![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrfval | Structured version Visualization version GIF version |
Description: The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
lkrfval.d | β’ π· = (Scalarβπ) |
lkrfval.o | β’ 0 = (0gβπ·) |
lkrfval.f | β’ πΉ = (LFnlβπ) |
lkrfval.k | β’ πΎ = (LKerβπ) |
Ref | Expression |
---|---|
lkrfval | β’ (π β π β πΎ = (π β πΉ β¦ (β‘π β { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 β’ (π β π β π β V) | |
2 | lkrfval.k | . . 3 β’ πΎ = (LKerβπ) | |
3 | fveq2 6891 | . . . . . 6 β’ (π€ = π β (LFnlβπ€) = (LFnlβπ)) | |
4 | lkrfval.f | . . . . . 6 β’ πΉ = (LFnlβπ) | |
5 | 3, 4 | eqtr4di 2789 | . . . . 5 β’ (π€ = π β (LFnlβπ€) = πΉ) |
6 | fveq2 6891 | . . . . . . . . . 10 β’ (π€ = π β (Scalarβπ€) = (Scalarβπ)) | |
7 | lkrfval.d | . . . . . . . . . 10 β’ π· = (Scalarβπ) | |
8 | 6, 7 | eqtr4di 2789 | . . . . . . . . 9 β’ (π€ = π β (Scalarβπ€) = π·) |
9 | 8 | fveq2d 6895 | . . . . . . . 8 β’ (π€ = π β (0gβ(Scalarβπ€)) = (0gβπ·)) |
10 | lkrfval.o | . . . . . . . 8 β’ 0 = (0gβπ·) | |
11 | 9, 10 | eqtr4di 2789 | . . . . . . 7 β’ (π€ = π β (0gβ(Scalarβπ€)) = 0 ) |
12 | 11 | sneqd 4640 | . . . . . 6 β’ (π€ = π β {(0gβ(Scalarβπ€))} = { 0 }) |
13 | 12 | imaeq2d 6059 | . . . . 5 β’ (π€ = π β (β‘π β {(0gβ(Scalarβπ€))}) = (β‘π β { 0 })) |
14 | 5, 13 | mpteq12dv 5239 | . . . 4 β’ (π€ = π β (π β (LFnlβπ€) β¦ (β‘π β {(0gβ(Scalarβπ€))})) = (π β πΉ β¦ (β‘π β { 0 }))) |
15 | df-lkr 38260 | . . . 4 β’ LKer = (π€ β V β¦ (π β (LFnlβπ€) β¦ (β‘π β {(0gβ(Scalarβπ€))}))) | |
16 | 14, 15, 4 | mptfvmpt 7232 | . . 3 β’ (π β V β (LKerβπ) = (π β πΉ β¦ (β‘π β { 0 }))) |
17 | 2, 16 | eqtrid 2783 | . 2 β’ (π β V β πΎ = (π β πΉ β¦ (β‘π β { 0 }))) |
18 | 1, 17 | syl 17 | 1 β’ (π β π β πΎ = (π β πΉ β¦ (β‘π β { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 Vcvv 3473 {csn 4628 β¦ cmpt 5231 β‘ccnv 5675 β cima 5679 βcfv 6543 Scalarcsca 17205 0gc0g 17390 LFnlclfn 38231 LKerclk 38259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-lkr 38260 |
This theorem is referenced by: lkrval 38262 |
Copyright terms: Public domain | W3C validator |