| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrfval | Structured version Visualization version GIF version | ||
| Description: The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| lkrfval.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrfval.o | ⊢ 0 = (0g‘𝐷) |
| lkrfval.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrfval.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lkrfval | ⊢ (𝑊 ∈ 𝑋 → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | lkrfval.k | . . 3 ⊢ 𝐾 = (LKer‘𝑊) | |
| 3 | fveq2 6822 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (LFnl‘𝑤) = (LFnl‘𝑊)) | |
| 4 | lkrfval.f | . . . . . 6 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2784 | . . . . 5 ⊢ (𝑤 = 𝑊 → (LFnl‘𝑤) = 𝐹) |
| 6 | fveq2 6822 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | |
| 7 | lkrfval.d | . . . . . . . . . 10 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 8 | 6, 7 | eqtr4di 2784 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐷) |
| 9 | 8 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = (0g‘𝐷)) |
| 10 | lkrfval.o | . . . . . . . 8 ⊢ 0 = (0g‘𝐷) | |
| 11 | 9, 10 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = 0 ) |
| 12 | 11 | sneqd 4588 | . . . . . 6 ⊢ (𝑤 = 𝑊 → {(0g‘(Scalar‘𝑤))} = { 0 }) |
| 13 | 12 | imaeq2d 6009 | . . . . 5 ⊢ (𝑤 = 𝑊 → (◡𝑓 “ {(0g‘(Scalar‘𝑤))}) = (◡𝑓 “ { 0 })) |
| 14 | 5, 13 | mpteq12dv 5178 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “ {(0g‘(Scalar‘𝑤))})) = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
| 15 | df-lkr 39131 | . . . 4 ⊢ LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “ {(0g‘(Scalar‘𝑤))}))) | |
| 16 | 14, 15, 4 | mptfvmpt 7162 | . . 3 ⊢ (𝑊 ∈ V → (LKer‘𝑊) = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
| 17 | 2, 16 | eqtrid 2778 | . 2 ⊢ (𝑊 ∈ V → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
| 18 | 1, 17 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 ↦ cmpt 5172 ◡ccnv 5615 “ cima 5619 ‘cfv 6481 Scalarcsca 17164 0gc0g 17343 LFnlclfn 39102 LKerclk 39130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-lkr 39131 |
| This theorem is referenced by: lkrval 39133 |
| Copyright terms: Public domain | W3C validator |