Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrfval Structured version   Visualization version   GIF version

Theorem lkrfval 39132
Description: The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lkrfval.d 𝐷 = (Scalar‘𝑊)
lkrfval.o 0 = (0g𝐷)
lkrfval.f 𝐹 = (LFnl‘𝑊)
lkrfval.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrfval (𝑊𝑋𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
Distinct variable groups:   𝑓,𝐹   𝑓,𝑊
Allowed substitution hints:   𝐷(𝑓)   𝐾(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem lkrfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝑊𝑋𝑊 ∈ V)
2 lkrfval.k . . 3 𝐾 = (LKer‘𝑊)
3 fveq2 6822 . . . . . 6 (𝑤 = 𝑊 → (LFnl‘𝑤) = (LFnl‘𝑊))
4 lkrfval.f . . . . . 6 𝐹 = (LFnl‘𝑊)
53, 4eqtr4di 2784 . . . . 5 (𝑤 = 𝑊 → (LFnl‘𝑤) = 𝐹)
6 fveq2 6822 . . . . . . . . . 10 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
7 lkrfval.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
86, 7eqtr4di 2784 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐷)
98fveq2d 6826 . . . . . . . 8 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = (0g𝐷))
10 lkrfval.o . . . . . . . 8 0 = (0g𝐷)
119, 10eqtr4di 2784 . . . . . . 7 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = 0 )
1211sneqd 4588 . . . . . 6 (𝑤 = 𝑊 → {(0g‘(Scalar‘𝑤))} = { 0 })
1312imaeq2d 6009 . . . . 5 (𝑤 = 𝑊 → (𝑓 “ {(0g‘(Scalar‘𝑤))}) = (𝑓 “ { 0 }))
145, 13mpteq12dv 5178 . . . 4 (𝑤 = 𝑊 → (𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓 “ {(0g‘(Scalar‘𝑤))})) = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
15 df-lkr 39131 . . . 4 LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓 “ {(0g‘(Scalar‘𝑤))})))
1614, 15, 4mptfvmpt 7162 . . 3 (𝑊 ∈ V → (LKer‘𝑊) = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
172, 16eqtrid 2778 . 2 (𝑊 ∈ V → 𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
181, 17syl 17 1 (𝑊𝑋𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4576  cmpt 5172  ccnv 5615  cima 5619  cfv 6481  Scalarcsca 17164  0gc0g 17343  LFnlclfn 39102  LKerclk 39130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-lkr 39131
This theorem is referenced by:  lkrval  39133
  Copyright terms: Public domain W3C validator