Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lkr Structured version   Visualization version   GIF version

Definition df-lkr 37945
Description: Define the kernel of a functional (set of vectors whose functional value is zero) on a left module or left vector space. (Contributed by NM, 15-Apr-2014.)
Assertion
Ref Expression
df-lkr LKer = (𝑀 ∈ V ↦ (𝑓 ∈ (LFnlβ€˜π‘€) ↦ (◑𝑓 β€œ {(0gβ€˜(Scalarβ€˜π‘€))})))
Distinct variable group:   𝑀,𝑓

Detailed syntax breakdown of Definition df-lkr
StepHypRef Expression
1 clk 37944 . 2 class LKer
2 vw . . 3 setvar 𝑀
3 cvv 3475 . . 3 class V
4 vf . . . 4 setvar 𝑓
52cv 1541 . . . . 5 class 𝑀
6 clfn 37916 . . . . 5 class LFnl
75, 6cfv 6541 . . . 4 class (LFnlβ€˜π‘€)
84cv 1541 . . . . . 6 class 𝑓
98ccnv 5675 . . . . 5 class ◑𝑓
10 csca 17197 . . . . . . . 8 class Scalar
115, 10cfv 6541 . . . . . . 7 class (Scalarβ€˜π‘€)
12 c0g 17382 . . . . . . 7 class 0g
1311, 12cfv 6541 . . . . . 6 class (0gβ€˜(Scalarβ€˜π‘€))
1413csn 4628 . . . . 5 class {(0gβ€˜(Scalarβ€˜π‘€))}
159, 14cima 5679 . . . 4 class (◑𝑓 β€œ {(0gβ€˜(Scalarβ€˜π‘€))})
164, 7, 15cmpt 5231 . . 3 class (𝑓 ∈ (LFnlβ€˜π‘€) ↦ (◑𝑓 β€œ {(0gβ€˜(Scalarβ€˜π‘€))}))
172, 3, 16cmpt 5231 . 2 class (𝑀 ∈ V ↦ (𝑓 ∈ (LFnlβ€˜π‘€) ↦ (◑𝑓 β€œ {(0gβ€˜(Scalarβ€˜π‘€))})))
181, 17wceq 1542 1 wff LKer = (𝑀 ∈ V ↦ (𝑓 ∈ (LFnlβ€˜π‘€) ↦ (◑𝑓 β€œ {(0gβ€˜(Scalarβ€˜π‘€))})))
Colors of variables: wff setvar class
This definition is referenced by:  lkrfval  37946
  Copyright terms: Public domain W3C validator