Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpset Structured version   Visualization version   GIF version

Theorem lhpset 39377
Description: The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lhpset.b 𝐵 = (Base‘𝐾)
lhpset.u 1 = (1.‘𝐾)
lhpset.c 𝐶 = ( ⋖ ‘𝐾)
lhpset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpset (𝐾𝐴𝐻 = {𝑤𝐵𝑤𝐶 1 })
Distinct variable groups:   𝑤,𝐵   𝑤,𝐶   𝑤,𝐾   𝑤, 1
Allowed substitution hints:   𝐴(𝑤)   𝐻(𝑤)

Proof of Theorem lhpset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3487 . 2 (𝐾𝐴𝐾 ∈ V)
2 lhpset.h . . 3 𝐻 = (LHyp‘𝐾)
3 fveq2 6884 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 lhpset.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2784 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 eqidd 2727 . . . . . 6 (𝑘 = 𝐾𝑤 = 𝑤)
7 fveq2 6884 . . . . . . 7 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾))
8 lhpset.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
97, 8eqtr4di 2784 . . . . . 6 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶)
10 fveq2 6884 . . . . . . 7 (𝑘 = 𝐾 → (1.‘𝑘) = (1.‘𝐾))
11 lhpset.u . . . . . . 7 1 = (1.‘𝐾)
1210, 11eqtr4di 2784 . . . . . 6 (𝑘 = 𝐾 → (1.‘𝑘) = 1 )
136, 9, 12breq123d 5155 . . . . 5 (𝑘 = 𝐾 → (𝑤( ⋖ ‘𝑘)(1.‘𝑘) ↔ 𝑤𝐶 1 ))
145, 13rabeqbidv 3443 . . . 4 (𝑘 = 𝐾 → {𝑤 ∈ (Base‘𝑘) ∣ 𝑤( ⋖ ‘𝑘)(1.‘𝑘)} = {𝑤𝐵𝑤𝐶 1 })
15 df-lhyp 39370 . . . 4 LHyp = (𝑘 ∈ V ↦ {𝑤 ∈ (Base‘𝑘) ∣ 𝑤( ⋖ ‘𝑘)(1.‘𝑘)})
164fvexi 6898 . . . . 5 𝐵 ∈ V
1716rabex 5325 . . . 4 {𝑤𝐵𝑤𝐶 1 } ∈ V
1814, 15, 17fvmpt 6991 . . 3 (𝐾 ∈ V → (LHyp‘𝐾) = {𝑤𝐵𝑤𝐶 1 })
192, 18eqtrid 2778 . 2 (𝐾 ∈ V → 𝐻 = {𝑤𝐵𝑤𝐶 1 })
201, 19syl 17 1 (𝐾𝐴𝐻 = {𝑤𝐵𝑤𝐶 1 })
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {crab 3426  Vcvv 3468   class class class wbr 5141  cfv 6536  Basecbs 17151  1.cp1 18387  ccvr 38643  LHypclh 39366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-lhyp 39370
This theorem is referenced by:  islhp  39378
  Copyright terms: Public domain W3C validator