| Metamath
Proof Explorer Theorem List (p. 436 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | tr3dom 43501 | An unordered triple is dominated by ordinal three. (Contributed by RP, 29-Oct-2023.) |
| ⊢ {𝐴, 𝐵, 𝐶} ≼ 3o | ||
| Theorem | ensucne0 43502 | A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof shortened by SN, 16-Nov-2023.) |
| ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) | ||
| Theorem | ensucne0OLD 43503 | A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) | ||
| Theorem | dfom6 43504 | Let ω be defined to be the union of the set of all finite ordinals. (Contributed by RP, 27-Sep-2023.) |
| ⊢ ω = ∪ (On ∩ Fin) | ||
| Theorem | infordmin 43505 | ω is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023.) |
| ⊢ ∀𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥 | ||
| Theorem | iscard4 43506 | Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
| ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ ran card) | ||
| Theorem | minregex 43507* | Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of ℵ which is greater to or equal to 𝐴. This proof uses AC. (Contributed by RP, 23-Nov-2023.) |
| ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) | ||
| Theorem | minregex2 43508* | Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of ℵ which dominates 𝐴. This proof uses AC. (Contributed by RP, 24-Nov-2023.) |
| ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) | ||
| Theorem | iscard5 43509* | Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023.) |
| ⊢ ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) | ||
| Theorem | elrncard 43510* | Let us define a cardinal number to be an element 𝐴 ∈ On such that 𝐴 is not equipotent with any 𝑥 ∈ 𝐴. (Contributed by RP, 1-Oct-2023.) |
| ⊢ (𝐴 ∈ ran card ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ≈ 𝐴)) | ||
| Theorem | harval3 43511* | (har‘𝐴) is the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.) |
| ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ ran card ∣ 𝐴 ≺ 𝑥}) | ||
| Theorem | harval3on 43512* | For any ordinal number 𝐴 let (har‘𝐴) denote the least cardinal that is greater than 𝐴. (Contributed by RP, 4-Nov-2023.) |
| ⊢ (𝐴 ∈ On → (har‘𝐴) = ∩ {𝑥 ∈ ran card ∣ 𝐴 ≺ 𝑥}) | ||
| Theorem | omssrncard 43513 | All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.) |
| ⊢ ω ⊆ ran card | ||
| Theorem | 0iscard 43514 | 0 is a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| ⊢ ∅ ∈ ran card | ||
| Theorem | 1iscard 43515 | 1 is a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| ⊢ 1o ∈ ran card | ||
| Theorem | omiscard 43516 | ω is a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| ⊢ ω ∈ ran card | ||
| Theorem | sucomisnotcard 43517 | ω +o 1o is not a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| ⊢ ¬ (ω +o 1o) ∈ ran card | ||
| Theorem | nna1iscard 43518 | For any natural number, the add one operation is results in a cardinal number. (Contributed by RP, 1-Oct-2023.) |
| ⊢ (𝑁 ∈ ω → (𝑁 +o 1o) ∈ ran card) | ||
| Theorem | har2o 43519 | The least cardinal greater than 2 is 3. (Contributed by RP, 5-Nov-2023.) |
| ⊢ (har‘2o) = 3o | ||
| Theorem | en2pr 43520* | A class is equinumerous to ordinal two iff it is a pair of distinct sets. (Contributed by RP, 11-Oct-2023.) |
| ⊢ (𝐴 ≈ 2o ↔ ∃𝑥∃𝑦(𝐴 = {𝑥, 𝑦} ∧ 𝑥 ≠ 𝑦)) | ||
| Theorem | pr2cv 43521 | If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
| Theorem | pr2el1 43522 | If an unordered pair is equinumerous to ordinal two, then a part is a member. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ {𝐴, 𝐵}) | ||
| Theorem | pr2cv1 43523 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ V) | ||
| Theorem | pr2el2 43524 | If an unordered pair is equinumerous to ordinal two, then a part is a member. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ {𝐴, 𝐵}) | ||
| Theorem | pr2cv2 43525 | If an unordered pair is equinumerous to ordinal two, then a part is a set. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ V) | ||
| Theorem | pren2 43526 | An unordered pair is equinumerous to ordinal two iff both parts are sets not equal to each other. (Contributed by RP, 8-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) | ||
| Theorem | pr2eldif1 43527 | If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐴 ∈ ({𝐴, 𝐵} ∖ {𝐵})) | ||
| Theorem | pr2eldif2 43528 | If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
| ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴})) | ||
| Theorem | pren2d 43529 | A pair of two distinct sets is equinumerous to ordinal two. (Contributed by RP, 21-Oct-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) | ||
| Theorem | aleph1min 43530 | (ℵ‘1o) is the least uncountable ordinal. (Contributed by RP, 18-Nov-2023.) |
| ⊢ (ℵ‘1o) = ∩ {𝑥 ∈ On ∣ ω ≺ 𝑥} | ||
| Theorem | alephiso2 43531 | ℵ is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.) |
| ⊢ ℵ Isom E , ≺ (On, {𝑥 ∈ ran card ∣ ω ⊆ 𝑥}) | ||
| Theorem | alephiso3 43532 | ℵ is a strictly order-preserving mapping of On onto the class of all infinite cardinal numbers. (Contributed by RP, 18-Nov-2023.) |
| ⊢ ℵ Isom E , ≺ (On, (ran card ∖ ω)) | ||
| Theorem | pwelg 43533* | The powerclass is an element of a class closed under union and powerclass operations iff the element is a member of that class. (Contributed by RP, 21-Mar-2020.) |
| ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) | ||
| Theorem | pwinfig 43534* | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝐵 is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020.) |
| ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin))) | ||
| Theorem | pwinfi2 43535 | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑈 is a weak universe. (Contributed by RP, 21-Mar-2020.) |
| ⊢ (𝑈 ∈ WUni → (𝐴 ∈ (𝑈 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑈 ∖ Fin))) | ||
| Theorem | pwinfi3 43536 | The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝑇 is a transitive Tarski universe. (Contributed by RP, 21-Mar-2020.) |
| ⊢ ((𝑇 ∈ Tarski ∧ Tr 𝑇) → (𝐴 ∈ (𝑇 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝑇 ∖ Fin))) | ||
| Theorem | pwinfi 43537 | The powerclass of an infinite set is an infinite set, and vice-versa. (Contributed by RP, 21-Mar-2020.) |
| ⊢ (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin)) | ||
While there is not yet a definition, the finite intersection property of a class is introduced by fiint 9235 where two textbook definitions are shown to be equivalent. This property is seen often with ordinal numbers (onin 6342, ordelinel 6414), chains of sets ordered by the proper subset relation (sorpssin 7671), various sets in the field of topology (inopn 22802, incld 22946, innei 23028, ... ) and "universal" classes like weak universes (wunin 10626, tskin 10672) and the class of all sets (inex1g 5261). | ||
| Theorem | fipjust 43538* | A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by RP, 1-Jan-2020.) |
| ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 ∩ 𝑣) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) | ||
| Theorem | cllem0 43539* | The class of all sets with property 𝜑(𝑧) is closed under the binary operation on sets defined in 𝑅(𝑥, 𝑦). (Contributed by RP, 3-Jan-2020.) |
| ⊢ 𝑉 = {𝑧 ∣ 𝜑} & ⊢ 𝑅 ∈ 𝑈 & ⊢ (𝑧 = 𝑅 → (𝜑 ↔ 𝜓)) & ⊢ (𝑧 = 𝑥 → (𝜑 ↔ 𝜒)) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ ((𝜒 ∧ 𝜃) → 𝜓) ⇒ ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 | ||
| Theorem | superficl 43540* | The class of all supersets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
| Theorem | superuncl 43541* | The class of all supersets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ 𝐵 ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 | ||
| Theorem | ssficl 43542* | The class of all subsets of a class has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
| Theorem | ssuncl 43543* | The class of all subsets of a class is closed under binary union. (Contributed by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∪ 𝑦) ∈ 𝐴 | ||
| Theorem | ssdifcl 43544* | The class of all subsets of a class is closed under class difference. (Contributed by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∖ 𝑦) ∈ 𝐴 | ||
| Theorem | sssymdifcl 43545* | The class of all subsets of a class is closed under symmetric difference. (Contributed by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ 𝑧 ⊆ 𝐵} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥 ∖ 𝑦) ∪ (𝑦 ∖ 𝑥)) ∈ 𝐴 | ||
| Theorem | fiinfi 43546* | If two classes have the finite intersection property, then so does their intersection. (Contributed by RP, 1-Jan-2020.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 (𝑥 ∩ 𝑦) ∈ 𝐶) | ||
| Theorem | rababg 43547 | Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020.) |
| ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ 𝜑}) | ||
| Theorem | elinintab 43548* | Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
| ⊢ (𝐴 ∈ (𝐵 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
| Theorem | elmapintrab 43549* | Two ways to say a set is an element of the intersection of a class of images. (Contributed by RP, 16-Aug-2020.) |
| ⊢ 𝐶 ∈ V & ⊢ 𝐶 ⊆ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = 𝐶 ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶)))) | ||
| Theorem | elinintrab 43550* | Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 14-Aug-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)))) | ||
| Theorem | inintabss 43551* | Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
| ⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} | ||
| Theorem | inintabd 43552* | Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020.) |
| ⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) | ||
| Theorem | xpinintabd 43553* | Value of the intersection of Cartesian product with the intersection of a nonempty class. (Contributed by RP, 12-Aug-2020.) |
| ⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ((𝐴 × 𝐵) ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)}) | ||
| Theorem | relintabex 43554 | If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.) |
| ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) | ||
| Theorem | elcnvcnvintab 43555* | Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
| ⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | ||
| Theorem | relintab 43556* | Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.) |
| ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) | ||
| Theorem | nonrel 43557 | A non-relation is equal to the base class with all ordered pairs removed. (Contributed by RP, 25-Oct-2020.) |
| ⊢ (𝐴 ∖ ◡◡𝐴) = (𝐴 ∖ (V × V)) | ||
| Theorem | elnonrel 43558 | Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020.) |
| ⊢ (〈𝑋, 𝑌〉 ∈ (𝐴 ∖ ◡◡𝐴) ↔ (∅ ∈ 𝐴 ∧ ¬ (𝑋 ∈ V ∧ 𝑌 ∈ V))) | ||
| Theorem | cnvssb 43559 | Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.) |
| ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ◡𝐴 ⊆ ◡𝐵)) | ||
| Theorem | relnonrel 43560 | The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ (Rel 𝐴 ↔ (𝐴 ∖ ◡◡𝐴) = ∅) | ||
| Theorem | cnvnonrel 43561 | The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020.) |
| ⊢ ◡(𝐴 ∖ ◡◡𝐴) = ∅ | ||
| Theorem | brnonrel 43562 | A non-relation cannot relate any two classes. (Contributed by RP, 23-Oct-2020.) |
| ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → ¬ 𝑋(𝐴 ∖ ◡◡𝐴)𝑌) | ||
| Theorem | dmnonrel 43563 | The domain of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ dom (𝐴 ∖ ◡◡𝐴) = ∅ | ||
| Theorem | rnnonrel 43564 | The range of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ ran (𝐴 ∖ ◡◡𝐴) = ∅ | ||
| Theorem | resnonrel 43565 | A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ ((𝐴 ∖ ◡◡𝐴) ↾ 𝐵) = ∅ | ||
| Theorem | imanonrel 43566 | An image under the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ ((𝐴 ∖ ◡◡𝐴) “ 𝐵) = ∅ | ||
| Theorem | cononrel1 43567 | Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ ((𝐴 ∖ ◡◡𝐴) ∘ 𝐵) = ∅ | ||
| Theorem | cononrel2 43568 | Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| ⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ | ||
See also idssxp 6004 by Thierry Arnoux. | ||
| Theorem | elmapintab 43569* | Two ways to say a set is an element of mapped intersection of a class. Here 𝐹 maps elements of 𝐶 to elements of ∩ {𝑥 ∣ 𝜑} or 𝑥. (Contributed by RP, 19-Aug-2020.) |
| ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) & ⊢ (𝐴 ∈ 𝐸 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ 𝑥)) ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) | ||
| Theorem | fvnonrel 43570 | The function value of any class under a non-relation is empty. (Contributed by RP, 23-Oct-2020.) |
| ⊢ ((𝐴 ∖ ◡◡𝐴)‘𝑋) = ∅ | ||
| Theorem | elinlem 43571 | Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020.) |
| ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ( I ‘𝐴) ∈ 𝐶)) | ||
| Theorem | elcnvcnvlem 43572 | Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.) |
| ⊢ (𝐴 ∈ ◡◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) | ||
Original probably needs new subsection for Relation-related existence theorems. | ||
| Theorem | cnvcnvintabd 43573* | Value of the relationship content of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
| ⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ◡◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜓)}) | ||
| Theorem | elcnvlem 43574 | Two ways to say a set is a member of the converse of a class. (Contributed by RP, 19-Aug-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ (V × V) ↦ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) ⇒ ⊢ (𝐴 ∈ ◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ (𝐹‘𝐴) ∈ 𝐵)) | ||
| Theorem | elcnvintab 43575* | Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020.) |
| ⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ ◡𝑥))) | ||
| Theorem | cnvintabd 43576* | Value of the converse of the intersection of a nonempty class. (Contributed by RP, 20-Aug-2020.) |
| ⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) | ||
| Theorem | undmrnresiss 43577* | Two ways of saying the identity relation restricted to the union of the domain and range of a relation is a subset of a relation. Generalization of reflexg 43578. (Contributed by RP, 26-Sep-2020.) |
| ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐵 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐵𝑥 ∧ 𝑦𝐵𝑦))) | ||
| Theorem | reflexg 43578* | Two ways of saying a relation is reflexive over its domain and range. (Contributed by RP, 4-Aug-2020.) |
| ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦))) | ||
| Theorem | cnvssco 43579* | A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.) |
| ⊢ (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦))) | ||
| Theorem | refimssco 43580 | Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.) |
| ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) | ||
| Theorem | cleq2lem 43581 | Equality implies bijection. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ 𝜑) ↔ (𝑅 ⊆ 𝐵 ∧ 𝜓))) | ||
| Theorem | cbvcllem 43582* | Change of bound variable in class of supersets of a with a property. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜑)} = {𝑦 ∣ (𝑋 ⊆ 𝑦 ∧ 𝜓)} | ||
| Theorem | clublem 43583* | If a superset 𝑌 of 𝑋 possesses the property parameterized in 𝑥 in 𝜓, then 𝑌 is a superset of the closure of that property for the set 𝑋. (Contributed by RP, 23-Jul-2020.) |
| ⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝑥 = 𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) | ||
| Theorem | clss2lem 43584* | The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝜑 → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) | ||
| Theorem | dfid7 43585* | Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020.) |
| ⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) | ||
| Theorem | mptrcllem 43586* | Show two versions of a closure with reflexive properties are equal. (Contributed by RP, 19-Oct-2020.) |
| ⊢ (𝑥 ∈ 𝑉 → ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V) & ⊢ (𝑥 ∈ 𝑉 → ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} ∈ V) & ⊢ (𝑥 ∈ 𝑉 → 𝜒) & ⊢ (𝑥 ∈ 𝑉 → 𝜃) & ⊢ (𝑥 ∈ 𝑉 → 𝜏) & ⊢ (𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ 𝜃)) & ⊢ (𝑧 = ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → (𝜓 ↔ 𝜏)) ⇒ ⊢ (𝑥 ∈ 𝑉 ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) = (𝑥 ∈ 𝑉 ↦ ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) | ||
| Theorem | cotrintab 43587 | The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020.) |
| ⊢ (𝜑 → (𝑥 ∘ 𝑥) ⊆ 𝑥) ⇒ ⊢ (∩ {𝑥 ∣ 𝜑} ∘ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑥 ∣ 𝜑} | ||
| Theorem | rclexi 43588* | The reflexive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
| ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V | ||
| Theorem | rtrclexlem 43589 | Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) | ||
| Theorem | rtrclex 43590* | The reflexive-transitive closure of a set exists. (Contributed by RP, 1-Nov-2020.) |
| ⊢ (𝐴 ∈ V ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V) | ||
| Theorem | trclubgNEW 43591* | If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | ||
| Theorem | trclubNEW 43592* | If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) | ||
| Theorem | trclexi 43593* | The transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
| ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V | ||
| Theorem | rtrclexi 43594* | The reflexive-transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
| ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V | ||
| Theorem | clrellem 43595* | When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.) |
| ⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝜑 → Rel 𝑋) & ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | ||
| Theorem | clcnvlem 43596* | When 𝐴, an upper bound of the closure, exists and certain substitutions hold the converse of the closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (𝜒 → 𝜓)) & ⊢ ((𝜑 ∧ 𝑦 = ◡𝑥) → (𝜓 → 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)}) | ||
| Theorem | cnvtrucl0 43597* | The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) | ||
| Theorem | cnvrcl0 43598* | The converse of the reflexive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)}) | ||
| Theorem | cnvtrcl0 43599* | The converse of the transitive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦)}) | ||
| Theorem | dmtrcl 43600* | The domain of the transitive closure is equal to the domain of its base relation. (Contributed by RP, 1-Nov-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = dom 𝑋) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |