| Metamath
Proof Explorer Theorem List (p. 213 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rngqiprnglinlem1 21201 | Lemma 1 for rngqiprnglin 21212. (Contributed by AV, 28-Feb-2025.) (Proof shortened by AV, 24-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · ( 1 · 𝐶)) = ( 1 · (𝐴 · 𝐶))) | ||
| Theorem | rngqiprnglinlem2 21202 | Lemma 2 for rngqiprnglin 21212. (Contributed by AV, 28-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴 · 𝐶)] ∼ = ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ )) | ||
| Theorem | rngqiprnglinlem3 21203 | Lemma 3 for rngqiprnglin 21212. (Contributed by AV, 28-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ ) ∈ (Base‘𝑄)) | ||
| Theorem | rngqiprngimf1lem 21204 | Lemma for rngqiprngimf1 21210. (Contributed by AV, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (([𝐴] ∼ = (0g‘𝑄) ∧ ( 1 · 𝐴) = (0g‘𝐽)) → 𝐴 = (0g‘𝑅))) | ||
| Theorem | rngqipbas 21205 | The base set of the product of the quotient with a two-sided ideal and the two-sided ideal is the cartesian product of the base set of the quotient and the base set of the two-sided ideal. (Contributed by AV, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) ⇒ ⊢ (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼)) | ||
| Theorem | rngqiprng 21206 | The product of the quotient with a two-sided ideal and the two-sided ideal is a non-unital ring. (Contributed by AV, 23-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) ⇒ ⊢ (𝜑 → 𝑃 ∈ Rng) | ||
| Theorem | rngqiprngimf 21207* | 𝐹 is a function from (the base set of) a non-unital ring to the product of the (base set 𝐶 of the) quotient with a two-sided ideal and the (base set 𝐼 of the) two-sided ideal (because of 2idlbas 21173, (Base‘𝐽) = 𝐼!) (Contributed by AV, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → 𝐹:𝐵⟶(𝐶 × 𝐼)) | ||
| Theorem | rngqiprngimfv 21208* | The value of the function 𝐹 at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) | ||
| Theorem | rngqiprngghm 21209* | 𝐹 is a homomorphism of the additive groups of non-unital rings. (Contributed by AV, 24-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑃)) | ||
| Theorem | rngqiprngimf1 21210* | 𝐹 is a one-to-one function from (the base set of) a non-unital ring to the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → 𝐹:𝐵–1-1→(𝐶 × 𝐼)) | ||
| Theorem | rngqiprngimfo 21211* | 𝐹 is a function from (the base set of) a non-unital ring onto the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 5-Mar-2025.) (Proof shortened by AV, 24-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → 𝐹:𝐵–onto→(𝐶 × 𝐼)) | ||
| Theorem | rngqiprnglin 21212* | 𝐹 is linear with respect to the multiplication. (Contributed by AV, 28-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐹‘(𝑎 · 𝑏)) = ((𝐹‘𝑎)(.r‘𝑃)(𝐹‘𝑏))) | ||
| Theorem | rngqiprngho 21213* | 𝐹 is a homomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑃)) | ||
| Theorem | rngqiprngim 21214* | 𝐹 is an isomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngIso 𝑃)) | ||
| Theorem | rng2idl1cntr 21215 | The unity of a two-sided ideal of a non-unital ring is central, i.e., an element of the center of the multiplicative semigroup of the non-unital ring. This is part of the proof given in MathOverflow, which seems to be sufficient to show that 𝐹 given below (see rngqiprngimf 21207) is an isomorphism. In our proof, however we show that 𝐹 is linear regarding the multiplication (rngqiprnglin 21212) via rngqiprnglinlem1 21201 instead. (Contributed by AV, 13-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 1 = (1r‘𝐽) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝜑 → 1 ∈ (Cntr‘𝑀)) | ||
| Theorem | rngringbdlem1 21216 | In a unital ring, the quotient of the ring and a two-sided ideal is unital. (Contributed by AV, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring) | ||
| Theorem | rngringbdlem2 21217 | A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝑅 ∈ Ring) | ||
| Theorem | rngringbd 21218 | A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ (𝜑 → (𝑅 ∈ Ring ↔ 𝑄 ∈ Ring)) | ||
| Theorem | ring2idlqus 21219* | For every unital ring there is a (two-sided) ideal of the ring (in fact the base set of the ring itself) which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 13-Feb-2025.) |
| ⊢ (𝑅 ∈ Ring → ∃𝑖 ∈ (2Ideal‘𝑅)((𝑅 ↾s 𝑖) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝑖)) ∈ Ring)) | ||
| Theorem | ring2idlqusb 21220* | A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 20-Feb-2025.) |
| ⊢ (𝑅 ∈ Rng → (𝑅 ∈ Ring ↔ ∃𝑖 ∈ (2Ideal‘𝑅)((𝑅 ↾s 𝑖) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝑖)) ∈ Ring))) | ||
| Theorem | rngqiprngfulem1 21221* | Lemma 1 for rngqiprngfu 21227 (and lemma for rngqiprngu 21228). (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ ) | ||
| Theorem | rngqiprngfulem2 21222 | Lemma 2 for rngqiprngfu 21227 (and lemma for rngqiprngu 21228). (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) ⇒ ⊢ (𝜑 → 𝐸 ∈ 𝐵) | ||
| Theorem | rngqiprngfulem3 21223 | Lemma 3 for rngqiprngfu 21227 (and lemma for rngqiprngu 21228). (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝐵) | ||
| Theorem | rngqiprngfulem4 21224 | Lemma 4 for rngqiprngfu 21227. (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) ⇒ ⊢ (𝜑 → [𝑈] ∼ = [𝐸] ∼ ) | ||
| Theorem | rngqiprngfulem5 21225 | Lemma 5 for rngqiprngfu 21227. (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) ⇒ ⊢ (𝜑 → ( 1 · 𝑈) = 1 ) | ||
| Theorem | rngqipring1 21226 | The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) & ⊢ 𝑃 = (𝑄 ×s 𝐽) ⇒ ⊢ (𝜑 → (1r‘𝑃) = 〈[𝐸] ∼ , 1 〉) | ||
| Theorem | rngqiprngfu 21227* | The function value of 𝐹 at the constructed expected ring unity of 𝑅 is the ring unity of the product of the quotient with the two-sided ideal and the two-sided ideal. (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → (𝐹‘𝑈) = 〈[𝐸] ∼ , 1 〉) | ||
| Theorem | rngqiprngu 21228 | If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) ⇒ ⊢ (𝜑 → (1r‘𝑅) = 𝑈) | ||
| Theorem | ring2idlqus1 21229 | If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.) |
| ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘(𝑅 ↾s 𝐼)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 ∈ Ring ∧ (1r‘𝑅) = ((𝑈 − ( 1 · 𝑈)) + 1 ))) | ||
| Syntax | clpidl 21230 | Ring left-principal-ideal function. |
| class LPIdeal | ||
| Syntax | clpir 21231 | Class of left principal ideal rings. |
| class LPIR | ||
| Definition | df-lpidl 21232* | Define the class of left principal ideals of a ring, which are ideals with a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ LPIdeal = (𝑤 ∈ Ring ↦ ∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})}) | ||
| Definition | df-lpir 21233 | Define the class of left principal ideal rings, rings where every left ideal has a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ LPIR = {𝑤 ∈ Ring ∣ (LIdeal‘𝑤) = (LPIdeal‘𝑤)} | ||
| Theorem | lpival 21234* | Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})}) | ||
| Theorem | islpidl 21235* | Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔}))) | ||
| Theorem | lpi0 21236 | The zero ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑃) | ||
| Theorem | lpi1 21237 | The unit ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝑃) | ||
| Theorem | islpir 21238 | Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) | ||
| Theorem | lpiss 21239 | Principal ideals are a subclass of ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 ⊆ 𝑈) | ||
| Theorem | islpir2 21240 | Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 ⊆ 𝑃)) | ||
| Theorem | lpirring 21241 | Principal ideal rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ Ring) | ||
| Theorem | drnglpir 21242 | Division rings are principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ LPIR) | ||
| Theorem | rspsn 21243* | Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) | ||
| Theorem | lidldvgen 21244* | An element generates an ideal iff it is contained in the ideal and all elements are right-divided by it. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → (𝐼 = (𝐾‘{𝐺}) ↔ (𝐺 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 𝐺 ∥ 𝑥))) | ||
| Theorem | lpigen 21245* | An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) | ||
| Syntax | cpid 21246 | Class of principal ideal domains. |
| class PID | ||
| Definition | df-pid 21247 | A principal ideal domain is an integral domain satisfying the left principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ PID = (IDomn ∩ LPIR) | ||
| Syntax | cpsmet 21248 | Extend class notation with the class of all pseudometric spaces. |
| class PsMet | ||
| Syntax | cxmet 21249 | Extend class notation with the class of all extended metric spaces. |
| class ∞Met | ||
| Syntax | cmet 21250 | Extend class notation with the class of all metrics. |
| class Met | ||
| Syntax | cbl 21251 | Extend class notation with the metric space ball function. |
| class ball | ||
| Syntax | cfbas 21252 | Extend class definition to include the class of filter bases. |
| class fBas | ||
| Syntax | cfg 21253 | Extend class definition to include the filter generating function. |
| class filGen | ||
| Syntax | cmopn 21254 | Extend class notation with a function mapping each metric space to the family of its open sets. |
| class MetOpen | ||
| Syntax | cmetu 21255 | Extend class notation with the function mapping metrics to the uniform structure generated by that metric. |
| class metUnif | ||
| Definition | df-psmet 21256* | Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑m (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | ||
| Definition | df-xmet 21257* | Define the set of all extended metrics on a given base set. The definition is similar to df-met 21258, but we also allow the metric to take on the value +∞. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑m (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | ||
| Definition | df-met 21258* | Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric; see df-ms 24209. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. The 4 properties in Gleason's definition are shown by met0 24231, metgt0 24247, metsym 24238, and mettri 24240. (Contributed by NM, 25-Aug-2006.) |
| ⊢ Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑m (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))}) | ||
| Definition | df-bl 21259* | Define the metric space ball function. See blval 24274 for its value. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧})) | ||
| Definition | df-mopn 21260 | Define a function whose value is the family of open sets of a metric space. See elmopn 24330 for its main property. (Contributed by NM, 1-Sep-2006.) |
| ⊢ MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | ||
| Definition | df-fbas 21261* | Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.) |
| ⊢ fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅)}) | ||
| Definition | df-fg 21262* | Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.) |
| ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) | ||
| Definition | df-metu 21263* | Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ metUnif = (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | ||
| Syntax | ccnfld 21264 | Extend class notation with the field of complex numbers. |
| class ℂfld | ||
| Definition | df-cnfld 21265* |
The field of complex numbers. Other number fields and rings can be
constructed by applying the ↾s
restriction operator, for instance
(ℂfld ↾ 𝔸) is the
field of algebraic numbers.
The contract of this set is defined entirely by cnfldex 21267, cnfldadd 21270, cnfldmul 21272, cnfldcj 21273, cnfldtset 21274, cnfldle 21275, cnfldds 21276, and cnfldbas 21268. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.) |
| ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | ||
| Theorem | cnfldstr 21266 | The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21265. (Revised by GG, 31-Mar-2025.) |
| ⊢ ℂfld Struct 〈1, ;13〉 | ||
| Theorem | cnfldex 21267 | The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Avoid complex number axioms and ax-pow 5320. (Revised by GG, 16-Mar-2025.) |
| ⊢ ℂfld ∈ V | ||
| Theorem | cnfldbas 21268 | The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21265. (Revised by GG, 31-Mar-2025.) |
| ⊢ ℂ = (Base‘ℂfld) | ||
| Theorem | mpocnfldadd 21269* | The addition operation of the field of complex numbers. Version of cnfldadd 21270 using maps-to notation, which does not require ax-addf 11147. (Contributed by GG, 31-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (+g‘ℂfld) | ||
| Theorem | cnfldadd 21270 | The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21265. (Revised by GG, 27-Apr-2025.) |
| ⊢ + = (+g‘ℂfld) | ||
| Theorem | mpocnfldmul 21271* | The multiplication operation of the field of complex numbers. Version of cnfldmul 21272 using maps-to notation, which does not require ax-mulf 11148. (Contributed by GG, 31-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (.r‘ℂfld) | ||
| Theorem | cnfldmul 21272 | The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21265. (Revised by GG, 27-Apr-2025.) |
| ⊢ · = (.r‘ℂfld) | ||
| Theorem | cnfldcj 21273 | The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21265. (Revised by GG, 31-Mar-2025.) |
| ⊢ ∗ = (*𝑟‘ℂfld) | ||
| Theorem | cnfldtset 21274 | The topology component of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21265. (Revised by GG, 31-Mar-2025.) |
| ⊢ (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld) | ||
| Theorem | cnfldle 21275 | The ordering of the field of complex numbers. Note that this is not actually an ordering on ℂ, but we put it in the structure anyway because restricting to ℝ does not affect this component, so that (ℂfld ↾s ℝ) is an ordered field even though ℂfld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21265. (Revised by GG, 31-Mar-2025.) |
| ⊢ ≤ = (le‘ℂfld) | ||
| Theorem | cnfldds 21276 | The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21265. (Revised by GG, 31-Mar-2025.) |
| ⊢ (abs ∘ − ) = (dist‘ℂfld) | ||
| Theorem | cnfldunif 21277 | The uniform structure component of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21265. (Revised by GG, 31-Mar-2025.) |
| ⊢ (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld) | ||
| Theorem | cnfldfun 21278 | The field of complex numbers is a function. The proof is much shorter than the proof of cnfldfunALT 21279 by using cnfldstr 21266 and structn0fun 17121: in addition, it must be shown that ∅ ∉ ℂfld. (Contributed by AV, 18-Nov-2021.) Revise df-cnfld 21265. (Revised by GG, 31-Mar-2025.) |
| ⊢ Fun ℂfld | ||
| Theorem | cnfldfunALT 21279 | The field of complex numbers is a function. Alternate proof of cnfldfun 21278 not requiring that the index set of the components is ordered, but using quadratically many inequalities for the indices. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 11-Nov-2024.) Revise df-cnfld 21265. (Revised by GG, 31-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Fun ℂfld | ||
| Theorem | dfcnfldOLD 21280 | Obsolete version of df-cnfld 21265 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | ||
| Theorem | cnfldstrOLD 21281 | Obsolete version of cnfldstr 21266 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℂfld Struct 〈1, ;13〉 | ||
| Theorem | cnfldexOLD 21282 | Obsolete version of cnfldex 21267 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℂfld ∈ V | ||
| Theorem | cnfldbasOLD 21283 | Obsolete version of cnfldbas 21268 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℂ = (Base‘ℂfld) | ||
| Theorem | cnfldaddOLD 21284 | Obsolete version of cnfldadd 21270 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ + = (+g‘ℂfld) | ||
| Theorem | cnfldmulOLD 21285 | Obsolete version of cnfldmul 21272 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ · = (.r‘ℂfld) | ||
| Theorem | cnfldcjOLD 21286 | Obsolete version of cnfldcj 21273 as of 27-Apr-2025. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∗ = (*𝑟‘ℂfld) | ||
| Theorem | cnfldtsetOLD 21287 | Obsolete version of cnfldtset 21274 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld) | ||
| Theorem | cnfldleOLD 21288 | Obsolete version of cnfldle 21275 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘ℂfld) | ||
| Theorem | cnflddsOLD 21289 | Obsolete version of cnfldds 21276 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (abs ∘ − ) = (dist‘ℂfld) | ||
| Theorem | cnfldunifOLD 21290 | Obsolete version of cnfldunif 21277 as of 27-Apr-2025. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld) | ||
| Theorem | cnfldfunOLD 21291 | Obsolete version of cnfldfun 21278 as of 27-Apr-2025. (Contributed by AV, 18-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Fun ℂfld | ||
| Theorem | cnfldfunALTOLD 21292 | Obsolete version of cnfldfunALT 21279 as of 27-Apr-2025. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 11-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Fun ℂfld | ||
| Theorem | xrsstr 21293 | The extended real structure is a structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ ℝ*𝑠 Struct 〈1, ;12〉 | ||
| Theorem | xrsex 21294 | The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ ℝ*𝑠 ∈ V | ||
| Theorem | xrsbas 21295 | The base set of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ ℝ* = (Base‘ℝ*𝑠) | ||
| Theorem | xrsadd 21296 | The addition operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ +𝑒 = (+g‘ℝ*𝑠) | ||
| Theorem | xrsmul 21297 | The multiplication operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ ·e = (.r‘ℝ*𝑠) | ||
| Theorem | xrstset 21298 | The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠) | ||
| Theorem | xrsle 21299 | The ordering of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ ≤ = (le‘ℝ*𝑠) | ||
| Theorem | cncrng 21300 | The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.) Avoid ax-mulf 11148. (Revised by GG, 31-Mar-2025.) |
| ⊢ ℂfld ∈ CRing | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |