| Metamath
Proof Explorer Theorem List (p. 392 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lflf 39101 | A linear functional is a function from vectors to scalars. (lnfnfi 32016 analog.) (Contributed by NM, 15-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) | ||
| Theorem | lflcl 39102 | A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝐾) | ||
| Theorem | lfl0 39103 | A linear functional is zero at the zero vector. (lnfn0i 32017 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑍 = (0g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺‘𝑍) = 0 ) | ||
| Theorem | lfladd 39104 | Property of a linear functional. (lnfnaddi 32018 analog.) (Contributed by NM, 18-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ ⨣ = (+g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) ⨣ (𝐺‘𝑌))) | ||
| Theorem | lflsub 39105 | Property of a linear functional. (lnfnaddi 32018 analog.) (Contributed by NM, 18-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝑀 = (-g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑋 − 𝑌)) = ((𝐺‘𝑋)𝑀(𝐺‘𝑌))) | ||
| Theorem | lflmul 39106 | Property of a linear functional. (lnfnmuli 32019 analog.) (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ × = (.r‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(𝑅 · 𝑋)) = (𝑅 × (𝐺‘𝑋))) | ||
| Theorem | lfl0f 39107 | The zero function is a functional. (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹) | ||
| Theorem | lfl1 39108* | A nonzero functional has a value of 1 at some argument. (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 1 = (1r‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 ) | ||
| Theorem | lfladdcl 39109 | Closure of addition of two functionals. (Contributed by NM, 19-Oct-2014.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘f + 𝐻) ∈ 𝐹) | ||
| Theorem | lfladdcom 39110 | Commutativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘f + 𝐻) = (𝐻 ∘f + 𝐺)) | ||
| Theorem | lfladdass 39111 | Associativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝐼 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f + 𝐼) = (𝐺 ∘f + (𝐻 ∘f + 𝐼))) | ||
| Theorem | lfladd0l 39112 | Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺) | ||
| Theorem | lflnegcl 39113* | Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 39184, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝐹) | ||
| Theorem | lflnegl 39114* | A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 39184, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ + = (+g‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → (𝑁 ∘f + 𝐺) = (𝑉 × { 0 })) | ||
| Theorem | lflvscl 39115 | Closure of a scalar product with a functional. Note that this is the scalar product for a right vector space with the scalar after the vector; reversing these fails closure. (Contributed by NM, 9-Oct-2014.) (Revised by Mario Carneiro, 22-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {𝑅})) ∈ 𝐹) | ||
| Theorem | lflvsdi1 39116 | Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐻 ∘f · (𝑉 × {𝑋})))) | ||
| Theorem | lflvsdi2 39117 | Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) | ||
| Theorem | lflvsdi2a 39118 | Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) | ||
| Theorem | lflvsass 39119 | Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌}))) | ||
| Theorem | lfl0sc 39120 | The (right vector space) scalar product of a functional with zero is the zero functional. Note that the first occurrence of (𝑉 × { 0 }) represents the zero scalar, and the second is the zero functional. (Contributed by NM, 7-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × { 0 })) = (𝑉 × { 0 })) | ||
| Theorem | lflsc0N 39121 | The scalar product with the zero functional is the zero functional. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f · (𝑉 × {𝑋})) = (𝑉 × { 0 })) | ||
| Theorem | lfl1sc 39122 | The (right vector space) scalar product of a functional with one is the functional. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 1 = (1r‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × { 1 })) = 𝐺) | ||
| Syntax | clk 39123 | Extend class notation with the kernel of a functional (set of vectors whose functional value is zero) on a left module or left vector space. |
| class LKer | ||
| Definition | df-lkr 39124* | Define the kernel of a functional (set of vectors whose functional value is zero) on a left module or left vector space. (Contributed by NM, 15-Apr-2014.) |
| ⊢ LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “ {(0g‘(Scalar‘𝑤))}))) | ||
| Theorem | lkrfval 39125* | The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) | ||
| Theorem | lkrval 39126 | Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) | ||
| Theorem | ellkr 39127 | Membership in the kernel of a functional. (elnlfn 31903 analog.) (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹) → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝑋 ∈ 𝑉 ∧ (𝐺‘𝑋) = 0 ))) | ||
| Theorem | lkrval2 39128* | Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = {𝑥 ∈ 𝑉 ∣ (𝐺‘𝑥) = 0 }) | ||
| Theorem | ellkr2 39129 | Membership in the kernel of a functional. (Contributed by NM, 12-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝐾‘𝐺) ↔ (𝐺‘𝑋) = 0 )) | ||
| Theorem | lkrcl 39130 | A member of the kernel of a functional is a vector. (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ (𝐾‘𝐺)) → 𝑋 ∈ 𝑉) | ||
| Theorem | lkrf0 39131 | The value of a functional at a member of its kernel is zero. (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ (𝐾‘𝐺)) → (𝐺‘𝑋) = 0 ) | ||
| Theorem | lkr0f 39132 | The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) | ||
| Theorem | lkrlss 39133 | The kernel of a linear functional is a subspace. (nlelshi 32035 analog.) (Contributed by NM, 16-Apr-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) ∈ 𝑆) | ||
| Theorem | lkrssv 39134 | The kernel of a linear functional is a set of vectors. (Contributed by NM, 1-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐾‘𝐺) ⊆ 𝑉) | ||
| Theorem | lkrsc 39135 | The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑅 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) | ||
| Theorem | lkrscss 39136 | The kernel of a scalar product of a functional includes the kernel of the functional. (The inclusion is proper for the zero product and equality otherwise.) (Contributed by NM, 9-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐺 ∘f · (𝑉 × {𝑅})))) | ||
| Theorem | eqlkr 39137* | Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 18-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) | ||
| Theorem | eqlkr2 39138* | Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 10-Oct-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 𝐻 = (𝐺 ∘f · (𝑉 × {𝑟}))) | ||
| Theorem | eqlkr3 39139 | Two functionals with the same kernel are equal if they are equal at any nonzero value. (Contributed by NM, 2-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) & ⊢ (𝜑 → (𝐺‘𝑋) = (𝐻‘𝑋)) & ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) ⇒ ⊢ (𝜑 → 𝐺 = 𝐻) | ||
| Theorem | lkrlsp 39140 | The subspace sum of a kernel and the span of a vector not in the kernel (by ellkr 39127) is the whole vector space. (Contributed by NM, 19-Apr-2014.) |
| ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) | ||
| Theorem | lkrlsp2 39141 | The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 12-May-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) | ||
| Theorem | lkrlsp3 39142 | The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = 𝑉) | ||
| Theorem | lkrshp 39143 | The kernel of a nonzero functional is a hyperplane. (Contributed by NM, 29-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (𝐾‘𝐺) ∈ 𝐻) | ||
| Theorem | lkrshp3 39144 | The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 17-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ↔ 𝐺 ≠ (𝑉 × { 0 }))) | ||
| Theorem | lkrshpor 39145 | The kernel of a functional is either a hyperplane or the full vector space. (Contributed by NM, 7-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) | ||
| Theorem | lkrshp4 39146 | A kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ≠ 𝑉 ↔ (𝐾‘𝐺) ∈ 𝐻)) | ||
| Theorem | lshpsmreu 39147* | Lemma for lshpkrex 39156. Show uniqueness of ring multiplier 𝑘 when a vector 𝑋 is broken down into components, one in a hyperplane and the other outside of it . TODO: do we need the cbvrexv 3331 for 𝑎 to 𝑐? (Contributed by NM, 4-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ (𝜑 → ∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) | ||
| Theorem | lshpkrlem1 39148* | Lemma for lshpkrex 39156. The value of tentative functional 𝐺 is zero iff its argument belongs to hyperplane 𝑈. (Contributed by NM, 14-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝐺‘𝑋) = 0 )) | ||
| Theorem | lshpkrlem2 39149* | Lemma for lshpkrex 39156. The value of tentative functional 𝐺 is a scalar. (Contributed by NM, 16-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐾) | ||
| Theorem | lshpkrlem3 39150* | Lemma for lshpkrex 39156. Defining property of 𝐺‘𝑋. (Contributed by NM, 15-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) | ||
| Theorem | lshpkrlem4 39151* | Lemma for lshpkrex 39156. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑉 ∧ 𝑠 ∈ 𝑉) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣)) · 𝑍))) | ||
| Theorem | lshpkrlem5 39152* | Lemma for lshpkrex 39156. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ (((𝜑 ∧ 𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉) ∧ (𝑣 ∈ 𝑉 ∧ 𝑟 ∈ 𝑈 ∧ (𝑠 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈)) ∧ (𝑢 = (𝑟 + ((𝐺‘𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺‘𝑣) · 𝑍)) ∧ ((𝑙 · 𝑢) + 𝑣) = (𝑧 + ((𝐺‘((𝑙 · 𝑢) + 𝑣)) · 𝑍)))) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) | ||
| Theorem | lshpkrlem6 39153* | Lemma for lshpkrex 39156. Show linearlity of 𝐺. (Contributed by NM, 17-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) ⇒ ⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) | ||
| Theorem | lshpkrcl 39154* | The set 𝐺 defined by hyperplane 𝑈 is a linear functional. (Contributed by NM, 17-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) & ⊢ 𝐹 = (LFnl‘𝑊) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐹) | ||
| Theorem | lshpkr 39155* | The kernel of functional 𝐺 is the hyperplane defining it. (Contributed by NM, 17-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝐻) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) & ⊢ 𝐿 = (LKer‘𝑊) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) = 𝑈) | ||
| Theorem | lshpkrex 39156* | There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu, Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014.) |
| ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝐻) → ∃𝑔 ∈ 𝐹 (𝐾‘𝑔) = 𝑈) | ||
| Theorem | lshpset2N 39157* | The set of all hyperplanes of a left module or left vector space equals the set of all kernels of nonzero functionals. (Contributed by NM, 17-Jul-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) | ||
| Theorem | islshpkrN 39158* | The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 𝑈 = (𝐾‘𝑔) or (𝐾‘𝑔) = 𝑈 as in lshpkrex 39156? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) | ||
| Theorem | lfl1dim 39159* | Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∣ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))}) | ||
| Theorem | lfl1dim2N 39160* | Equivalent expressions for a 1-dim subspace (ray) of functionals. TODO: delete this if not useful; lfl1dim 39159 may be more compatible with lspsn 20933. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐷 = (Scalar‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐾 = (Base‘𝐷) & ⊢ · = (.r‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)} = {𝑔 ∈ 𝐹 ∣ ∃𝑘 ∈ 𝐾 𝑔 = (𝐺 ∘f · (𝑉 × {𝑘}))}) | ||
| Syntax | cld 39161 | Extend class notation with left dualvector space. |
| class LDual | ||
| Definition | df-ldual 39162* | Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows to reuse our existing collection of left vector space theorems. The restriction on ∘f (+g‘𝑣) allows it to be a set; see ofmres 7916. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.) |
| ⊢ LDual = (𝑣 ∈ V ↦ ({〈(Base‘ndx), (LFnl‘𝑣)〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑣))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉})) | ||
| Theorem | ldualset 39163* | Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = ( ∘f + ↾ (𝐹 × 𝐹)) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f · (𝑉 × {𝑘}))) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ✚ 〉, 〈(Scalar‘ndx), 𝑂〉} ∪ {〈( ·𝑠 ‘ndx), ∙ 〉})) | ||
| Theorem | ldualvbase 39164 | The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑉 = (Base‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑉 = 𝐹) | ||
| Theorem | ldualelvbase 39165 | Utility theorem for converting a functional to a vector of the dual space in order to use standard vector theorems. (Contributed by NM, 6-Jan-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑉 = (Base‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑉) | ||
| Theorem | ldualfvadd 39166 | Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ ⨣ = ( ∘f + ↾ (𝐹 × 𝐹)) ⇒ ⊢ (𝜑 → ✚ = ⨣ ) | ||
| Theorem | ldualvadd 39167 | Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ✚ 𝐻) = (𝐺 ∘f + 𝐻)) | ||
| Theorem | ldualvaddcl 39168 | The value of vector addition in the dual of a vector space is a functional. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 + 𝐻) ∈ 𝐹) | ||
| Theorem | ldualvaddval 39169 | The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) | ||
| Theorem | ldualsca 39170 | The ring of scalars of the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝑂 = (oppr‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑅 = 𝑂) | ||
| Theorem | ldualsbase 39171 | Base set of scalar ring for the dual of a vector space. (Contributed by NM, 24-Oct-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐿 = (Base‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐾 = 𝐿) | ||
| Theorem | ldualsaddN 39172 | Scalar addition for the dual of a vector space. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ + = (+g‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ ✚ = (+g‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) ⇒ ⊢ (𝜑 → ✚ = + ) | ||
| Theorem | ldualsmul 39173 | Scalar multiplication for the dual of a vector space. (Contributed by NM, 19-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = (.r‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ ∙ = (.r‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑋 ∙ 𝑌) = (𝑌 · 𝑋)) | ||
| Theorem | ldualfvs 39174* | Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ · = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) ⇒ ⊢ (𝜑 → ∙ = · ) | ||
| Theorem | ldualvs 39175 | Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) | ||
| Theorem | ldualvsval 39176 | Value of scalar product operation value for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝐺‘𝐴) × 𝑋)) | ||
| Theorem | ldualvscl 39177 | The scalar product operation value is a functional. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐹) | ||
| Theorem | ldualvaddcom 39178 | Commutative law for vector (functional) addition. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐹) & ⊢ (𝜑 → 𝑌 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | ldualvsass 39179 | Associative law for scalar product operation. (Contributed by NM, 20-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) | ||
| Theorem | ldualvsass2 39180 | Associative law for scalar product operation, using operations from the dual space. (Contributed by NM, 20-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑄 = (Scalar‘𝐷) & ⊢ × = (.r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑋 × 𝑌) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) | ||
| Theorem | ldualvsdi1 39181 | Distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻))) | ||
| Theorem | ldualvsdi2 39182 | Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) | ||
| Theorem | ldualgrplem 39183 | Lemma for ldualgrp 39184. (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = ∘f (+g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ Grp) | ||
| Theorem | ldualgrp 39184 | The dual of a vector space is a group. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐷 ∈ Grp) | ||
| Theorem | ldual0 39185 | The zero scalar of the dual of a vector space. (Contributed by NM, 28-Dec-2014.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐷) & ⊢ 𝑂 = (0g‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑂 = 0 ) | ||
| Theorem | ldual1 39186 | The unit scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐷) & ⊢ 𝐼 = (1r‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐼 = 1 ) | ||
| Theorem | ldualneg 39187 | The negative of a scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝑀 = (invg‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐷) & ⊢ 𝑁 = (invg‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑁 = 𝑀) | ||
| Theorem | ldual0v 39188 | The zero vector of the dual of a vector space. (Contributed by NM, 24-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑂 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑂 = (𝑉 × { 0 })) | ||
| Theorem | ldual0vcl 39189 | The dual zero vector is a functional. (Contributed by NM, 5-Mar-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 0 ∈ 𝐹) | ||
| Theorem | lduallmodlem 39190 | Lemma for lduallmod 39191. (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = ∘f (+g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ LMod) | ||
| Theorem | lduallmod 39191 | The dual of a left module is also a left module. (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐷 ∈ LMod) | ||
| Theorem | lduallvec 39192 | The dual of a left vector space is also a left vector space. Note that scalar multiplication is reversed by df-oppr 20253; otherwise, the dual would be a right vector space as is sometimes the case in the literature. (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) ⇒ ⊢ (𝜑 → 𝐷 ∈ LVec) | ||
| Theorem | ldualvsub 39193 | The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) | ||
| Theorem | ldualvsubcl 39194 | Closure of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 − 𝐻) ∈ 𝐹) | ||
| Theorem | ldualvsubval 39195 | The value of the value of vector subtraction in the dual of a vector space. TODO: shorten with ldualvsub 39193? (Requires 𝐷 to oppr conversion.) (Contributed by NM, 26-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝑆 = (-g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐺 − 𝐻)‘𝑋) = ((𝐺‘𝑋)𝑆(𝐻‘𝑋))) | ||
| Theorem | ldualssvscl 39196 | Closure of scalar product in a dual subspace.) (Contributed by NM, 5-Feb-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑈) | ||
| Theorem | ldualssvsubcl 39197 | Closure of vector subtraction in a dual subspace.) (Contributed by NM, 9-Mar-2015.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ − = (-g‘𝐷) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝑈) | ||
| Theorem | ldual0vs 39198 | Scalar zero times a functional is the zero functional. (Contributed by NM, 17-Feb-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝑂 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ( 0 · 𝐺) = 𝑂) | ||
| Theorem | lkr0f2 39199 | The kernel of the zero functional is the set of all vectors. (Contributed by NM, 4-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = 0 )) | ||
| Theorem | lduallkr3 39200 | The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 22-Feb-2015.) |
| ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ↔ 𝐺 ≠ 0 )) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |