| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpset | Structured version Visualization version GIF version | ||
| Description: The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012.) |
| Ref | Expression |
|---|---|
| lhpset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lhpset.u | ⊢ 1 = (1.‘𝐾) |
| lhpset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lhpset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpset | ⊢ (𝐾 ∈ 𝐴 → 𝐻 = {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
| 2 | lhpset.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | fveq2 6858 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
| 4 | lhpset.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
| 6 | eqidd 2730 | . . . . . 6 ⊢ (𝑘 = 𝐾 → 𝑤 = 𝑤) | |
| 7 | fveq2 6858 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾)) | |
| 8 | lhpset.c | . . . . . . 7 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 9 | 7, 8 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶) |
| 10 | fveq2 6858 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (1.‘𝑘) = (1.‘𝐾)) | |
| 11 | lhpset.u | . . . . . . 7 ⊢ 1 = (1.‘𝐾) | |
| 12 | 10, 11 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (1.‘𝑘) = 1 ) |
| 13 | 6, 9, 12 | breq123d 5121 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑤( ⋖ ‘𝑘)(1.‘𝑘) ↔ 𝑤𝐶 1 )) |
| 14 | 5, 13 | rabeqbidv 3424 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑤 ∈ (Base‘𝑘) ∣ 𝑤( ⋖ ‘𝑘)(1.‘𝑘)} = {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 }) |
| 15 | df-lhyp 39982 | . . . 4 ⊢ LHyp = (𝑘 ∈ V ↦ {𝑤 ∈ (Base‘𝑘) ∣ 𝑤( ⋖ ‘𝑘)(1.‘𝑘)}) | |
| 16 | 4 | fvexi 6872 | . . . . 5 ⊢ 𝐵 ∈ V |
| 17 | 16 | rabex 5294 | . . . 4 ⊢ {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 } ∈ V |
| 18 | 14, 15, 17 | fvmpt 6968 | . . 3 ⊢ (𝐾 ∈ V → (LHyp‘𝐾) = {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 }) |
| 19 | 2, 18 | eqtrid 2776 | . 2 ⊢ (𝐾 ∈ V → 𝐻 = {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 }) |
| 20 | 1, 19 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐴 → 𝐻 = {𝑤 ∈ 𝐵 ∣ 𝑤𝐶 1 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 1.cp1 18383 ⋖ ccvr 39255 LHypclh 39978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-lhyp 39982 |
| This theorem is referenced by: islhp 39990 |
| Copyright terms: Public domain | W3C validator |