| Metamath
Proof Explorer Theorem List (p. 436 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ifpororb 43501 | Factor conditional logic operator over disjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
| ⊢ (if-(𝜑, (𝜓 ∨ 𝜒), (𝜃 ∨ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ∨ if-(𝜑, 𝜒, 𝜏))) | ||
| Theorem | ifpananb 43502 | Factor conditional logic operator over conjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
| ⊢ (if-(𝜑, (𝜓 ∧ 𝜒), (𝜃 ∧ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ∧ if-(𝜑, 𝜒, 𝜏))) | ||
| Theorem | ifpnannanb 43503 | Factor conditional logic operator over nand in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
| ⊢ (if-(𝜑, (𝜓 ⊼ 𝜒), (𝜃 ⊼ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ⊼ if-(𝜑, 𝜒, 𝜏))) | ||
| Theorem | ifpor123g 43504 | Disjunction of conditional logical operators. (Contributed by RP, 18-Apr-2020.) |
| ⊢ ((if-(𝜑, 𝜒, 𝜏) ∨ if-(𝜓, 𝜃, 𝜂)) ↔ ((((𝜑 → ¬ 𝜓) ∨ (𝜒 ∨ 𝜃)) ∧ ((𝜓 → 𝜑) ∨ (𝜏 ∨ 𝜃))) ∧ (((𝜑 → 𝜓) ∨ (𝜒 ∨ 𝜂)) ∧ ((¬ 𝜓 → 𝜑) ∨ (𝜏 ∨ 𝜂))))) | ||
| Theorem | ifpimim 43505 | Consequnce of implication. (Contributed by RP, 17-Apr-2020.) |
| ⊢ (if-(𝜑, (𝜓 → 𝜒), (𝜃 → 𝜏)) → (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) | ||
| Theorem | ifpbibib 43506 | Factor conditional logic operator over biconditional in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
| ⊢ (if-(𝜑, (𝜓 ↔ 𝜒), (𝜃 ↔ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ↔ if-(𝜑, 𝜒, 𝜏))) | ||
| Theorem | ifpxorxorb 43507 | Factor conditional logic operator over xor in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
| ⊢ (if-(𝜑, (𝜓 ⊻ 𝜒), (𝜃 ⊻ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ⊻ if-(𝜑, 𝜒, 𝜏))) | ||
| Theorem | rp-fakeimass 43508 | A special case where implication appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.) |
| ⊢ ((𝜑 ∨ 𝜒) ↔ (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) | ||
| Theorem | rp-fakeanorass 43509 | A special case where a mixture of and and or appears to conform to a mixed associative law. (Contributed by RP, 26-Feb-2020.) |
| ⊢ ((𝜒 → 𝜑) ↔ (((𝜑 ∧ 𝜓) ∨ 𝜒) ↔ (𝜑 ∧ (𝜓 ∨ 𝜒)))) | ||
| Theorem | rp-fakeoranass 43510 | A special case where a mixture of or and and appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.) |
| ⊢ ((𝜑 → 𝜒) ↔ (((𝜑 ∨ 𝜓) ∧ 𝜒) ↔ (𝜑 ∨ (𝜓 ∧ 𝜒)))) | ||
| Theorem | rp-fakeinunass 43511 | A special case where a mixture of intersection and union appears to conform to a mixed associative law. (Contributed by RP, 26-Feb-2020.) |
| ⊢ (𝐶 ⊆ 𝐴 ↔ ((𝐴 ∩ 𝐵) ∪ 𝐶) = (𝐴 ∩ (𝐵 ∪ 𝐶))) | ||
| Theorem | rp-fakeuninass 43512 | A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.) |
| ⊢ (𝐴 ⊆ 𝐶 ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵 ∩ 𝐶))) | ||
Membership in the class of finite sets can be expressed in many ways. | ||
| Theorem | rp-isfinite5 43513* | A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ0. (Contributed by RP, 3-Mar-2020.) |
| ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) | ||
| Theorem | rp-isfinite6 43514* | A set is said to be finite if it is either empty or it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ. (Contributed by RP, 10-Mar-2020.) |
| ⊢ (𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)) | ||
| Theorem | intabssd 43515* | When for each element 𝑦 there is a subset 𝐴 which may substituted for 𝑥 such that 𝑦 satisfying 𝜒 implies 𝑥 satisfies 𝜓 then the intersection of all 𝑥 that satisfy 𝜓 is a subclass the intersection of all 𝑦 that satisfy 𝜒. (Contributed by RP, 17-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑦) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ 𝜓} ⊆ ∩ {𝑦 ∣ 𝜒}) | ||
| Theorem | eu0 43516* | There is only one empty set. (Contributed by RP, 1-Oct-2023.) |
| ⊢ (∀𝑥 ¬ 𝑥 ∈ ∅ ∧ ∃!𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | ||
| Theorem | epelon2 43517 | Over the ordinal numbers, one may define the relation 𝐴 E 𝐵 iff 𝐴 ∈ 𝐵 and one finds that, under this ordering, On is a well-ordered class, see epweon 7754. This is a weak form of epelg 5542 which only requires that we know 𝐵 to be a set. (Contributed by RP, 27-Sep-2023.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | ||
| Theorem | ontric3g 43518* | For all 𝑥, 𝑦 ∈ On, one and only one of the following hold: 𝑥 ∈ 𝑦, 𝑦 = 𝑥, or 𝑦 ∈ 𝑥. This is a transparent strict trichotomy. (Contributed by RP, 27-Sep-2023.) |
| ⊢ ∀𝑥 ∈ On ∀𝑦 ∈ On ((𝑥 ∈ 𝑦 ↔ ¬ (𝑦 = 𝑥 ∨ 𝑦 ∈ 𝑥)) ∧ (𝑦 = 𝑥 ↔ ¬ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥)) ∧ (𝑦 ∈ 𝑥 ↔ ¬ (𝑥 ∈ 𝑦 ∨ 𝑦 = 𝑥))) | ||
| Theorem | dfsucon 43519* | 𝐴 is called a successor ordinal if it is not a limit ordinal and not the empty set. (Contributed by RP, 11-Nov-2023.) |
| ⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) ↔ ∃𝑥 ∈ On 𝐴 = suc 𝑥) | ||
| Theorem | snen1g 43520 | A singleton is equinumerous to ordinal one iff its content is a set. (Contributed by RP, 8-Oct-2023.) |
| ⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ V) | ||
| Theorem | snen1el 43521 | A singleton is equinumerous to ordinal one if its content is an element of it. (Contributed by RP, 8-Oct-2023.) |
| ⊢ ({𝐴} ≈ 1o ↔ 𝐴 ∈ {𝐴}) | ||
| Theorem | sn1dom 43522 | A singleton is dominated by ordinal one. (Contributed by RP, 29-Oct-2023.) |
| ⊢ {𝐴} ≼ 1o | ||
| Theorem | pr2dom 43523 | An unordered pair is dominated by ordinal two. (Contributed by RP, 29-Oct-2023.) |
| ⊢ {𝐴, 𝐵} ≼ 2o | ||
| Theorem | tr3dom 43524 | An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.) |
| ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o | ||
| Theorem | ensucne0 43525 | A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof shortened by SN, 16-Nov-2023.) |
| ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) | ||
| Theorem | ensucne0OLD 43526 | A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) | ||
| Theorem | dfom6 43527 | Let ω be defined to be the union of the set of all finite ordinals. (Contributed by RP, 27-Sep-2023.) |
| ⊢ ω = ∪ (On ∩ Fin) | ||
| Theorem | infordmin 43528 | ω is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023.) |
| ⊢ ∀𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥 | ||
| Theorem | iscard4 43529 | Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
| ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ ran card) | ||
| Theorem | minregex 43530* | Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of ℵ which is greater to or equal to 𝐴. This proof uses AC. (Contributed by RP, 23-Nov-2023.) |
| ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) | ||
| Theorem | minregex2 43531* | Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of ℵ which dominates 𝐴. This proof uses AC. (Contributed by RP, 24-Nov-2023.) |
| ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) | ||
| Theorem | iscard5 43532* | Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
| ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) | ||
| Theorem | elrncard 43533* | Let us define a cardinal number to be an element 𝐴 ∈ On such that 𝐴 is not equipotent with any 𝑥 ∈ 𝐴. (Contributed by RP, 1-Oct-2023.) |
| ⊢ (𝐴 ∈ ran card ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) | ||
| Theorem | harval3 43534* | (har‘𝐴) is the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.) |
| ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ ran card ∣ 𝐴 ≺ 𝑥}) | ||
| Theorem | harval3on 43535* | For any ordinal number 𝐴 let (har‘𝐴) denote the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.) |
| ⊢ (𝐴 ∈ On → (har‘𝐴) = ∩ {𝑥 ∈ ran card ∣ 𝐴 ≺ 𝑥}) | ||
| Theorem | omssrncard 43536 | All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.) |
| ⊢ ω ⊆ ran card | ||
| Theorem | 0iscard 43537 | 0 is a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| ⊢ ∅ ∈ ran card | ||
| Theorem | 1iscard 43538 | 1 is a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| ⊢ 1o ∈ ran card | ||
| Theorem | omiscard 43539 | ω is a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| ⊢ ω ∈ ran card | ||
| Theorem | sucomisnotcard 43540 | ω +o 1o is not a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| ⊢ ¬ (ω +o 1o) ∈ ran card | ||
| Theorem | nna1iscard 43541 | For any natural number, the add one operation is results in a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| ⊢ (𝑁 ∈ ω → (𝑁 +o 1o) ∈ ran card) | ||
| Theorem | har2o 43542 | The least cardinal greater than 2 is 3. (Contributed by RP, 5-Nov-2023.) |
| ⊢ (har‘2o) = 3o | ||
| Theorem | en2pr 43543* | A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023.) |
| ⊢ (𝐴 ≈ 2o ↔ ∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) | ||
| Theorem | pr2cv 43544 | If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | pr2el1 43545 | If an unordered pair is equinumerous to ordinal two, then a part is a member. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ {𝐴, 𝐵}) | ||
| Theorem | pr2cv1 43546 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ V) | ||
| Theorem | pr2el2 43547 | If an unordered pair is equinumerous to ordinal two, then a part is a member. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ {𝐴, 𝐵}) | ||
| Theorem | pr2cv2 43548 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ V) | ||
| Theorem | pren2 43549 | An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) | ||
| Theorem | pr2eldif1 43550 | If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵})) | ||
| Theorem | pr2eldif2 43551 | If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴})) | ||
| Theorem | pren2d 43552 | A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) | ||
| Theorem | aleph1min 43553 | (ℵ‘1o) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023.) |
| ⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} | ||
| Theorem | alephiso2 43554 | ℵ is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.) |
| ⊢ ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) | ||
| Theorem | alephiso3 43555 | ℵ is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.) |
| ⊢ ℵ Isom E , ≺ (On, (ran card ∖ ω)) | ||
| Theorem | pwelg 43556* | The powerclass is an element of a class closed under union and powerclass operations iff the element is a member of that class. (Contributed by RP, 21-Mar-2020.) |
| ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) | ||
| Theorem | pwinfig 43557* | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝐵 is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020.) |
| ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin))) | ||
| Theorem | pwinfi2 43558 | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑈 is a weak universe. (Contributed by RP, 21-Mar-2020.) |
| ⊢ (𝑈 ∈ WUni → (𝐴 ∈ (𝑈 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑈 ∖ Fin))) | ||
| Theorem | pwinfi3 43559 | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑇 is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020.) |
| ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin))) | ||
| Theorem | pwinfi 43560 | The powerclass of an infinite set is an infinite set, and vice-versa. (Contributed by RP, 21-Mar-2020.) |
| ⊢ (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin)) | ||
While there is not yet a definition, the finite intersection property of a class is introduced by fiint 9284 where two textbook definitions are shown to be equivalent. This property is seen often with ordinal numbers (onin 6366, ordelinel 6438), chains of sets ordered by the proper subset relation (sorpssin 7710), various sets in the field of topology (inopn 22793, incld 22937, innei 23019, ... ) and "universal" classes like weak universes (wunin 10673, tskin 10719) and the class of all sets (inex1g 5277). | ||
| Theorem | fipjust 43561* | A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by RP, 1-Jan-2020.) |
| ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 ∩ 𝑣) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) | ||
| Theorem | cllem0 43562* | The class of all sets with property 𝜑(𝑧) is closed under the binary operation on sets defined in 𝑅(𝑥, 𝑦). (Contributed by RP, 3-Jan-2020.) |
| ⊢ 𝑉 = {𝑧 ∣ 𝜑} & ⊢ 𝑅 ∈ 𝑈 & ⊢ (𝑧 = 𝑅 → (𝜑 ↔ 𝜓)) & ⊢ (𝑧 = 𝑥 → (𝜑 ↔ 𝜒)) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ ((𝜒 ∧ 𝜃) → 𝜓) ⇒ ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 | ||
| Theorem | superficl 43563* | The class of all supersets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
| Theorem | superuncl 43564* | The class of all supersets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 | ||
| Theorem | ssficl 43565* | The class of all subsets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
| Theorem | ssuncl 43566* | The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 | ||
| Theorem | ssdifcl 43567* | The class of all subsets of a class is closed under class difference. (Contributed by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∖ 𝑦) ∈ 𝐴 | ||
| Theorem | sssymdifcl 43568* | The class of all subsets of a class is closed under symmetric difference. (Contributed by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ∈ 𝐴 | ||
| Theorem | fiinfi 43569* | If two classes have the finite intersection property, then so does their intersection. (Contributed by RP, 1-Jan-2020.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥 ∩ 𝑦) ∈ 𝐶) | ||
| Theorem | rababg 43570 | Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020.) |
| ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ 𝜑}) | ||
| Theorem | elinintab 43571* | Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
| ⊢ (𝐴 ∈ (𝐵 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
| Theorem | elmapintrab 43572* | Two ways to say a set is an element of the intersection of a class of images. (Contributed by RP, 16-Aug-2020.) |
| ⊢ 𝐶 ∈ V & ⊢ 𝐶 ⊆ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = 𝐶 ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶)))) | ||
| Theorem | elinintrab 43573* | Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 14-Aug-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)))) | ||
| Theorem | inintabss 43574* | Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
| ⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} | ||
| Theorem | inintabd 43575* | Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020.) |
| ⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) | ||
| Theorem | xpinintabd 43576* | Value of the intersection of Cartesian product with the intersection of a nonempty class. (Contributed by RP, 12-Aug-2020.) |
| ⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ((𝐴 × 𝐵) ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)}) | ||
| Theorem | relintabex 43577 | If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.) |
| ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) | ||
| Theorem | elcnvcnvintab 43578* | Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
| ⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
| Theorem | relintab 43579* | Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.) |
| ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) | ||
| Theorem | nonrel 43580 | A non-relation is equal to the base class with all ordered pairs removed. (Contributed by RP, 25-Oct-2020.) |
| ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) | ||
| Theorem | elnonrel 43581 | Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.) |
| ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) | ||
| Theorem | cnvssb 43582 | Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.) |
| ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ◡𝐴 ⊆ ◡𝐵)) | ||
| Theorem | relnonrel 43583 | The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ (Rel 𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) | ||
| Theorem | cnvnonrel 43584 | The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.) |
| ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | ||
| Theorem | brnonrel 43585 | A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020.) |
| ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) | ||
| Theorem | dmnonrel 43586 | The domain of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ dom (𝐴 ∖ ◡◡𝐴) = ∅ | ||
| Theorem | rnnonrel 43587 | The range of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ ran (𝐴 ∖ ◡◡𝐴) = ∅ | ||
| Theorem | resnonrel 43588 | A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ | ||
| Theorem | imanonrel 43589 | An image under the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ ((𝐴 ∖ ◡◡𝐴) “ 𝐵) = ∅ | ||
| Theorem | cononrel1 43590 | Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ | ||
| Theorem | cononrel2 43591 | Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ | ||
See also idssxp 6023 by Thierry Arnoux. | ||
| Theorem | elmapintab 43592* | Two ways to say a set is an element of mapped intersection of a class. Here 𝐹 maps elements of 𝐶 to elements of ∩ {𝑥 ∣ 𝜑} or 𝑥. (Contributed by RP, 19-Aug-2020.) |
| ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) & ⊢ (𝐴 ∈ 𝐸 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ 𝑥)) ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) | ||
| Theorem | fvnonrel 43593 | The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.) |
| ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ | ||
| Theorem | elinlem 43594 | Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020.) |
| ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ( I ‘𝐴) ∈ 𝐶)) | ||
| Theorem | elcnvcnvlem 43595 | Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.) |
| ⊢ (𝐴 ∈ ◡◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) | ||
Original probably needs new subsection for Relation-related existence theorems. | ||
| Theorem | cnvcnvintabd 43596* | Value of the relationship content of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
| ⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ◡◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜓)}) | ||
| Theorem | elcnvlem 43597 | Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) ⇒ ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) | ||
| Theorem | elcnvintab 43598* | Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020.) |
| ⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ ◡𝑥))) | ||
| Theorem | cnvintabd 43599* | Value of the converse of the intersection of a nonempty class. (Contributed by RP, 20-Aug-2020.) |
| ⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) | ||
| Theorem | undmrnresiss 43600* | Two ways of saying the identity relation restricted to the union of the domain and range of a relation is a subset of a relation. Generalization of reflexg 43601. (Contributed by RP, 26-Sep-2020.) |
| ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |