Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpset Structured version   Visualization version   GIF version

Theorem lhpset 39696
Description: The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lhpset.b 𝐵 = (Base‘𝐾)
lhpset.u 1 = (1.‘𝐾)
lhpset.c 𝐶 = ( ⋖ ‘𝐾)
lhpset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpset (𝐾𝐴𝐻 = {𝑤𝐵𝑤𝐶 1 })
Distinct variable groups:   𝑤,𝐵   𝑤,𝐶   𝑤,𝐾   𝑤, 1
Allowed substitution hints:   𝐴(𝑤)   𝐻(𝑤)

Proof of Theorem lhpset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3482 . 2 (𝐾𝐴𝐾 ∈ V)
2 lhpset.h . . 3 𝐻 = (LHyp‘𝐾)
3 fveq2 6903 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 lhpset.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2784 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 eqidd 2727 . . . . . 6 (𝑘 = 𝐾𝑤 = 𝑤)
7 fveq2 6903 . . . . . . 7 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾))
8 lhpset.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
97, 8eqtr4di 2784 . . . . . 6 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶)
10 fveq2 6903 . . . . . . 7 (𝑘 = 𝐾 → (1.‘𝑘) = (1.‘𝐾))
11 lhpset.u . . . . . . 7 1 = (1.‘𝐾)
1210, 11eqtr4di 2784 . . . . . 6 (𝑘 = 𝐾 → (1.‘𝑘) = 1 )
136, 9, 12breq123d 5169 . . . . 5 (𝑘 = 𝐾 → (𝑤( ⋖ ‘𝑘)(1.‘𝑘) ↔ 𝑤𝐶 1 ))
145, 13rabeqbidv 3437 . . . 4 (𝑘 = 𝐾 → {𝑤 ∈ (Base‘𝑘) ∣ 𝑤( ⋖ ‘𝑘)(1.‘𝑘)} = {𝑤𝐵𝑤𝐶 1 })
15 df-lhyp 39689 . . . 4 LHyp = (𝑘 ∈ V ↦ {𝑤 ∈ (Base‘𝑘) ∣ 𝑤( ⋖ ‘𝑘)(1.‘𝑘)})
164fvexi 6917 . . . . 5 𝐵 ∈ V
1716rabex 5341 . . . 4 {𝑤𝐵𝑤𝐶 1 } ∈ V
1814, 15, 17fvmpt 7011 . . 3 (𝐾 ∈ V → (LHyp‘𝐾) = {𝑤𝐵𝑤𝐶 1 })
192, 18eqtrid 2778 . 2 (𝐾 ∈ V → 𝐻 = {𝑤𝐵𝑤𝐶 1 })
201, 19syl 17 1 (𝐾𝐴𝐻 = {𝑤𝐵𝑤𝐶 1 })
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {crab 3419  Vcvv 3462   class class class wbr 5155  cfv 6556  Basecbs 17215  1.cp1 18451  ccvr 38962  LHypclh 39685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pr 5435
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6508  df-fun 6558  df-fv 6564  df-lhyp 39689
This theorem is referenced by:  islhp  39697
  Copyright terms: Public domain W3C validator