Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrfval Structured version   Visualization version   GIF version

Theorem lkrfval 39105
Description: The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lkrfval.d 𝐷 = (Scalar‘𝑊)
lkrfval.o 0 = (0g𝐷)
lkrfval.f 𝐹 = (LFnl‘𝑊)
lkrfval.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrfval (𝑊𝑋𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
Distinct variable groups:   𝑓,𝐹   𝑓,𝑊
Allowed substitution hints:   𝐷(𝑓)   𝐾(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem lkrfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 3480 . 2 (𝑊𝑋𝑊 ∈ V)
2 lkrfval.k . . 3 𝐾 = (LKer‘𝑊)
3 fveq2 6876 . . . . . 6 (𝑤 = 𝑊 → (LFnl‘𝑤) = (LFnl‘𝑊))
4 lkrfval.f . . . . . 6 𝐹 = (LFnl‘𝑊)
53, 4eqtr4di 2788 . . . . 5 (𝑤 = 𝑊 → (LFnl‘𝑤) = 𝐹)
6 fveq2 6876 . . . . . . . . . 10 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
7 lkrfval.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
86, 7eqtr4di 2788 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐷)
98fveq2d 6880 . . . . . . . 8 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = (0g𝐷))
10 lkrfval.o . . . . . . . 8 0 = (0g𝐷)
119, 10eqtr4di 2788 . . . . . . 7 (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = 0 )
1211sneqd 4613 . . . . . 6 (𝑤 = 𝑊 → {(0g‘(Scalar‘𝑤))} = { 0 })
1312imaeq2d 6047 . . . . 5 (𝑤 = 𝑊 → (𝑓 “ {(0g‘(Scalar‘𝑤))}) = (𝑓 “ { 0 }))
145, 13mpteq12dv 5207 . . . 4 (𝑤 = 𝑊 → (𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓 “ {(0g‘(Scalar‘𝑤))})) = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
15 df-lkr 39104 . . . 4 LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓 “ {(0g‘(Scalar‘𝑤))})))
1614, 15, 4mptfvmpt 7220 . . 3 (𝑊 ∈ V → (LKer‘𝑊) = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
172, 16eqtrid 2782 . 2 (𝑊 ∈ V → 𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
181, 17syl 17 1 (𝑊𝑋𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601  cmpt 5201  ccnv 5653  cima 5657  cfv 6531  Scalarcsca 17274  0gc0g 17453  LFnlclfn 39075  LKerclk 39103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-lkr 39104
This theorem is referenced by:  lkrval  39106
  Copyright terms: Public domain W3C validator