Detailed syntax breakdown of Definition df-line3
| Step | Hyp | Ref
| Expression |
| 1 | | cline3 44481 |
. 2
class
line3 |
| 2 | | c2o 8500 |
. . . . 5
class
2o |
| 3 | | vx |
. . . . . 6
setvar 𝑥 |
| 4 | 3 | cv 1539 |
. . . . 5
class 𝑥 |
| 5 | | cdom 8983 |
. . . . 5
class
≼ |
| 6 | 2, 4, 5 | wbr 5143 |
. . . 4
wff
2o ≼ 𝑥 |
| 7 | | vz |
. . . . . . . . 9
setvar 𝑧 |
| 8 | 7 | cv 1539 |
. . . . . . . 8
class 𝑧 |
| 9 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 10 | 9 | cv 1539 |
. . . . . . . 8
class 𝑦 |
| 11 | 8, 10 | wne 2940 |
. . . . . . 7
wff 𝑧 ≠ 𝑦 |
| 12 | 10, 8 | cptdfc 44479 |
. . . . . . . . 9
class
PtDf(𝑦, 𝑧) |
| 13 | 12 | crn 5686 |
. . . . . . . 8
class ran
PtDf(𝑦, 𝑧) |
| 14 | 13, 4 | wceq 1540 |
. . . . . . 7
wff ran
PtDf(𝑦, 𝑧) = 𝑥 |
| 15 | 11, 14 | wi 4 |
. . . . . 6
wff (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥) |
| 16 | 15, 7, 4 | wral 3061 |
. . . . 5
wff
∀𝑧 ∈
𝑥 (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥) |
| 17 | 16, 9, 4 | wral 3061 |
. . . 4
wff
∀𝑦 ∈
𝑥 ∀𝑧 ∈ 𝑥 (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥) |
| 18 | 6, 17 | wa 395 |
. . 3
wff
(2o ≼ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥)) |
| 19 | | crr3c 44480 |
. . . 4
class
RR3 |
| 20 | 19 | cpw 4600 |
. . 3
class 𝒫
RR3 |
| 21 | 18, 3, 20 | crab 3436 |
. 2
class {𝑥 ∈ 𝒫 RR3 ∣
(2o ≼ 𝑥
∧ ∀𝑦 ∈
𝑥 ∀𝑧 ∈ 𝑥 (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥))} |
| 22 | 1, 21 | wceq 1540 |
1
wff line3 =
{𝑥 ∈ 𝒫 RR3
∣ (2o ≼ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥))} |