Detailed syntax breakdown of Definition df-lpidl
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | clpidl 21330 | . 2
class
LPIdeal | 
| 2 |  | vw | . . 3
setvar 𝑤 | 
| 3 |  | crg 20230 | . . 3
class
Ring | 
| 4 |  | vg | . . . 4
setvar 𝑔 | 
| 5 | 2 | cv 1539 | . . . . 5
class 𝑤 | 
| 6 |  | cbs 17247 | . . . . 5
class
Base | 
| 7 | 5, 6 | cfv 6561 | . . . 4
class
(Base‘𝑤) | 
| 8 | 4 | cv 1539 | . . . . . . 7
class 𝑔 | 
| 9 | 8 | csn 4626 | . . . . . 6
class {𝑔} | 
| 10 |  | crsp 21217 | . . . . . . 7
class
RSpan | 
| 11 | 5, 10 | cfv 6561 | . . . . . 6
class
(RSpan‘𝑤) | 
| 12 | 9, 11 | cfv 6561 | . . . . 5
class
((RSpan‘𝑤)‘{𝑔}) | 
| 13 | 12 | csn 4626 | . . . 4
class
{((RSpan‘𝑤)‘{𝑔})} | 
| 14 | 4, 7, 13 | ciun 4991 | . . 3
class ∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})} | 
| 15 | 2, 3, 14 | cmpt 5225 | . 2
class (𝑤 ∈ Ring ↦ ∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})}) | 
| 16 | 1, 15 | wceq 1540 | 1
wff LPIdeal =
(𝑤 ∈ Ring ↦
∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})}) |