Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrfval Structured version   Visualization version   GIF version

Theorem lkrfval 38261
Description: The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lkrfval.d 𝐷 = (Scalarβ€˜π‘Š)
lkrfval.o 0 = (0gβ€˜π·)
lkrfval.f 𝐹 = (LFnlβ€˜π‘Š)
lkrfval.k 𝐾 = (LKerβ€˜π‘Š)
Assertion
Ref Expression
lkrfval (π‘Š ∈ 𝑋 β†’ 𝐾 = (𝑓 ∈ 𝐹 ↦ (◑𝑓 β€œ { 0 })))
Distinct variable groups:   𝑓,𝐹   𝑓,π‘Š
Allowed substitution hints:   𝐷(𝑓)   𝐾(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem lkrfval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (π‘Š ∈ 𝑋 β†’ π‘Š ∈ V)
2 lkrfval.k . . 3 𝐾 = (LKerβ€˜π‘Š)
3 fveq2 6891 . . . . . 6 (𝑀 = π‘Š β†’ (LFnlβ€˜π‘€) = (LFnlβ€˜π‘Š))
4 lkrfval.f . . . . . 6 𝐹 = (LFnlβ€˜π‘Š)
53, 4eqtr4di 2789 . . . . 5 (𝑀 = π‘Š β†’ (LFnlβ€˜π‘€) = 𝐹)
6 fveq2 6891 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
7 lkrfval.d . . . . . . . . . 10 𝐷 = (Scalarβ€˜π‘Š)
86, 7eqtr4di 2789 . . . . . . . . 9 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐷)
98fveq2d 6895 . . . . . . . 8 (𝑀 = π‘Š β†’ (0gβ€˜(Scalarβ€˜π‘€)) = (0gβ€˜π·))
10 lkrfval.o . . . . . . . 8 0 = (0gβ€˜π·)
119, 10eqtr4di 2789 . . . . . . 7 (𝑀 = π‘Š β†’ (0gβ€˜(Scalarβ€˜π‘€)) = 0 )
1211sneqd 4640 . . . . . 6 (𝑀 = π‘Š β†’ {(0gβ€˜(Scalarβ€˜π‘€))} = { 0 })
1312imaeq2d 6059 . . . . 5 (𝑀 = π‘Š β†’ (◑𝑓 β€œ {(0gβ€˜(Scalarβ€˜π‘€))}) = (◑𝑓 β€œ { 0 }))
145, 13mpteq12dv 5239 . . . 4 (𝑀 = π‘Š β†’ (𝑓 ∈ (LFnlβ€˜π‘€) ↦ (◑𝑓 β€œ {(0gβ€˜(Scalarβ€˜π‘€))})) = (𝑓 ∈ 𝐹 ↦ (◑𝑓 β€œ { 0 })))
15 df-lkr 38260 . . . 4 LKer = (𝑀 ∈ V ↦ (𝑓 ∈ (LFnlβ€˜π‘€) ↦ (◑𝑓 β€œ {(0gβ€˜(Scalarβ€˜π‘€))})))
1614, 15, 4mptfvmpt 7232 . . 3 (π‘Š ∈ V β†’ (LKerβ€˜π‘Š) = (𝑓 ∈ 𝐹 ↦ (◑𝑓 β€œ { 0 })))
172, 16eqtrid 2783 . 2 (π‘Š ∈ V β†’ 𝐾 = (𝑓 ∈ 𝐹 ↦ (◑𝑓 β€œ { 0 })))
181, 17syl 17 1 (π‘Š ∈ 𝑋 β†’ 𝐾 = (𝑓 ∈ 𝐹 ↦ (◑𝑓 β€œ { 0 })))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  Vcvv 3473  {csn 4628   ↦ cmpt 5231  β—‘ccnv 5675   β€œ cima 5679  β€˜cfv 6543  Scalarcsca 17205  0gc0g 17390  LFnlclfn 38231  LKerclk 38259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-lkr 38260
This theorem is referenced by:  lkrval  38262
  Copyright terms: Public domain W3C validator