Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrfval | Structured version Visualization version GIF version |
Description: The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
lkrfval.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrfval.o | ⊢ 0 = (0g‘𝐷) |
lkrfval.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrfval.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkrfval | ⊢ (𝑊 ∈ 𝑋 → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
2 | lkrfval.k | . . 3 ⊢ 𝐾 = (LKer‘𝑊) | |
3 | fveq2 6756 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (LFnl‘𝑤) = (LFnl‘𝑊)) | |
4 | lkrfval.f | . . . . . 6 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | 3, 4 | eqtr4di 2797 | . . . . 5 ⊢ (𝑤 = 𝑊 → (LFnl‘𝑤) = 𝐹) |
6 | fveq2 6756 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | |
7 | lkrfval.d | . . . . . . . . . 10 ⊢ 𝐷 = (Scalar‘𝑊) | |
8 | 6, 7 | eqtr4di 2797 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐷) |
9 | 8 | fveq2d 6760 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = (0g‘𝐷)) |
10 | lkrfval.o | . . . . . . . 8 ⊢ 0 = (0g‘𝐷) | |
11 | 9, 10 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = 0 ) |
12 | 11 | sneqd 4570 | . . . . . 6 ⊢ (𝑤 = 𝑊 → {(0g‘(Scalar‘𝑤))} = { 0 }) |
13 | 12 | imaeq2d 5958 | . . . . 5 ⊢ (𝑤 = 𝑊 → (◡𝑓 “ {(0g‘(Scalar‘𝑤))}) = (◡𝑓 “ { 0 })) |
14 | 5, 13 | mpteq12dv 5161 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “ {(0g‘(Scalar‘𝑤))})) = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
15 | df-lkr 37027 | . . . 4 ⊢ LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “ {(0g‘(Scalar‘𝑤))}))) | |
16 | 14, 15, 4 | mptfvmpt 7086 | . . 3 ⊢ (𝑊 ∈ V → (LKer‘𝑊) = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
17 | 2, 16 | syl5eq 2791 | . 2 ⊢ (𝑊 ∈ V → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
18 | 1, 17 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ↦ cmpt 5153 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 Scalarcsca 16891 0gc0g 17067 LFnlclfn 36998 LKerclk 37026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-lkr 37027 |
This theorem is referenced by: lkrval 37029 |
Copyright terms: Public domain | W3C validator |