HomeHome Metamath Proof Explorer
Theorem List (p. 213 of 494)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30937)
  Hilbert Space Explorer  Hilbert Space Explorer
(30938-32460)
  Users' Mathboxes  Users' Mathboxes
(32461-49324)
 

Theorem List for Metamath Proof Explorer - 21201-21300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrlmplusg 21201 Vector addition in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(+g𝑅) = (+g‘(ringLMod‘𝑅))
 
Theoremrlm0 21202 Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
(0g𝑅) = (0g‘(ringLMod‘𝑅))
 
Theoremrlmsub 21203 Subtraction in the ring module. (Contributed by Thierry Arnoux, 30-Jun-2019.)
(-g𝑅) = (-g‘(ringLMod‘𝑅))
 
Theoremrlmmulr 21204 Ring multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(.r𝑅) = (.r‘(ringLMod‘𝑅))
 
Theoremrlmsca 21205 Scalars in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.)
(𝑅𝑋𝑅 = (Scalar‘(ringLMod‘𝑅)))
 
Theoremrlmsca2 21206 Scalars in the ring module. (Contributed by Stefan O'Rear, 1-Apr-2015.)
( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅))
 
Theoremrlmvsca 21207 Scalar multiplication in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
 
Theoremrlmtopn 21208 Topology component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅))
 
Theoremrlmds 21209 Metric component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(dist‘𝑅) = (dist‘(ringLMod‘𝑅))
 
Theoremrlmlmod 21210 The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014.)
(𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
 
Theoremrlmlvec 21211 The ring module over a division ring is a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝑅 ∈ DivRing → (ringLMod‘𝑅) ∈ LVec)
 
Theoremrlmlsm 21212 Subgroup sum of the ring module. (Contributed by Thierry Arnoux, 9-Apr-2024.)
(𝑅𝑉 → (LSSum‘𝑅) = (LSSum‘(ringLMod‘𝑅)))
 
Theoremrlmvneg 21213 Vector negation in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 5-Jun-2015.)
(invg𝑅) = (invg‘(ringLMod‘𝑅))
 
Theoremrlmscaf 21214 Functionalized scalar multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(+𝑓‘(mulGrp‘𝑅)) = ( ·sf ‘(ringLMod‘𝑅))
 
Theoremixpsnbasval 21215* The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
 
10.7.2  Left ideals and spans

Remark: Usually, (left) ideals are defined as a subset of a (unital or non-unital) ring that is a subgroup of the additive group of the ring that "absorbs multiplication from the left by elements of the ring", see Wikipedia https://en.wikipedia.org/wiki/Ideal_(ring_theory) (19.02.2025), or the definition 4 in [BourbakiAlg1] p. 103 and the definition in [Lang] p.86, although a ring is to be considered unital (and commutative!) here, see definition 1 in [BourbakiAlg1] p. 96 resp. the definition in [Lang] p. 83, or definition in [Roman] p. 20.

In contrast, the definition of (LIdeal‘𝑅), does not require the subset to be a subgroup of the additive group, as can be seen by islidl 21225. If 𝑅 is a unital ring, however, it can be proven that each ideal in (LIdeal‘𝑅) is a subgroup of the additive group of the ring, see lidlsubg 21233. This is not possible for arbitrary non-unital rings, because the proof uses the existence of the ring unity.

 
Syntaxclidl 21216 Ring left-ideal function.
class LIdeal
 
Syntaxcrsp 21217 Ring span function.
class RSpan
 
Definitiondf-lidl 21218 Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. For the usual textbook definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring, see dflidl2rng 21228 and dflidl2 21237. (Contributed by Stefan O'Rear, 31-Mar-2015.)
LIdeal = (LSubSp ∘ ringLMod)
 
Definitiondf-rsp 21219 Define the linear span function in a ring (Ideal generator). (Contributed by Stefan O'Rear, 4-Apr-2015.)
RSpan = (LSpan ∘ ringLMod)
 
Theoremlidlval 21220 Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))
 
Theoremrspval 21221 Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.)
(RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))
 
Theoremlidlss 21222 An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐵 = (Base‘𝑊)    &   𝐼 = (LIdeal‘𝑊)       (𝑈𝐼𝑈𝐵)
 
Theoremlidlssbas 21223 The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
 
Theoremlidlbas 21224 A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       (𝑈𝐿 → (Base‘𝐼) = 𝑈)
 
Theoremislidl 21225* Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
 
Theoremrnglidlmcl 21226 A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven as in lidlmcl 21235. (Contributed by AV, 18-Feb-2025.)
0 = (0g𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑈 = (LIdeal‘𝑅)       (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)
 
Theoremrngridlmcl 21227 A right ideal (which is a left ideal over the opposite ring) containing the zero element is closed under right-multiplication by elements of the full non-unital ring. (Contributed by AV, 19-Feb-2025.)
0 = (0g𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑈 = (LIdeal‘(oppr𝑅))       (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑌 · 𝑋) ∈ 𝐼)
 
Theoremdflidl2rng 21228* Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼))
 
Theoremisridlrng 21229* A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
 
Theoremlidl0cl 21230 An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
 
Theoremlidlacl 21231 An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    + = (+g𝑅)       (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 + 𝑌) ∈ 𝐼)
 
Theoremlidlnegcl 21232 An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝑁 = (invg𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋𝐼) → (𝑁𝑋) ∈ 𝐼)
 
Theoremlidlsubg 21233 An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (SubGrp‘𝑅))
 
Theoremlidlsubcl 21234 An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by OpenAI, 25-Mar-2020.)
𝑈 = (LIdeal‘𝑅)    &    = (-g𝑅)       (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 𝑌) ∈ 𝐼)
 
Theoremlidlmcl 21235 An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Proof shortened by AV, 31-Mar-2025.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)
 
Theoremlidl1el 21236 An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ( 1𝐼𝐼 = 𝐵))
 
Theoremdflidl2 21237* Alternate (the usual textbook) definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼)))
 
Theoremlidl0ALT 21238 Alternate proof for lidl0 21240 not using rnglidl0 21239: Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
 
Theoremrnglidl0 21239 Every non-unital ring contains a zero ideal. (Contributed by AV, 19-Feb-2025.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Rng → { 0 } ∈ 𝑈)
 
Theoremlidl0 21240 Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Proof shortened by AV, 18-Apr-2025.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
 
Theoremlidl1ALT 21241 Alternate proof for lidl1 21243 not using rnglidl1 21242: Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝑈)
 
Theoremrnglidl1 21242 The base set of every non-unital ring is an ideal. For unital rings, such ideals are called "unit ideals", see lidl1 21243. (Contributed by AV, 19-Feb-2025.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Rng → 𝐵𝑈)
 
Theoremlidl1 21243 Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Proof shortened by AV, 18-Apr-2025.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝑈)
 
Theoremlidlacs 21244 The ideal system is an algebraic closure system on the base set. (Contributed by Stefan O'Rear, 4-Apr-2015.)
𝐵 = (Base‘𝑊)    &   𝐼 = (LIdeal‘𝑊)       (𝑊 ∈ Ring → 𝐼 ∈ (ACS‘𝐵))
 
Theoremrspcl 21245 The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝐾 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾𝐺) ∈ 𝑈)
 
Theoremrspssid 21246 The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
 
Theoremrsp1 21247 The span of the identity element is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → (𝐾‘{ 1 }) = 𝐵)
 
Theoremrsp0 21248 The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 })
 
Theoremrspssp 21249 The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &   𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐼) → (𝐾𝐺) ⊆ 𝐼)
 
Theoremelrspsn 21250* Membership in a principal ideal. Analogous to ellspsn 21001. (Contributed by Thierry Arnoux, 15-Jan-2024.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝐾 = (RSpan‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥𝐵 𝐼 = (𝑥 · 𝑋)))
 
Theoremmrcrsp 21251 Moore closure generalizes ideal span. (Contributed by Stefan O'Rear, 4-Apr-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝐾 = (RSpan‘𝑅)    &   𝐹 = (mrCls‘𝑈)       (𝑅 ∈ Ring → 𝐾 = 𝐹)
 
Theoremlidlnz 21252* A nonzero ideal contains a nonzero element. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑥𝐼 𝑥0 )
 
Theoremdrngnidl 21253 A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝑈 = (LIdeal‘𝑅)       (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})
 
Theoremlidlrsppropd 21254* The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐵𝑊)    &   ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
 
Theoremrnglidlmmgm 21255 The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)    &    0 = (0g𝑅)       ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)
 
Theoremrnglidlmsgrp 21256 The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)    &    0 = (0g𝑅)       ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Smgrp)
 
Theoremrnglidlrng 21257 A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 𝑈 ∈ (SubGrp‘𝑅) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng)
 
Theoremlidlnsg 21258 An ideal is a normal subgroup. (Contributed by Thierry Arnoux, 14-Jan-2024.)
((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
 
10.7.3  Two-sided ideals and quotient rings
 
Syntaxc2idl 21259 Ring two-sided ideal function.
class 2Ideal
 
Definitiondf-2idl 21260 Define the class of two-sided ideals of a ring. A two-sided ideal is a left ideal which is also a right ideal (or a left ideal over the opposite ring). (Contributed by Mario Carneiro, 14-Jun-2015.)
2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
 
Theorem2idlval 21261 Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)    &   𝐽 = (LIdeal‘𝑂)    &   𝑇 = (2Ideal‘𝑅)       𝑇 = (𝐼𝐽)
 
Theoremisridl 21262* A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
 
Theorem2idlelb 21263 Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl 21282. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)    &   𝐽 = (LIdeal‘𝑂)    &   𝑇 = (2Ideal‘𝑅)       (𝑈𝑇 ↔ (𝑈𝐼𝑈𝐽))
 
Theorem2idllidld 21264 A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))       (𝜑𝐼 ∈ (LIdeal‘𝑅))
 
Theorem2idlridld 21265 A two-sided ideal is a right ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝑂 = (oppr𝑅)       (𝜑𝐼 ∈ (LIdeal‘𝑂))
 
Theoremdf2idl2rng 21266* Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
𝑈 = (2Ideal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼)))
 
Theoremdf2idl2 21267* Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
𝑈 = (2Ideal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼))))
 
Theoremridl0 21268 Every ring contains a zero right ideal. (Contributed by AV, 13-Feb-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
 
Theoremridl1 21269 Every ring contains a unit right ideal. (Contributed by AV, 13-Feb-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝑈)
 
Theorem2idl0 21270 Every ring contains a zero two-sided ideal. (Contributed by AV, 13-Feb-2025.)
𝐼 = (2Ideal‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝐼)
 
Theorem2idl1 21271 Every ring contains a unit two-sided ideal. (Contributed by AV, 13-Feb-2025.)
𝐼 = (2Ideal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝐼)
 
Theorem2idlss 21272 A two-sided ideal is a subset of the base set. Formerly part of proof for 2idlcpbl 21282. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) (Proof shortened by AV, 13-Mar-2025.)
𝐵 = (Base‘𝑊)    &   𝐼 = (2Ideal‘𝑊)       (𝑈𝐼𝑈𝐵)
 
Theorem2idlbas 21273 The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝐽)       (𝜑𝐵 = 𝐼)
 
Theorem2idlelbas 21274 The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝐽)       (𝜑 → (𝐵 ∈ (LIdeal‘𝑅) ∧ 𝐵 ∈ (LIdeal‘(oppr𝑅))))
 
Theoremrng2idlsubrng 21275 A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025.) (Revised by AV, 11-Mar-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑 → (𝑅s 𝐼) ∈ Rng)       (𝜑𝐼 ∈ (SubRng‘𝑅))
 
Theoremrng2idlnsg 21276 A two-sided ideal of a non-unital ring which is a non-unital ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑 → (𝑅s 𝐼) ∈ Rng)       (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
 
Theoremrng2idl0 21277 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑 → (𝑅s 𝐼) ∈ Rng)       (𝜑 → (0g𝑅) ∈ 𝐼)
 
Theoremrng2idlsubgsubrng 21278 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a subring of the ring. (Contributed by AV, 11-Mar-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝐼 ∈ (SubGrp‘𝑅))       (𝜑𝐼 ∈ (SubRng‘𝑅))
 
Theoremrng2idlsubgnsg 21279 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝐼 ∈ (SubGrp‘𝑅))       (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
 
Theoremrng2idlsubg0 21280 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝐼 ∈ (SubGrp‘𝑅))       (𝜑 → (0g𝑅) ∈ 𝐼)
 
Theorem2idlcpblrng 21281 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
𝑋 = (Base‘𝑅)    &   𝐸 = (𝑅 ~QG 𝑆)    &   𝐼 = (2Ideal‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
 
Theorem2idlcpbl 21282 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) (Proof shortened by AV, 31-Mar-2025.)
𝑋 = (Base‘𝑅)    &   𝐸 = (𝑅 ~QG 𝑆)    &   𝐼 = (2Ideal‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
 
Theoremqus2idrng 21283 The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 21285 analog). (Contributed by AV, 23-Feb-2025.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)       ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng)
 
Theoremqus1 21284 The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r𝑈)))
 
Theoremqusring 21285 If 𝑆 is a two-sided ideal in 𝑅, then 𝑈 = 𝑅 / 𝑆 is a ring, called the quotient ring of 𝑅 by 𝑆. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
 
Theoremqusrhm 21286* If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)    &   𝑋 = (Base‘𝑅)    &   𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
 
Theoremrhmpreimaidl 21287 The preimage of an ideal by a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 30-Jun-2024.)
𝐼 = (LIdeal‘𝑅)       ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (𝐹𝐽) ∈ 𝐼)
 
Theoremkerlidl 21288 The kernel of a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 1-Jul-2024.)
𝐼 = (LIdeal‘𝑅)    &    0 = (0g𝑆)       (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 “ { 0 }) ∈ 𝐼)
 
Theoremqusmul2idl 21289 Value of the ring operation in a quotient ring by a two-sided ideal. (Contributed by Thierry Arnoux, 1-Sep-2024.)
𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    × = (.r𝑄)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
 
Theoremcrngridl 21290 In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)       (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂))
 
Theoremcrng2idl 21291 In a commutative ring, a two-sided ideal is the same as a left ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)       (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅))
 
Theoremqusmulrng 21292 Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 21293. Similar to qusmul2idl 21289. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.)
= (𝑅 ~QG 𝑆)    &   𝐻 = (𝑅 /s )    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (.r𝐻)       (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋𝐵𝑌𝐵)) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
 
Theoremquscrng 21293 The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (LIdeal‘𝑅)       ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)
 
Theoremqusmulcrng 21294 Value of the ring operation in a quotient ring of a commutative ring. (Contributed by Thierry Arnoux, 1-Sep-2024.) (Proof shortened by metakunt, 3-Jun-2025.)
𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    × = (.r𝑄)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐼 ∈ (LIdeal‘𝑅))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
 
Theoremrhmqusnsg 21295* The mapping 𝐽 induced by a ring homomorphism 𝐹 from a subring 𝑁 of the quotient group 𝑄 over 𝐹's kernel 𝐾 is a ring homomorphism. (Contributed by Thierry Arnoux, 13-May-2025.)
0 = (0g𝐻)    &   (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))    &   𝐾 = (𝐹 “ { 0 })    &   𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))    &   𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))    &   (𝜑𝐺 ∈ CRing)    &   (𝜑𝑁𝐾)    &   (𝜑𝑁 ∈ (LIdeal‘𝐺))       (𝜑𝐽 ∈ (𝑄 RingHom 𝐻))
 
10.7.3.1  Condition for a non-unital ring to be unital

In MathOverflow, the following theorem is claimed: "Theorem 1. Let A be a rng (= nonunital associative ring). Let J be a (two-sided) ideal of A. Assume that both rngs J and A/J are unital. Then, the rng A is also unital.", see https://mathoverflow.net/questions/487676 (/unitality-of-rngs-is-inherited-by-extensions).

This thread also contains some hints to literature: Clifford and Preston's book "The Algebraic Theory of Semigroups"(Chapter 5 on representation theory), and Okninski's book Semigroup Algebras, Corollary 8 in Chapter 4.

In the following, this theorem is proven formally, see rngringbdlem2 21317 (and variants rngringbd 21318 and ring2idlqusb 21320).

This theorem is not trivial, since it is possible for a subset of a ring, especially a subring of a non-unital ring or (left/two-sided) ideal, to be a unital ring with a different ring unity. See also the comment for df-subrg 20570. In the given case, however, the ring unity of the larger ring can be determined by the ring unity of the two-sided ideal and a representative of the ring unity of the corresponding quotient, see ring2idlqus1 21329. An example for such a construction is given in pzriprng1ALT 21507, for the case mentioned in the comment for df-subrg 20570.

 
Theoremrngqiprng1elbas 21296 The ring unity of a two-sided ideal of a non-unital ring belongs to the base set of the ring. (Contributed by AV, 15-Mar-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   (𝜑𝐽 ∈ Ring)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝐽)       (𝜑1𝐵)
 
Theoremrngqiprngghmlem1 21297 Lemma 1 for rngqiprngghm 21309. (Contributed by AV, 25-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   (𝜑𝐽 ∈ Ring)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝐽)       ((𝜑𝐴𝐵) → ( 1 · 𝐴) ∈ (Base‘𝐽))
 
Theoremrngqiprngghmlem2 21298 Lemma 2 for rngqiprngghm 21309. (Contributed by AV, 25-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   (𝜑𝐽 ∈ Ring)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝐽)       ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (( 1 · 𝐴)(+g𝐽)( 1 · 𝐶)) ∈ (Base‘𝐽))
 
Theoremrngqiprngghmlem3 21299 Lemma 3 for rngqiprngghm 21309. (Contributed by AV, 25-Feb-2025.) (Proof shortened by AV, 24-Mar-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   (𝜑𝐽 ∈ Ring)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝐽)       ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ( 1 · (𝐴(+g𝑅)𝐶)) = (( 1 · 𝐴)(+g𝐽)( 1 · 𝐶)))
 
Theoremrngqiprngimfolem 21300 Lemma for rngqiprngimfo 21311. (Contributed by AV, 5-Mar-2025.) (Proof shortened by AV, 24-Mar-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   (𝜑𝐽 ∈ Ring)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝐽)       ((𝜑𝐴𝐼𝐶𝐵) → ( 1 · ((𝐶(-g𝑅)( 1 · 𝐶))(+g𝑅)𝐴)) = 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49324
  Copyright terms: Public domain < Previous  Next >