Detailed syntax breakdown of Definition df-lpidl
Step | Hyp | Ref
| Expression |
1 | | clpidl 20425 |
. 2
class
LPIdeal |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | crg 19698 |
. . 3
class
Ring |
4 | | vg |
. . . 4
setvar 𝑔 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑤 |
6 | | cbs 16840 |
. . . . 5
class
Base |
7 | 5, 6 | cfv 6418 |
. . . 4
class
(Base‘𝑤) |
8 | 4 | cv 1538 |
. . . . . . 7
class 𝑔 |
9 | 8 | csn 4558 |
. . . . . 6
class {𝑔} |
10 | | crsp 20348 |
. . . . . . 7
class
RSpan |
11 | 5, 10 | cfv 6418 |
. . . . . 6
class
(RSpan‘𝑤) |
12 | 9, 11 | cfv 6418 |
. . . . 5
class
((RSpan‘𝑤)‘{𝑔}) |
13 | 12 | csn 4558 |
. . . 4
class
{((RSpan‘𝑤)‘{𝑔})} |
14 | 4, 7, 13 | ciun 4921 |
. . 3
class ∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})} |
15 | 2, 3, 14 | cmpt 5153 |
. 2
class (𝑤 ∈ Ring ↦ ∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})}) |
16 | 1, 15 | wceq 1539 |
1
wff LPIdeal =
(𝑤 ∈ Ring ↦
∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})}) |