Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrfval Structured version   Visualization version   GIF version

Theorem lkrfval 37028
Description: The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lkrfval.d 𝐷 = (Scalar‘𝑊)
lkrfval.o 0 = (0g𝐷)
lkrfval.f 𝐹 = (LFnl‘𝑊)
lkrfval.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrfval (𝑊𝑋𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
Distinct variable groups:   𝑓,𝐹   𝑓,𝑊
Allowed substitution hints:   𝐷(𝑓)   𝐾(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem lkrfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝑊𝑋𝑊 ∈ V)
2 lkrfval.k . . 3 𝐾 = (LKer‘𝑊)
3 fveq2 6756 . . . . . 6 (𝑤 = 𝑊 → (LFnl‘𝑤) = (LFnl‘𝑊))
4 lkrfval.f . . . . . 6 𝐹 = (LFnl‘𝑊)
53, 4eqtr4di 2797 . . . . 5 (𝑤 = 𝑊 → (LFnl‘𝑤) = 𝐹)
6 fveq2 6756 . . . . . . . . . 10 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
7 lkrfval.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
86, 7eqtr4di 2797 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐷)
98fveq2d 6760 . . . . . . . 8 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = (0g𝐷))
10 lkrfval.o . . . . . . . 8 0 = (0g𝐷)
119, 10eqtr4di 2797 . . . . . . 7 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = 0 )
1211sneqd 4570 . . . . . 6 (𝑤 = 𝑊 → {(0g‘(Scalar‘𝑤))} = { 0 })
1312imaeq2d 5958 . . . . 5 (𝑤 = 𝑊 → (𝑓 “ {(0g‘(Scalar‘𝑤))}) = (𝑓 “ { 0 }))
145, 13mpteq12dv 5161 . . . 4 (𝑤 = 𝑊 → (𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓 “ {(0g‘(Scalar‘𝑤))})) = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
15 df-lkr 37027 . . . 4 LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓 “ {(0g‘(Scalar‘𝑤))})))
1614, 15, 4mptfvmpt 7086 . . 3 (𝑊 ∈ V → (LKer‘𝑊) = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
172, 16syl5eq 2791 . 2 (𝑊 ∈ V → 𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
181, 17syl 17 1 (𝑊𝑋𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  cmpt 5153  ccnv 5579  cima 5583  cfv 6418  Scalarcsca 16891  0gc0g 17067  LFnlclfn 36998  LKerclk 37026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-lkr 37027
This theorem is referenced by:  lkrval  37029
  Copyright terms: Public domain W3C validator