Detailed syntax breakdown of Definition df-lkr
| Step | Hyp | Ref
| Expression |
| 1 | | clk 39086 |
. 2
class
LKer |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vf |
. . . 4
setvar 𝑓 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑤 |
| 6 | | clfn 39058 |
. . . . 5
class
LFnl |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(LFnl‘𝑤) |
| 8 | 4 | cv 1539 |
. . . . . 6
class 𝑓 |
| 9 | 8 | ccnv 5684 |
. . . . 5
class ◡𝑓 |
| 10 | | csca 17300 |
. . . . . . . 8
class
Scalar |
| 11 | 5, 10 | cfv 6561 |
. . . . . . 7
class
(Scalar‘𝑤) |
| 12 | | c0g 17484 |
. . . . . . 7
class
0g |
| 13 | 11, 12 | cfv 6561 |
. . . . . 6
class
(0g‘(Scalar‘𝑤)) |
| 14 | 13 | csn 4626 |
. . . . 5
class
{(0g‘(Scalar‘𝑤))} |
| 15 | 9, 14 | cima 5688 |
. . . 4
class (◡𝑓 “
{(0g‘(Scalar‘𝑤))}) |
| 16 | 4, 7, 15 | cmpt 5225 |
. . 3
class (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “
{(0g‘(Scalar‘𝑤))})) |
| 17 | 2, 3, 16 | cmpt 5225 |
. 2
class (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “
{(0g‘(Scalar‘𝑤))}))) |
| 18 | 1, 17 | wceq 1540 |
1
wff LKer =
(𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “
{(0g‘(Scalar‘𝑤))}))) |