Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrfval Structured version   Visualization version   GIF version

Theorem lkrfval 39087
Description: The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lkrfval.d 𝐷 = (Scalar‘𝑊)
lkrfval.o 0 = (0g𝐷)
lkrfval.f 𝐹 = (LFnl‘𝑊)
lkrfval.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrfval (𝑊𝑋𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
Distinct variable groups:   𝑓,𝐹   𝑓,𝑊
Allowed substitution hints:   𝐷(𝑓)   𝐾(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem lkrfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝑊𝑋𝑊 ∈ V)
2 lkrfval.k . . 3 𝐾 = (LKer‘𝑊)
3 fveq2 6861 . . . . . 6 (𝑤 = 𝑊 → (LFnl‘𝑤) = (LFnl‘𝑊))
4 lkrfval.f . . . . . 6 𝐹 = (LFnl‘𝑊)
53, 4eqtr4di 2783 . . . . 5 (𝑤 = 𝑊 → (LFnl‘𝑤) = 𝐹)
6 fveq2 6861 . . . . . . . . . 10 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
7 lkrfval.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
86, 7eqtr4di 2783 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐷)
98fveq2d 6865 . . . . . . . 8 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = (0g𝐷))
10 lkrfval.o . . . . . . . 8 0 = (0g𝐷)
119, 10eqtr4di 2783 . . . . . . 7 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = 0 )
1211sneqd 4604 . . . . . 6 (𝑤 = 𝑊 → {(0g‘(Scalar‘𝑤))} = { 0 })
1312imaeq2d 6034 . . . . 5 (𝑤 = 𝑊 → (𝑓 “ {(0g‘(Scalar‘𝑤))}) = (𝑓 “ { 0 }))
145, 13mpteq12dv 5197 . . . 4 (𝑤 = 𝑊 → (𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓 “ {(0g‘(Scalar‘𝑤))})) = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
15 df-lkr 39086 . . . 4 LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓 “ {(0g‘(Scalar‘𝑤))})))
1614, 15, 4mptfvmpt 7205 . . 3 (𝑊 ∈ V → (LKer‘𝑊) = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
172, 16eqtrid 2777 . 2 (𝑊 ∈ V → 𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
181, 17syl 17 1 (𝑊𝑋𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cmpt 5191  ccnv 5640  cima 5644  cfv 6514  Scalarcsca 17230  0gc0g 17409  LFnlclfn 39057  LKerclk 39085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-lkr 39086
This theorem is referenced by:  lkrval  39088
  Copyright terms: Public domain W3C validator