| Metamath
Proof Explorer Theorem List (p. 392 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | cld 39101 | Extend class notation with left dualvector space. |
| class LDual | ||
| Definition | df-ldual 39102* | Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows to reuse our existing collection of left vector space theorems. The restriction on ∘f (+g‘𝑣) allows it to be a set; see ofmres 7926. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.) |
| ⊢ LDual = (𝑣 ∈ V ↦ ({〈(Base‘ndx), (LFnl‘𝑣)〉, 〈(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx), (oppr‘(Scalar‘𝑣))〉} ∪ {〈( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉})) | ||
| Theorem | ldualset 39103* | Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = ( ∘f + ↾ (𝐹 × 𝐹)) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f · (𝑉 × {𝑘}))) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐷 = ({〈(Base‘ndx), 𝐹〉, 〈(+g‘ndx), ✚ 〉, 〈(Scalar‘ndx), 𝑂〉} ∪ {〈( ·𝑠 ‘ndx), ∙ 〉})) | ||
| Theorem | ldualvbase 39104 | The vectors of a dual space are functionals of the original space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑉 = (Base‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑉 = 𝐹) | ||
| Theorem | ldualelvbase 39105 | Utility theorem for converting a functional to a vector of the dual space in order to use standard vector theorems. (Contributed by NM, 6-Jan-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑉 = (Base‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑉) | ||
| Theorem | ldualfvadd 39106 | Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ ⨣ = ( ∘f + ↾ (𝐹 × 𝐹)) ⇒ ⊢ (𝜑 → ✚ = ⨣ ) | ||
| Theorem | ldualvadd 39107 | Vector addition in the dual of a vector space. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 ✚ 𝐻) = (𝐺 ∘f + 𝐻)) | ||
| Theorem | ldualvaddcl 39108 | The value of vector addition in the dual of a vector space is a functional. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 + 𝐻) ∈ 𝐹) | ||
| Theorem | ldualvaddval 39109 | The value of the value of vector addition in the dual of a vector space. (Contributed by NM, 7-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐺 ✚ 𝐻)‘𝑋) = ((𝐺‘𝑋) + (𝐻‘𝑋))) | ||
| Theorem | ldualsca 39110 | The ring of scalars of the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝑂 = (oppr‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑅 = 𝑂) | ||
| Theorem | ldualsbase 39111 | Base set of scalar ring for the dual of a vector space. (Contributed by NM, 24-Oct-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐿 = (Base‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐾 = 𝐿) | ||
| Theorem | ldualsaddN 39112 | Scalar addition for the dual of a vector space. (Contributed by NM, 24-Oct-2014.) (New usage is discouraged.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ + = (+g‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ ✚ = (+g‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) ⇒ ⊢ (𝜑 → ✚ = + ) | ||
| Theorem | ldualsmul 39113 | Scalar multiplication for the dual of a vector space. (Contributed by NM, 19-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = (.r‘𝐹) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑅 = (Scalar‘𝐷) & ⊢ ∙ = (.r‘𝑅) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑋 ∙ 𝑌) = (𝑌 · 𝑋)) | ||
| Theorem | ldualfvs 39114* | Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ · = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) ⇒ ⊢ (𝜑 → ∙ = · ) | ||
| Theorem | ldualvs 39115 | Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) | ||
| Theorem | ldualvsval 39116 | Value of scalar product operation value for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ 𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑋 ∙ 𝐺)‘𝐴) = ((𝐺‘𝐴) × 𝑋)) | ||
| Theorem | ldualvscl 39117 | The scalar product operation value is a functional. (Contributed by NM, 18-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 · 𝐺) ∈ 𝐹) | ||
| Theorem | ldualvaddcom 39118 | Commutative law for vector (functional) addition. (Contributed by NM, 17-Jan-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐹) & ⊢ (𝜑 → 𝑌 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | ldualvsass 39119 | Associative law for scalar product operation. (Contributed by NM, 20-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) | ||
| Theorem | ldualvsass2 39120 | Associative law for scalar product operation, using operations from the dual space. (Contributed by NM, 20-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑄 = (Scalar‘𝐷) & ⊢ × = (.r‘𝑄) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑋 × 𝑌) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) | ||
| Theorem | ldualvsdi1 39121 | Distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑋 · (𝐺 + 𝐻)) = ((𝑋 · 𝐺) + (𝑋 · 𝐻))) | ||
| Theorem | ldualvsdi2 39122 | Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ + = (+g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ ✚ = (+g‘𝐷) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝐺) = ((𝑋 · 𝐺) ✚ (𝑌 · 𝐺))) | ||
| Theorem | ldualgrplem 39123 | Lemma for ldualgrp 39124. (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = ∘f (+g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ Grp) | ||
| Theorem | ldualgrp 39124 | The dual of a vector space is a group. (Contributed by NM, 21-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐷 ∈ Grp) | ||
| Theorem | ldual0 39125 | The zero scalar of the dual of a vector space. (Contributed by NM, 28-Dec-2014.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐷) & ⊢ 𝑂 = (0g‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑂 = 0 ) | ||
| Theorem | ldual1 39126 | The unit scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐷) & ⊢ 𝐼 = (1r‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐼 = 1 ) | ||
| Theorem | ldualneg 39127 | The negative of a scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝑀 = (invg‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐷) & ⊢ 𝑁 = (invg‘𝑆) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑁 = 𝑀) | ||
| Theorem | ldual0v 39128 | The zero vector of the dual of a vector space. (Contributed by NM, 24-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑂 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑂 = (𝑉 × { 0 })) | ||
| Theorem | ldual0vcl 39129 | The dual zero vector is a functional. (Contributed by NM, 5-Mar-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 0 ∈ 𝐹) | ||
| Theorem | lduallmodlem 39130 | Lemma for lduallmod 39131. (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = ∘f (+g‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ LMod) | ||
| Theorem | lduallmod 39131 | The dual of a left module is also a left module. (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐷 ∈ LMod) | ||
| Theorem | lduallvec 39132 | The dual of a left vector space is also a left vector space. Note that scalar multiplication is reversed by df-oppr 20240; otherwise, the dual would be a right vector space as is sometimes the case in the literature. (Contributed by NM, 22-Oct-2014.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) ⇒ ⊢ (𝜑 → 𝐷 ∈ LVec) | ||
| Theorem | ldualvsub 39133 | The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺 + ((𝑁‘ 1 ) · 𝐻))) | ||
| Theorem | ldualvsubcl 39134 | Closure of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝐺 − 𝐻) ∈ 𝐹) | ||
| Theorem | ldualvsubval 39135 | The value of the value of vector subtraction in the dual of a vector space. TODO: shorten with ldualvsub 39133? (Requires 𝐷 to oppr conversion.) (Contributed by NM, 26-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝑆 = (-g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ − = (-g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐺 − 𝐻)‘𝑋) = ((𝐺‘𝑋)𝑆(𝐻‘𝑋))) | ||
| Theorem | ldualssvscl 39136 | Closure of scalar product in a dual subspace.) (Contributed by NM, 5-Feb-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝑈) | ||
| Theorem | ldualssvsubcl 39137 | Closure of vector subtraction in a dual subspace.) (Contributed by NM, 9-Mar-2015.) |
| ⊢ 𝐷 = (LDual‘𝑊) & ⊢ − = (-g‘𝐷) & ⊢ 𝑆 = (LSubSp‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝑈) | ||
| Theorem | ldual0vs 39138 | Scalar zero times a functional is the zero functional. (Contributed by NM, 17-Feb-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ 𝑂 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ( 0 · 𝐺) = 𝑂) | ||
| Theorem | lkr0f2 39139 | The kernel of the zero functional is the set of all vectors. (Contributed by NM, 4-Feb-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = 0 )) | ||
| Theorem | lduallkr3 39140 | The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 22-Feb-2015.) |
| ⊢ 𝐻 = (LSHyp‘𝑊) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ↔ 𝐺 ≠ 0 )) | ||
| Theorem | lkrpssN 39141 | Proper subset relation between kernels. (Contributed by NM, 16-Feb-2015.) (New usage is discouraged.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ⊊ (𝐾‘𝐻) ↔ (𝐺 ≠ 0 ∧ 𝐻 = 0 ))) | ||
| Theorem | lkrin 39142 | Intersection of the kernels of 2 functionals is included in the kernel of their sum. (Contributed by NM, 7-Jan-2015.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ + = (+g‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ∩ (𝐾‘𝐻)) ⊆ (𝐾‘(𝐺 + 𝐻))) | ||
| Theorem | eqlkr4 39143* | Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 4-Feb-2015.) |
| ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺)) | ||
| Theorem | ldual1dim 39144* | Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 𝑁 = (LSpan‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) ⇒ ⊢ (𝜑 → (𝑁‘{𝐺}) = {𝑔 ∈ 𝐹 ∣ (𝐿‘𝐺) ⊆ (𝐿‘𝑔)}) | ||
| Theorem | ldualkrsc 39145 | The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 28-Dec-2014.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐿‘(𝑋 · 𝐺)) = (𝐿‘𝐺)) | ||
| Theorem | lkrss 39146 | The kernel of a scalar product of a functional includes the kernel of the functional. (Contributed by NM, 27-Jan-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝑋 · 𝐺))) | ||
| Theorem | lkrss2N 39147* | Two functionals with kernels in a subset relationship. (Contributed by NM, 17-Feb-2015.) (New usage is discouraged.) |
| ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐺 ∈ 𝐹) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) ⇒ ⊢ (𝜑 → ((𝐾‘𝐺) ⊆ (𝐾‘𝐻) ↔ ∃𝑟 ∈ 𝑅 𝐻 = (𝑟 · 𝐺))) | ||
| Theorem | lkreqN 39148 | Proportional functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.) |
| ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐾 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ (𝑅 ∖ { 0 })) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 = (𝐴 · 𝐻)) ⇒ ⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) | ||
| Theorem | lkrlspeqN 39149 | Condition for colinear functionals to have equal kernels. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.) |
| ⊢ 𝐹 = (LFnl‘𝑊) & ⊢ 𝐿 = (LKer‘𝑊) & ⊢ 𝐷 = (LDual‘𝑊) & ⊢ 0 = (0g‘𝐷) & ⊢ 𝑁 = (LSpan‘𝐷) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐻 ∈ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ ((𝑁‘{𝐻}) ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐿‘𝐺) = (𝐿‘𝐻)) | ||
| Syntax | cops 39150 | Extend class notation with orthoposets. |
| class OP | ||
| Syntax | ccmtN 39151 | Extend class notation with the commutes relation. |
| class cm | ||
| Syntax | col 39152 | Extend class notation with orthlattices. |
| class OL | ||
| Syntax | coml 39153 | Extend class notation with orthomodular lattices. |
| class OML | ||
| Definition | df-oposet 39154* | Define the class of orthoposets, which are bounded posets with an orthocomplementation operation. Note that (Base p ) e. dom ( lub 𝑝) means there is an upper bound 1., and similarly for the 0. element. (Contributed by NM, 20-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
| ⊢ OP = {𝑝 ∈ Poset ∣ (((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ∧ ∃𝑜(𝑜 = (oc‘𝑝) ∧ ∀𝑎 ∈ (Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝))))} | ||
| Definition | df-cmtN 39155* | Define the commutes relation for orthoposets. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Nov-2011.) |
| ⊢ cm = (𝑝 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))}) | ||
| Definition | df-ol 39156 | Define the class of ortholattices. Definition from [Kalmbach] p. 16. (Contributed by NM, 18-Sep-2011.) |
| ⊢ OL = (Lat ∩ OP) | ||
| Definition | df-oml 39157* | Define the class of orthomodular lattices. Definition from [Kalmbach] p. 16. (Contributed by NM, 18-Sep-2011.) |
| ⊢ OML = {𝑙 ∈ OL ∣ ∀𝑎 ∈ (Base‘𝑙)∀𝑏 ∈ (Base‘𝑙)(𝑎(le‘𝑙)𝑏 → 𝑏 = (𝑎(join‘𝑙)(𝑏(meet‘𝑙)((oc‘𝑙)‘𝑎))))} | ||
| Theorem | isopos 39158* | The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011.) (Revised by NM, 14-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP ↔ ((𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((( ⊥ ‘𝑥) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥 ∧ (𝑥 ≤ 𝑦 → ( ⊥ ‘𝑦) ≤ ( ⊥ ‘𝑥))) ∧ (𝑥 ∨ ( ⊥ ‘𝑥)) = 1 ∧ (𝑥 ∧ ( ⊥ ‘𝑥)) = 0 ))) | ||
| Theorem | opposet 39159 | Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011.) |
| ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | ||
| Theorem | oposlem 39160 | Lemma for orthoposet properties. (Contributed by NM, 20-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) ∧ (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) | ||
| Theorem | op01dm 39161 | Conditions necessary for zero and unity elements to exist. (Contributed by NM, 14-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → (𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺)) | ||
| Theorem | op0cl 39162 | An orthoposet has a zero element. (h0elch 31217 analog.) (Contributed by NM, 12-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) | ||
| Theorem | op1cl 39163 | An orthoposet has a unity element. (helch 31205 analog.) (Contributed by NM, 22-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → 1 ∈ 𝐵) | ||
| Theorem | op0le 39164 | Orthoposet zero is less than or equal to any element. (ch0le 31403 analog.) (Contributed by NM, 12-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) | ||
| Theorem | ople0 39165 | An element less than or equal to zero equals zero. (chle0 31405 analog.) (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) | ||
| Theorem | opnlen0 39166 | An element not less than another is nonzero. TODO: Look for uses of necon3bd 2939 and op0le 39164 to see if this is useful elsewhere. (Contributed by NM, 5-May-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑋 ≤ 𝑌) → 𝑋 ≠ 0 ) | ||
| Theorem | lub0N 39167 | The least upper bound of the empty set is the zero element. (Contributed by NM, 15-Sep-2013.) (New usage is discouraged.) |
| ⊢ 1 = (lub‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → ( 1 ‘∅) = 0 ) | ||
| Theorem | opltn0 39168 | A lattice element greater than zero is nonzero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) | ||
| Theorem | ople1 39169 | Any element is less than the orthoposet unity. (chss 31191 analog.) (Contributed by NM, 23-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 1 ) | ||
| Theorem | op1le 39170 | If the orthoposet unity is less than or equal to an element, the element equals the unit. (chle0 31405 analog.) (Contributed by NM, 5-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( 1 ≤ 𝑋 ↔ 𝑋 = 1 )) | ||
| Theorem | glb0N 39171 | The greatest lower bound of the empty set is the unity element. (Contributed by NM, 5-Dec-2011.) (New usage is discouraged.) |
| ⊢ 𝐺 = (glb‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → (𝐺‘∅) = 1 ) | ||
| Theorem | opoccl 39172 | Closure of orthocomplement operation. (choccl 31268 analog.) (Contributed by NM, 20-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) | ||
| Theorem | opococ 39173 | Double negative law for orthoposets. (ococ 31368 analog.) (Contributed by NM, 13-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | ||
| Theorem | opcon3b 39174 | Contraposition law for orthoposets. (chcon3i 31428 analog.) (Contributed by NM, 8-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ↔ ( ⊥ ‘𝑌) = ( ⊥ ‘𝑋))) | ||
| Theorem | opcon2b 39175 | Orthocomplement contraposition law. (negcon2 11435 analog.) (Contributed by NM, 16-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ 𝑌 = ( ⊥ ‘𝑋))) | ||
| Theorem | opcon1b 39176 | Orthocomplement contraposition law. (negcon1 11434 analog.) (Contributed by NM, 24-Jan-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = 𝑌 ↔ ( ⊥ ‘𝑌) = 𝑋)) | ||
| Theorem | oplecon3 39177 | Contraposition law for orthoposets. (Contributed by NM, 13-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) | ||
| Theorem | oplecon3b 39178 | Contraposition law for orthoposets. (chsscon3 31462 analog.) (Contributed by NM, 4-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) | ||
| Theorem | oplecon1b 39179 | Contraposition law for strict ordering in orthoposets. (chsscon1 31463 analog.) (Contributed by NM, 6-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ 𝑋)) | ||
| Theorem | opoc1 39180 | Orthocomplement of orthoposet unity. (Contributed by NM, 24-Jan-2012.) |
| ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) | ||
| Theorem | opoc0 39181 | Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012.) |
| ⊢ 0 = (0.‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) | ||
| Theorem | opltcon3b 39182 | Contraposition law for strict ordering in orthoposets. (chpsscon3 31465 analog.) (Contributed by NM, 4-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘𝑋))) | ||
| Theorem | opltcon1b 39183 | Contraposition law for strict ordering in orthoposets. (chpsscon1 31466 analog.) (Contributed by NM, 5-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) < 𝑌 ↔ ( ⊥ ‘𝑌) < 𝑋)) | ||
| Theorem | opltcon2b 39184 | Contraposition law for strict ordering in orthoposets. (chsscon2 31464 analog.) (Contributed by NM, 5-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < ( ⊥ ‘𝑌) ↔ 𝑌 < ( ⊥ ‘𝑋))) | ||
| Theorem | opexmid 39185 | Law of excluded middle for orthoposets. (chjo 31477 analog.) (Contributed by NM, 13-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ ( ⊥ ‘𝑋)) = 1 ) | ||
| Theorem | opnoncon 39186 | Law of contradiction for orthoposets. (chocin 31457 analog.) (Contributed by NM, 13-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ) | ||
| Theorem | riotaocN 39187* | The orthocomplement of the unique poset element such that 𝜓. (riotaneg 12122 analog.) (Contributed by NM, 16-Jan-2012.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ (𝑥 = ( ⊥ ‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐾 ∈ OP ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) | ||
| Theorem | cmtfvalN 39188* | Value of commutes relation. (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → 𝐶 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}) | ||
| Theorem | cmtvalN 39189 | Equivalence for commutes relation. Definition of commutes in [Kalmbach] p. 20. (cmbr 31546 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) | ||
| Theorem | isolat 39190 | The predicate "is an ortholattice." (Contributed by NM, 18-Sep-2011.) |
| ⊢ (𝐾 ∈ OL ↔ (𝐾 ∈ Lat ∧ 𝐾 ∈ OP)) | ||
| Theorem | ollat 39191 | An ortholattice is a lattice. (Contributed by NM, 18-Sep-2011.) |
| ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | ||
| Theorem | olop 39192 | An ortholattice is an orthoposet. (Contributed by NM, 18-Sep-2011.) |
| ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | ||
| Theorem | olposN 39193 | An ortholattice is a poset. (Contributed by NM, 16-Oct-2011.) (New usage is discouraged.) |
| ⊢ (𝐾 ∈ OL → 𝐾 ∈ Poset) | ||
| Theorem | isolatiN 39194 | Properties that determine an ortholattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
| ⊢ 𝐾 ∈ Lat & ⊢ 𝐾 ∈ OP ⇒ ⊢ 𝐾 ∈ OL | ||
| Theorem | oldmm1 39195 | De Morgan's law for meet in an ortholattice. (chdmm1 31487 analog.) (Contributed by NM, 6-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ 𝑌)) = (( ⊥ ‘𝑋) ∨ ( ⊥ ‘𝑌))) | ||
| Theorem | oldmm2 39196 | De Morgan's law for meet in an ortholattice. (chdmm2 31488 analog.) (Contributed by NM, 6-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ 𝑌)) = (𝑋 ∨ ( ⊥ ‘𝑌))) | ||
| Theorem | oldmm3N 39197 | De Morgan's law for meet in an ortholattice. (chdmm3 31489 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) = (( ⊥ ‘𝑋) ∨ 𝑌)) | ||
| Theorem | oldmm4 39198 | De Morgan's law for meet in an ortholattice. (chdmm4 31490 analog.) (Contributed by NM, 6-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) = (𝑋 ∨ 𝑌)) | ||
| Theorem | oldmj1 39199 | De Morgan's law for join in an ortholattice. (chdmj1 31491 analog.) (Contributed by NM, 6-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∨ 𝑌)) = (( ⊥ ‘𝑋) ∧ ( ⊥ ‘𝑌))) | ||
| Theorem | oldmj2 39200 | De Morgan's law for join in an ortholattice. (chdmj2 31492 analog.) (Contributed by NM, 7-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ ( ⊥ ‘𝑌))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |