋖L ‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ≠ 𝑅) & ⊢ (𝜑 → 𝑈𝐶𝑉) & ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) ⇒ ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) ∈ 𝐴) | ||
| Theorem | lshpat 39175 | Create an atom under a hyperplane. Part of proof of Lemma B in [Crawley] p. 112. (lhpat 40162 analog.) TODO: This changes 𝑈𝐶𝑉 in l1cvpat 39173 and l1cvat 39174 to 𝑈 ∈ 𝐻, which in turn change 𝑈 ∈ 𝐻 in islshpcv 39172 to 𝑈𝐶𝑉, with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015.) |
| ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐴 = (LSAtoms‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑄 ∈ 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝐴) & ⊢ (𝜑 → 𝑄 ≠ 𝑅) & ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) ⇒ ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) ∈ 𝐴) | ||
| Syntax | clfn 39176 | Extend class notation with all linear functionals of a left module or left vector space. |
| class LFnl | ||
| Definition | df-lfl 39177* | Define the set of all linear functionals (maps from vectors to the ring) of a left module or left vector space. (Contributed by NM, 15-Apr-2014.) |
| ⊢ LFnl = (𝑤 ∈ V ↦ {𝑓 ∈ ((Base‘(Scalar‘𝑤)) ↑m (Base‘𝑤)) ∣ ∀𝑟 ∈ (Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠 ‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))}) | ||
| Theorem | lflset 39178* | The set of linear functionals in a left module or left vector space. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ ⨣ = (+g‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝐹 = {𝑓 ∈ (𝐾 ↑m 𝑉) ∣ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑓‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝑓‘𝑥)) ⨣ (𝑓‘𝑦))}) | ||
| Theorem | islfl 39179* | The predicate "is a linear functional". (Contributed by NM, 15-Apr-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ ⨣ = (+g‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦))))) | ||
| Theorem | lfli 39180 | Property of a linear functional. (lnfnli 32022 analog.) (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ ⨣ = (+g‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑍 ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺‘𝑋)) ⨣ (𝐺‘𝑌))) | ||
| Theorem | islfld 39181* | Properties that determine a linear functional. TODO: use this in place of islfl 39179 when it shortens the proof. (Contributed by NM, 19-Oct-2014.) |
| ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + = (+g‘𝑊)) & ⊢ (𝜑 → 𝐷 = (Scalar‘𝑊)) & ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝐾 = (Base‘𝐷)) & ⊢ (𝜑 → ⨣ = (+g‘𝐷)) & ⊢ (𝜑 → × = (.r‘𝐷)) & ⊢ (𝜑 → 𝐹 = (LFnl‘𝑊)) & ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦))) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐹) | ||
| Theorem | lflf 39182 | A linear functional is a function from vectors to scalars. (lnfnfi 32023 analog.) (Contributed by NM, 15-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) | ||
| Theorem | lflcl 39183 | A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) | ||
| Theorem | lfl0 39184 | A linear functional is zero at the zero vector. (lnfn0i 32024 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑍 = (0g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺‘𝑍) = 0 ) | ||
| Theorem | lfladd 39185 | Property of a linear functional. (lnfnaddi 32025 analog.) (Contributed by NM, 18-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ ⨣ = (+g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) ⨣ (𝐺‘𝑌))) | ||
| Theorem | lflsub 39186 | Property of a linear functional. (lnfnaddi 32025 analog.) (Contributed by NM, 18-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝑀 = (-g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 − 𝑌)) = ((𝐺‘𝑋)𝑀(𝐺‘𝑌))) | ||
| Theorem | lflmul 39187 | Property of a linear functional. (lnfnmuli 32026 analog.) (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) | ||
| Theorem | lfl0f 39188 | The zero function is a functional. (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹) | ||
| Theorem | lfl1 39189* | A nonzero functional has a value of 1 at some argument. (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 1 = (1r‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 ) | ||
| Theorem | lfladdcl 39190 | Closure of addition of two functionals. (Contributed by NM, 19-Oct-2014.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘f + 𝐻) ∈ 𝐹) | ||
| Theorem | lfladdcom 39191 | Commutativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘f + 𝐻) = (𝐻 ∘f + 𝐺)) | ||
| Theorem | lfladdass 39192 | Associativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝐼 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f + 𝐼) = (𝐺 ∘f + (𝐻 ∘f + 𝐼))) | ||
| Theorem | lfladd0l 39193 | Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺) | ||
| Theorem | lflnegcl 39194* | Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 39265, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝐹) | ||
| Theorem | lflnegl 39195* | A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 39265, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ + = (+g‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → (𝑁 ∘f + 𝐺) = (𝑉 × { 0 })) | ||
| Theorem | lflvscl 39196 | Closure of a scalar product with a functional. Note that this is the scalar product for a right vector space with the scalar after the vector; reversing these fails closure. (Contributed by NM, 9-Oct-2014.) (Revised by Mario Carneiro, 22-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {𝑅})) ∈ 𝐹) | ||
| Theorem | lflvsdi1 39197 | Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐻 ∘f · (𝑉 × {𝑋})))) | ||
| Theorem | lflvsdi2 39198 | Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) | ||
| Theorem | lflvsdi2a 39199 | Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) | ||
| Theorem | lflvsass 39200 | Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌}))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |