| Metamath
Proof Explorer Theorem List (p. 381 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | crisc 38001 | Extend class notation with the ring isomorphism relation. |
| class ≃𝑟 | ||
| Definition | df-rngohom 38002* | Define the function which gives the set of ring homomorphisms between two given rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| ⊢ RingOpsHom = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (ran (1st ‘𝑠) ↑m ran (1st ‘𝑟)) ∣ ((𝑓‘(GId‘(2nd ‘𝑟))) = (GId‘(2nd ‘𝑠)) ∧ ∀𝑥 ∈ ran (1st ‘𝑟)∀𝑦 ∈ ran (1st ‘𝑟)((𝑓‘(𝑥(1st ‘𝑟)𝑦)) = ((𝑓‘𝑥)(1st ‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(2nd ‘𝑟)𝑦)) = ((𝑓‘𝑥)(2nd ‘𝑠)(𝑓‘𝑦))))}) | ||
| Theorem | rngohomval 38003* | The set of ring homomorphisms. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐻) & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝐾 = (2nd ‘𝑆) & ⊢ 𝑌 = ran 𝐽 & ⊢ 𝑉 = (GId‘𝐾) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RingOpsHom 𝑆) = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ((𝑓‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))))}) | ||
| Theorem | isrngohom 38004* | The predicate "is a ring homomorphism from 𝑅 to 𝑆". (Contributed by Jeff Madsen, 19-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐻) & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝐾 = (2nd ‘𝑆) & ⊢ 𝑌 = ran 𝐽 & ⊢ 𝑉 = (GId‘𝐾) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) | ||
| Theorem | rngohomf 38005 | A ring homomorphism is a function. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:𝑋⟶𝑌) | ||
| Theorem | rngohomcl 38006 | Closure law for a ring homomorphism. (Contributed by Jeff Madsen, 3-Jan-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ 𝑌) | ||
| Theorem | rngohom1 38007 | A ring homomorphism preserves 1. (Contributed by Jeff Madsen, 24-Jun-2011.) |
| ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑈 = (GId‘𝐻) & ⊢ 𝐾 = (2nd ‘𝑆) & ⊢ 𝑉 = (GId‘𝐾) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑈) = 𝑉) | ||
| Theorem | rngohomadd 38008 | Ring homomorphisms preserve addition. (Contributed by Jeff Madsen, 3-Jan-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐺𝐵)) = ((𝐹‘𝐴)𝐽(𝐹‘𝐵))) | ||
| Theorem | rngohommul 38009 | Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝐾 = (2nd ‘𝑆) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) | ||
| Theorem | rngogrphom 38010 | A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐽 = (1st ‘𝑆) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) | ||
| Theorem | rngohom0 38011 | A ring homomorphism preserves 0. (Contributed by Jeff Madsen, 2-Jan-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑊 = (GId‘𝐽) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑍) = 𝑊) | ||
| Theorem | rngohomsub 38012 | Ring homomorphisms preserve subtraction. (Contributed by Jeff Madsen, 15-Jun-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐻 = ( /𝑔 ‘𝐺) & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝐾 = ( /𝑔 ‘𝐽) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐻𝐵)) = ((𝐹‘𝐴)𝐾(𝐹‘𝐵))) | ||
| Theorem | rngohomco 38013 | The composition of two ring homomorphisms is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsHom 𝑇))) → (𝐺 ∘ 𝐹) ∈ (𝑅 RingOpsHom 𝑇)) | ||
| Theorem | rngokerinj 38014 | A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑊 = (GId‘𝐺) & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 & ⊢ 𝑍 = (GId‘𝐽) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑍}) = {𝑊})) | ||
| Definition | df-rngoiso 38015* | Define the function which gives the set of ring isomorphisms between two given rings. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ RingOpsIso = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (𝑟 RingOpsHom 𝑠) ∣ 𝑓:ran (1st ‘𝑟)–1-1-onto→ran (1st ‘𝑠)}) | ||
| Theorem | rngoisoval 38016* | The set of ring isomorphisms. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RingOpsIso 𝑆) = {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) | ||
| Theorem | isrngoiso 38017 | The predicate "is a ring isomorphism between 𝑅 and 𝑆". (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌))) | ||
| Theorem | rngoiso1o 38018 | A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹:𝑋–1-1-onto→𝑌) | ||
| Theorem | rngoisohom 38019 | A ring isomorphism is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) | ||
| Theorem | rngoisocnv 38020 | The inverse of a ring isomorphism is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → ◡𝐹 ∈ (𝑆 RingOpsIso 𝑅)) | ||
| Theorem | rngoisoco 38021 | The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ∧ 𝐺 ∈ (𝑆 RingOpsIso 𝑇))) → (𝐺 ∘ 𝐹) ∈ (𝑅 RingOpsIso 𝑇)) | ||
| Definition | df-risc 38022* | Define the ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ ≃𝑟 = {〈𝑟, 𝑠〉 ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))} | ||
| Theorem | isriscg 38023* | The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))) | ||
| Theorem | isrisc 38024* | The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ 𝑅 ∈ V & ⊢ 𝑆 ∈ V ⇒ ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) | ||
| Theorem | risc 38025* | The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 ≃𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) | ||
| Theorem | risci 38026 | Determine that two rings are isomorphic. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝑅 ≃𝑟 𝑆) | ||
| Theorem | riscer 38027 | Ring isomorphism is an equivalence relation. (Contributed by Jeff Madsen, 16-Jun-2011.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ ≃𝑟 Er dom ≃𝑟 | ||
| Syntax | ccm2 38028 | Extend class notation with a class that adds commutativity to various flavors of rings. |
| class Com2 | ||
| Definition | df-com2 38029* | A device to add commutativity to various sorts of rings. I use ran 𝑔 because I suppose 𝑔 has a neutral element and therefore is onto. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.) |
| ⊢ Com2 = {〈𝑔, ℎ〉 ∣ ∀𝑎 ∈ ran 𝑔∀𝑏 ∈ ran 𝑔(𝑎ℎ𝑏) = (𝑏ℎ𝑎)} | ||
| Syntax | cfld 38030 | Extend class notation with the class of all fields. |
| class Fld | ||
| Definition | df-fld 38031 | Definition of a field. A field is a commutative division ring. (Contributed by FL, 6-Sep-2009.) (Revised by Jeff Madsen, 10-Jun-2010.) (New usage is discouraged.) |
| ⊢ Fld = (DivRingOps ∩ Com2) | ||
| Syntax | ccring 38032 | Extend class notation with the class of commutative rings. |
| class CRingOps | ||
| Definition | df-crngo 38033 | Define the class of commutative rings. (Contributed by Jeff Madsen, 8-Jun-2010.) |
| ⊢ CRingOps = (RingOps ∩ Com2) | ||
| Theorem | iscom2 38034* | A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009.) (New usage is discouraged.) |
| ⊢ ((𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑎 ∈ ran 𝐺∀𝑏 ∈ ran 𝐺(𝑎𝐻𝑏) = (𝑏𝐻𝑎))) | ||
| Theorem | iscrngo 38035 | The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.) |
| ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) | ||
| Theorem | iscrngo2 38036* | The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))) | ||
| Theorem | iscringd 38037* | Conditions that determine a commutative ring. (Contributed by Jeff Madsen, 20-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2013.) |
| ⊢ (𝜑 → 𝐺 ∈ AbelOp) & ⊢ (𝜑 → 𝑋 = ran 𝐺) & ⊢ (𝜑 → 𝐻:(𝑋 × 𝑋)⟶𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧))) & ⊢ (𝜑 → 𝑈 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑦𝐻𝑈) = 𝑦) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) ⇒ ⊢ (𝜑 → 〈𝐺, 𝐻〉 ∈ CRingOps) | ||
| Theorem | flddivrng 38038 | A field is a division ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps) | ||
| Theorem | crngorngo 38039 | A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) | ||
| Theorem | crngocom 38040 | The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) | ||
| Theorem | crngm23 38041 | Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) | ||
| Theorem | crngm4 38042 | Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷))) | ||
| Theorem | fldcrngo 38043 | A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010.) |
| ⊢ (𝐾 ∈ Fld → 𝐾 ∈ CRingOps) | ||
| Theorem | isfld2 38044 | The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps)) | ||
| Theorem | crngohomfo 38045 | The image of a homomorphism from a commutative ring is commutative. (Contributed by Jeff Madsen, 4-Jan-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐽 = (1st ‘𝑆) & ⊢ 𝑌 = ran 𝐽 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋–onto→𝑌)) → 𝑆 ∈ CRingOps) | ||
| Syntax | cidl 38046 | Extend class notation with the class of ideals. |
| class Idl | ||
| Syntax | cpridl 38047 | Extend class notation with the class of prime ideals. |
| class PrIdl | ||
| Syntax | cmaxidl 38048 | Extend class notation with the class of maximal ideals. |
| class MaxIdl | ||
| Definition | df-idl 38049* | Define the class of (two-sided) ideals of a ring 𝑅. A subset of 𝑅 is an ideal if it contains 0, is closed under addition, and is closed under multiplication on either side by any element of 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ Idl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ 𝒫 ran (1st ‘𝑟) ∣ ((GId‘(1st ‘𝑟)) ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥(1st ‘𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st ‘𝑟)((𝑧(2nd ‘𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd ‘𝑟)𝑧) ∈ 𝑖)))}) | ||
| Definition | df-pridl 38050* | Define the class of prime ideals of a ring 𝑅. A proper ideal 𝐼 of 𝑅 is prime if whenever 𝐴𝐵 ⊆ 𝐼 for ideals 𝐴 and 𝐵, either 𝐴 ⊆ 𝐼 or 𝐵 ⊆ 𝐼. The more familiar definition using elements rather than ideals is equivalent provided 𝑅 is commutative; see ispridl2 38077 and ispridlc 38109. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ PrIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
| Definition | df-maxidl 38051* | Define the class of maximal ideals of a ring 𝑅. A proper ideal is called maximal if it is maximal with respect to inclusion among proper ideals. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| ⊢ MaxIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))))}) | ||
| Theorem | idlval 38052* | The class of ideals of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → (Idl‘𝑅) = {𝑖 ∈ 𝒫 𝑋 ∣ (𝑍 ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥𝐺𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝑖 ∧ (𝑥𝐻𝑧) ∈ 𝑖)))}) | ||
| Theorem | isidl 38053* | The predicate "is an ideal of the ring 𝑅". (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) | ||
| Theorem | isidlc 38054* | The predicate "is an ideal of the commutative ring 𝑅". (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))) | ||
| Theorem | idlss 38055 | An ideal of 𝑅 is a subset of 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) | ||
| Theorem | idlcl 38056 | An element of an ideal is an element of the ring. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ 𝑋) | ||
| Theorem | idl0cl 38057 | An ideal contains 0. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑍 ∈ 𝐼) | ||
| Theorem | idladdcl 38058 | An ideal is closed under addition. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐺𝐵) ∈ 𝐼) | ||
| Theorem | idllmulcl 38059 | An ideal is closed under multiplication on the left. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐵𝐻𝐴) ∈ 𝐼) | ||
| Theorem | idlrmulcl 38060 | An ideal is closed under multiplication on the right. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼) | ||
| Theorem | idlnegcl 38061 | An ideal is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝐴 ∈ 𝐼) → (𝑁‘𝐴) ∈ 𝐼) | ||
| Theorem | idlsubcl 38062 | An ideal is closed under subtraction. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴 ∈ 𝐼 ∧ 𝐵 ∈ 𝐼)) → (𝐴𝐷𝐵) ∈ 𝐼) | ||
| Theorem | rngoidl 38063 | A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) | ||
| Theorem | 0idl 38064 | The set containing only 0 is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) | ||
| Theorem | 1idl 38065 | Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 ↔ 𝐼 = 𝑋)) | ||
| Theorem | 0rngo 38066 | In a ring, 0 = 1 iff the ring contains only 0. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝑅 ∈ RingOps → (𝑍 = 𝑈 ↔ 𝑋 = {𝑍})) | ||
| Theorem | divrngidl 38067 | The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋}) | ||
| Theorem | intidl 38068 | The intersection of a nonempty collection of ideals is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ ((𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅)) → ∩ 𝐶 ∈ (Idl‘𝑅)) | ||
| Theorem | inidl 38069 | The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼 ∩ 𝐽) ∈ (Idl‘𝑅)) | ||
| Theorem | unichnidl 38070* | The union of a nonempty chain of ideals is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| ⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → ∪ 𝐶 ∈ (Idl‘𝑅)) | ||
| Theorem | keridl 38071 | The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.) |
| ⊢ 𝐺 = (1st ‘𝑆) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (◡𝐹 “ {𝑍}) ∈ (Idl‘𝑅)) | ||
| Theorem | pridlval 38072* | The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
| Theorem | ispridl 38073* | The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) | ||
| Theorem | pridlidl 38074 | A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| ⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ∈ (Idl‘𝑅)) | ||
| Theorem | pridlnr 38075 | A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ≠ 𝑋) | ||
| Theorem | pridl 38076* | The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| ⊢ 𝐻 = (2nd ‘𝑅) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴 ⊆ 𝑃 ∨ 𝐵 ⊆ 𝑃)) | ||
| Theorem | ispridl2 38077* | A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 38109 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅)) | ||
| Theorem | maxidlval 38078* | The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) | ||
| Theorem | ismaxidl 38079* | The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) | ||
| Theorem | maxidlidl 38080 | A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | ||
| Theorem | maxidlnr 38081 | A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ≠ 𝑋) | ||
| Theorem | maxidlmax 38082 | A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) | ||
| Theorem | maxidln1 38083 | One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) |
| ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) | ||
| Theorem | maxidln0 38084 | A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) | ||
| Syntax | cprrng 38085 | Extend class notation with the class of prime rings. |
| class PrRing | ||
| Syntax | cdmn 38086 | Extend class notation with the class of domains. |
| class Dmn | ||
| Definition | df-prrngo 38087 | Define the class of prime rings. A ring is prime if the zero ideal is a prime ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟)} | ||
| Definition | df-dmn 38088 | Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ Dmn = (PrRing ∩ Com2) | ||
| Theorem | isprrngo 38089 | The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))) | ||
| Theorem | prrngorngo 38090 | A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) | ||
| Theorem | smprngopr 38091 | A simple ring (one whose only ideals are 0 and 𝑅) is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing) | ||
| Theorem | divrngpr 38092 | A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) | ||
| Theorem | isdmn 38093 | The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2)) | ||
| Theorem | isdmn2 38094 | The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) | ||
| Theorem | dmncrng 38095 | A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| ⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) | ||
| Theorem | dmnrngo 38096 | A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| ⊢ (𝑅 ∈ Dmn → 𝑅 ∈ RingOps) | ||
| Theorem | flddmn 38097 | A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) | ||
| Syntax | cigen 38098 | Extend class notation with the ideal generation function. |
| class IdlGen | ||
| Definition | df-igen 38099* | Define the ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| ⊢ IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st ‘𝑟) ↦ ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗}) | ||
| Theorem | igenval 38100* | The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.) |
| ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |