Step | Hyp | Ref
| Expression |
1 | | clk 37944 |
. 2
class
LKer |
2 | | vw |
. . 3
setvar π€ |
3 | | cvv 3475 |
. . 3
class
V |
4 | | vf |
. . . 4
setvar π |
5 | 2 | cv 1541 |
. . . . 5
class π€ |
6 | | clfn 37916 |
. . . . 5
class
LFnl |
7 | 5, 6 | cfv 6541 |
. . . 4
class
(LFnlβπ€) |
8 | 4 | cv 1541 |
. . . . . 6
class π |
9 | 8 | ccnv 5675 |
. . . . 5
class β‘π |
10 | | csca 17197 |
. . . . . . . 8
class
Scalar |
11 | 5, 10 | cfv 6541 |
. . . . . . 7
class
(Scalarβπ€) |
12 | | c0g 17382 |
. . . . . . 7
class
0g |
13 | 11, 12 | cfv 6541 |
. . . . . 6
class
(0gβ(Scalarβπ€)) |
14 | 13 | csn 4628 |
. . . . 5
class
{(0gβ(Scalarβπ€))} |
15 | 9, 14 | cima 5679 |
. . . 4
class (β‘π β
{(0gβ(Scalarβπ€))}) |
16 | 4, 7, 15 | cmpt 5231 |
. . 3
class (π β (LFnlβπ€) β¦ (β‘π β
{(0gβ(Scalarβπ€))})) |
17 | 2, 3, 16 | cmpt 5231 |
. 2
class (π€ β V β¦ (π β (LFnlβπ€) β¦ (β‘π β
{(0gβ(Scalarβπ€))}))) |
18 | 1, 17 | wceq 1542 |
1
wff LKer =
(π€ β V β¦ (π β (LFnlβπ€) β¦ (β‘π β
{(0gβ(Scalarβπ€))}))) |