| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrfval | Structured version Visualization version GIF version | ||
| Description: The kernel of a functional. (Contributed by NM, 15-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| lkrfval.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkrfval.o | ⊢ 0 = (0g‘𝐷) |
| lkrfval.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrfval.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lkrfval | ⊢ (𝑊 ∈ 𝑋 → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 2 | lkrfval.k | . . 3 ⊢ 𝐾 = (LKer‘𝑊) | |
| 3 | fveq2 6876 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (LFnl‘𝑤) = (LFnl‘𝑊)) | |
| 4 | lkrfval.f | . . . . . 6 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2788 | . . . . 5 ⊢ (𝑤 = 𝑊 → (LFnl‘𝑤) = 𝐹) |
| 6 | fveq2 6876 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | |
| 7 | lkrfval.d | . . . . . . . . . 10 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 8 | 6, 7 | eqtr4di 2788 | . . . . . . . . 9 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐷) |
| 9 | 8 | fveq2d 6880 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = (0g‘𝐷)) |
| 10 | lkrfval.o | . . . . . . . 8 ⊢ 0 = (0g‘𝐷) | |
| 11 | 9, 10 | eqtr4di 2788 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (0g‘(Scalar‘𝑤)) = 0 ) |
| 12 | 11 | sneqd 4613 | . . . . . 6 ⊢ (𝑤 = 𝑊 → {(0g‘(Scalar‘𝑤))} = { 0 }) |
| 13 | 12 | imaeq2d 6047 | . . . . 5 ⊢ (𝑤 = 𝑊 → (◡𝑓 “ {(0g‘(Scalar‘𝑤))}) = (◡𝑓 “ { 0 })) |
| 14 | 5, 13 | mpteq12dv 5207 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “ {(0g‘(Scalar‘𝑤))})) = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
| 15 | df-lkr 39104 | . . . 4 ⊢ LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “ {(0g‘(Scalar‘𝑤))}))) | |
| 16 | 14, 15, 4 | mptfvmpt 7220 | . . 3 ⊢ (𝑊 ∈ V → (LKer‘𝑊) = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
| 17 | 2, 16 | eqtrid 2782 | . 2 ⊢ (𝑊 ∈ V → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
| 18 | 1, 17 | syl 17 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝐾 = (𝑓 ∈ 𝐹 ↦ (◡𝑓 “ { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 ↦ cmpt 5201 ◡ccnv 5653 “ cima 5657 ‘cfv 6531 Scalarcsca 17274 0gc0g 17453 LFnlclfn 39075 LKerclk 39103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-lkr 39104 |
| This theorem is referenced by: lkrval 39106 |
| Copyright terms: Public domain | W3C validator |