| Metamath
Proof Explorer Theorem List (p. 213 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | qusrhm 21201* | If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) & ⊢ 𝐼 = (2Ideal‘𝑅) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝑅 ~QG 𝑆)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈)) | ||
| Theorem | rhmpreimaidl 21202 | The preimage of an ideal by a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 30-Jun-2024.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐽 ∈ (LIdeal‘𝑆)) → (◡𝐹 “ 𝐽) ∈ 𝐼) | ||
| Theorem | kerlidl 21203 | The kernel of a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (◡𝐹 “ { 0 }) ∈ 𝐼) | ||
| Theorem | qusmul2idl 21204 | Value of the ring operation in a quotient ring by a two-sided ideal. (Contributed by Thierry Arnoux, 1-Sep-2024.) |
| ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑄) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) | ||
| Theorem | crngridl 21205 | In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) | ||
| Theorem | crng2idl 21206 | In a commutative ring, a two-sided ideal is the same as a left ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅)) | ||
| Theorem | qusmulrng 21207 | Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 21208. Similar to qusmul2idl 21204. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.) |
| ⊢ ∼ = (𝑅 ~QG 𝑆) & ⊢ 𝐻 = (𝑅 /s ∼ ) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝐻) ⇒ ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | ||
| Theorem | quscrng 21208 | The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.) |
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) & ⊢ 𝐼 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ CRing) | ||
| Theorem | qusmulcrng 21209 | Value of the ring operation in a quotient ring of a commutative ring. (Contributed by Thierry Arnoux, 1-Sep-2024.) (Proof shortened by metakunt, 3-Jun-2025.) |
| ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑄) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) | ||
| Theorem | rhmqusnsg 21210* | The mapping 𝐽 induced by a ring homomorphism 𝐹 from a subring 𝑁 of the quotient group 𝑄 over 𝐹's kernel 𝐾 is a ring homomorphism. (Contributed by Thierry Arnoux, 13-May-2025.) |
| ⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 RingHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ (𝜑 → 𝐺 ∈ CRing) & ⊢ (𝜑 → 𝑁 ⊆ 𝐾) & ⊢ (𝜑 → 𝑁 ∈ (LIdeal‘𝐺)) ⇒ ⊢ (𝜑 → 𝐽 ∈ (𝑄 RingHom 𝐻)) | ||
In MathOverflow, the following theorem is claimed: "Theorem 1. Let A be a rng (= nonunital associative ring). Let J be a (two-sided) ideal of A. Assume that both rngs J and A/J are unital. Then, the rng A is also unital.", see https://mathoverflow.net/questions/487676 (/unitality-of-rngs-is-inherited-by-extensions). This thread also contains some hints to literature: Clifford and Preston's book "The Algebraic Theory of Semigroups"(Chapter 5 on representation theory), and Okninski's book Semigroup Algebras, Corollary 8 in Chapter 4. In the following, this theorem is proven formally, see rngringbdlem2 21232 (and variants rngringbd 21233 and ring2idlqusb 21235). This theorem is not trivial, since it is possible for a subset of a ring, especially a subring of a non-unital ring or (left/two-sided) ideal, to be a unital ring with a different ring unity. See also the comment for df-subrg 20473. In the given case, however, the ring unity of the larger ring can be determined by the ring unity of the two-sided ideal and a representative of the ring unity of the corresponding quotient, see ring2idlqus1 21244. An example for such a construction is given in pzriprng1ALT 21421, for the case mentioned in the comment for df-subrg 20473. | ||
| Theorem | rngqiprng1elbas 21211 | The ring unity of a two-sided ideal of a non-unital ring belongs to the base set of the ring. (Contributed by AV, 15-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) ⇒ ⊢ (𝜑 → 1 ∈ 𝐵) | ||
| Theorem | rngqiprngghmlem1 21212 | Lemma 1 for rngqiprngghm 21224. (Contributed by AV, 25-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → ( 1 · 𝐴) ∈ (Base‘𝐽)) | ||
| Theorem | rngqiprngghmlem2 21213 | Lemma 2 for rngqiprngghm 21224. (Contributed by AV, 25-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴)(+g‘𝐽)( 1 · 𝐶)) ∈ (Base‘𝐽)) | ||
| Theorem | rngqiprngghmlem3 21214 | Lemma 3 for rngqiprngghm 21224. (Contributed by AV, 25-Feb-2025.) (Proof shortened by AV, 24-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ( 1 · (𝐴(+g‘𝑅)𝐶)) = (( 1 · 𝐴)(+g‘𝐽)( 1 · 𝐶))) | ||
| Theorem | rngqiprngimfolem 21215 | Lemma for rngqiprngimfo 21226. (Contributed by AV, 5-Mar-2025.) (Proof shortened by AV, 24-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐼 ∧ 𝐶 ∈ 𝐵) → ( 1 · ((𝐶(-g‘𝑅)( 1 · 𝐶))(+g‘𝑅)𝐴)) = 𝐴) | ||
| Theorem | rngqiprnglinlem1 21216 | Lemma 1 for rngqiprnglin 21227. (Contributed by AV, 28-Feb-2025.) (Proof shortened by AV, 24-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (( 1 · 𝐴) · ( 1 · 𝐶)) = ( 1 · (𝐴 · 𝐶))) | ||
| Theorem | rngqiprnglinlem2 21217 | Lemma 2 for rngqiprnglin 21227. (Contributed by AV, 28-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴 · 𝐶)] ∼ = ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ )) | ||
| Theorem | rngqiprnglinlem3 21218 | Lemma 3 for rngqiprnglin 21227. (Contributed by AV, 28-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼ (.r‘𝑄)[𝐶] ∼ ) ∈ (Base‘𝑄)) | ||
| Theorem | rngqiprngimf1lem 21219 | Lemma for rngqiprngimf1 21225. (Contributed by AV, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (([𝐴] ∼ = (0g‘𝑄) ∧ ( 1 · 𝐴) = (0g‘𝐽)) → 𝐴 = (0g‘𝑅))) | ||
| Theorem | rngqipbas 21220 | The base set of the product of the quotient with a two-sided ideal and the two-sided ideal is the cartesian product of the base set of the quotient and the base set of the two-sided ideal. (Contributed by AV, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) ⇒ ⊢ (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼)) | ||
| Theorem | rngqiprng 21221 | The product of the quotient with a two-sided ideal and the two-sided ideal is a non-unital ring. (Contributed by AV, 23-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) ⇒ ⊢ (𝜑 → 𝑃 ∈ Rng) | ||
| Theorem | rngqiprngimf 21222* | 𝐹 is a function from (the base set of) a non-unital ring to the product of the (base set 𝐶 of the) quotient with a two-sided ideal and the (base set 𝐼 of the) two-sided ideal (because of 2idlbas 21188, (Base‘𝐽) = 𝐼!) (Contributed by AV, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → 𝐹:𝐵⟶(𝐶 × 𝐼)) | ||
| Theorem | rngqiprngimfv 21223* | The value of the function 𝐹 at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) | ||
| Theorem | rngqiprngghm 21224* | 𝐹 is a homomorphism of the additive groups of non-unital rings. (Contributed by AV, 24-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑃)) | ||
| Theorem | rngqiprngimf1 21225* | 𝐹 is a one-to-one function from (the base set of) a non-unital ring to the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 7-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → 𝐹:𝐵–1-1→(𝐶 × 𝐼)) | ||
| Theorem | rngqiprngimfo 21226* | 𝐹 is a function from (the base set of) a non-unital ring onto the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 5-Mar-2025.) (Proof shortened by AV, 24-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → 𝐹:𝐵–onto→(𝐶 × 𝐼)) | ||
| Theorem | rngqiprnglin 21227* | 𝐹 is linear with respect to the multiplication. (Contributed by AV, 28-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐹‘(𝑎 · 𝑏)) = ((𝐹‘𝑎)(.r‘𝑃)(𝐹‘𝑏))) | ||
| Theorem | rngqiprngho 21228* | 𝐹 is a homomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑃)) | ||
| Theorem | rngqiprngim 21229* | 𝐹 is an isomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ 𝑃 = (𝑄 ×s 𝐽) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngIso 𝑃)) | ||
| Theorem | rng2idl1cntr 21230 | The unity of a two-sided ideal of a non-unital ring is central, i.e., an element of the center of the multiplicative semigroup of the non-unital ring. This is part of the proof given in MathOverflow, which seems to be sufficient to show that 𝐹 given below (see rngqiprngimf 21222) is an isomorphism. In our proof, however we show that 𝐹 is linear regarding the multiplication (rngqiprnglin 21227) via rngqiprnglinlem1 21216 instead. (Contributed by AV, 13-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 1 = (1r‘𝐽) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝜑 → 1 ∈ (Cntr‘𝑀)) | ||
| Theorem | rngringbdlem1 21231 | In a unital ring, the quotient of the ring and a two-sided ideal is unital. (Contributed by AV, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ ((𝜑 ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring) | ||
| Theorem | rngringbdlem2 21232 | A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ ((𝜑 ∧ 𝑄 ∈ Ring) → 𝑅 ∈ Ring) | ||
| Theorem | rngringbd 21233 | A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) ⇒ ⊢ (𝜑 → (𝑅 ∈ Ring ↔ 𝑄 ∈ Ring)) | ||
| Theorem | ring2idlqus 21234* | For every unital ring there is a (two-sided) ideal of the ring (in fact the base set of the ring itself) which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 13-Feb-2025.) |
| ⊢ (𝑅 ∈ Ring → ∃𝑖 ∈ (2Ideal‘𝑅)((𝑅 ↾s 𝑖) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝑖)) ∈ Ring)) | ||
| Theorem | ring2idlqusb 21235* | A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 20-Feb-2025.) |
| ⊢ (𝑅 ∈ Rng → (𝑅 ∈ Ring ↔ ∃𝑖 ∈ (2Ideal‘𝑅)((𝑅 ↾s 𝑖) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝑖)) ∈ Ring))) | ||
| Theorem | rngqiprngfulem1 21236* | Lemma 1 for rngqiprngfu 21242 (and lemma for rngqiprngu 21243). (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ ) | ||
| Theorem | rngqiprngfulem2 21237 | Lemma 2 for rngqiprngfu 21242 (and lemma for rngqiprngu 21243). (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) ⇒ ⊢ (𝜑 → 𝐸 ∈ 𝐵) | ||
| Theorem | rngqiprngfulem3 21238 | Lemma 3 for rngqiprngfu 21242 (and lemma for rngqiprngu 21243). (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝐵) | ||
| Theorem | rngqiprngfulem4 21239 | Lemma 4 for rngqiprngfu 21242. (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) ⇒ ⊢ (𝜑 → [𝑈] ∼ = [𝐸] ∼ ) | ||
| Theorem | rngqiprngfulem5 21240 | Lemma 5 for rngqiprngfu 21242. (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) ⇒ ⊢ (𝜑 → ( 1 · 𝑈) = 1 ) | ||
| Theorem | rngqipring1 21241 | The ring unity of the product of the quotient with a two-sided ideal and the two-sided ideal, which both are rings. (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) & ⊢ 𝑃 = (𝑄 ×s 𝐽) ⇒ ⊢ (𝜑 → (1r‘𝑃) = 〈[𝐸] ∼ , 1 〉) | ||
| Theorem | rngqiprngfu 21242* | The function value of 𝐹 at the constructed expected ring unity of 𝑅 is the ring unity of the product of the quotient with the two-sided ideal and the two-sided ideal. (Contributed by AV, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ⇒ ⊢ (𝜑 → (𝐹‘𝑈) = 〈[𝐸] ∼ , 1 〉) | ||
| Theorem | rngqiprngu 21243 | If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) & ⊢ 𝐽 = (𝑅 ↾s 𝐼) & ⊢ (𝜑 → 𝐽 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝐽) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑄 = (𝑅 /s ∼ ) & ⊢ (𝜑 → 𝑄 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) ⇒ ⊢ (𝜑 → (1r‘𝑅) = 𝑈) | ||
| Theorem | ring2idlqus1 21244 | If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.) |
| ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘(𝑅 ↾s 𝐼)) & ⊢ − = (-g‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 ∈ Ring ∧ (1r‘𝑅) = ((𝑈 − ( 1 · 𝑈)) + 1 ))) | ||
| Syntax | clpidl 21245 | Ring left-principal-ideal function. |
| class LPIdeal | ||
| Syntax | clpir 21246 | Class of left principal ideal rings. |
| class LPIR | ||
| Definition | df-lpidl 21247* | Define the class of left principal ideals of a ring, which are ideals with a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ LPIdeal = (𝑤 ∈ Ring ↦ ∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})}) | ||
| Definition | df-lpir 21248 | Define the class of left principal ideal rings, rings where every left ideal has a single generator. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ LPIR = {𝑤 ∈ Ring ∣ (LIdeal‘𝑤) = (LPIdeal‘𝑤)} | ||
| Theorem | lpival 21249* | Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})}) | ||
| Theorem | islpidl 21250* | Property of being a principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑃 ↔ ∃𝑔 ∈ 𝐵 𝐼 = (𝐾‘{𝑔}))) | ||
| Theorem | lpi0 21251 | The zero ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑃) | ||
| Theorem | lpi1 21252 | The unit ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝑃) | ||
| Theorem | islpir 21253 | Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 = 𝑃)) | ||
| Theorem | lpiss 21254 | Principal ideals are a subclass of ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 ⊆ 𝑈) | ||
| Theorem | islpir2 21255 | Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ LPIR ↔ (𝑅 ∈ Ring ∧ 𝑈 ⊆ 𝑃)) | ||
| Theorem | lpirring 21256 | Principal ideal rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ Ring) | ||
| Theorem | drnglpir 21257 | Division rings are principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ LPIR) | ||
| Theorem | rspsn 21258* | Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) | ||
| Theorem | lidldvgen 21259* | An element generates an ideal iff it is contained in the ideal and all elements are right-divided by it. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵) → (𝐼 = (𝐾‘{𝐺}) ↔ (𝐺 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 𝐺 ∥ 𝑥))) | ||
| Theorem | lpigen 21260* | An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑃 = (LPIdeal‘𝑅) & ⊢ ∥ = (∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝐼 ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 𝑥 ∥ 𝑦)) | ||
| Syntax | cpid 21261 | Class of principal ideal domains. |
| class PID | ||
| Definition | df-pid 21262 | A principal ideal domain is an integral domain satisfying the left principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
| ⊢ PID = (IDomn ∩ LPIR) | ||
| Syntax | cpsmet 21263 | Extend class notation with the class of all pseudometric spaces. |
| class PsMet | ||
| Syntax | cxmet 21264 | Extend class notation with the class of all extended metric spaces. |
| class ∞Met | ||
| Syntax | cmet 21265 | Extend class notation with the class of all metrics. |
| class Met | ||
| Syntax | cbl 21266 | Extend class notation with the metric space ball function. |
| class ball | ||
| Syntax | cfbas 21267 | Extend class definition to include the class of filter bases. |
| class fBas | ||
| Syntax | cfg 21268 | Extend class definition to include the filter generating function. |
| class filGen | ||
| Syntax | cmopn 21269 | Extend class notation with a function mapping each metric space to the family of its open sets. |
| class MetOpen | ||
| Syntax | cmetu 21270 | Extend class notation with the function mapping metrics to the uniform structure generated by that metric. |
| class metUnif | ||
| Definition | df-psmet 21271* | Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑m (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | ||
| Definition | df-xmet 21272* | Define the set of all extended metrics on a given base set. The definition is similar to df-met 21273, but we also allow the metric to take on the value +∞. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ* ↑m (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | ||
| Definition | df-met 21273* | Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric; see df-ms 24225. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. The 4 properties in Gleason's definition are shown by met0 24247, metgt0 24263, metsym 24254, and mettri 24256. (Contributed by NM, 25-Aug-2006.) |
| ⊢ Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑m (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))}) | ||
| Definition | df-bl 21274* | Define the metric space ball function. See blval 24290 for its value. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧})) | ||
| Definition | df-mopn 21275 | Define a function whose value is the family of open sets of a metric space. See elmopn 24346 for its main property. (Contributed by NM, 1-Sep-2006.) |
| ⊢ MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | ||
| Definition | df-fbas 21276* | Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.) |
| ⊢ fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅)}) | ||
| Definition | df-fg 21277* | Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.) |
| ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) | ||
| Definition | df-metu 21278* | Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ metUnif = (𝑑 ∈ ∪ ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) | ||
| Syntax | ccnfld 21279 | Extend class notation with the field of complex numbers. |
| class ℂfld | ||
| Definition | df-cnfld 21280* |
The field of complex numbers. Other number fields and rings can be
constructed by applying the ↾s
restriction operator, for instance
(ℂfld ↾ 𝔸) is the
field of algebraic numbers.
The contract of this set is defined entirely by cnfldex 21282, cnfldadd 21285, cnfldmul 21287, cnfldcj 21288, cnfldtset 21289, cnfldle 21290, cnfldds 21291, and cnfldbas 21283. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.) |
| ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | ||
| Theorem | cnfldstr 21281 | The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21280. (Revised by GG, 31-Mar-2025.) |
| ⊢ ℂfld Struct 〈1, ;13〉 | ||
| Theorem | cnfldex 21282 | The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Avoid complex number axioms and ax-pow 5307. (Revised by GG, 16-Mar-2025.) |
| ⊢ ℂfld ∈ V | ||
| Theorem | cnfldbas 21283 | The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21280. (Revised by GG, 31-Mar-2025.) |
| ⊢ ℂ = (Base‘ℂfld) | ||
| Theorem | mpocnfldadd 21284* | The addition operation of the field of complex numbers. Version of cnfldadd 21285 using maps-to notation, which does not require ax-addf 11107. (Contributed by GG, 31-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (+g‘ℂfld) | ||
| Theorem | cnfldadd 21285 | The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21280. (Revised by GG, 27-Apr-2025.) |
| ⊢ + = (+g‘ℂfld) | ||
| Theorem | mpocnfldmul 21286* | The multiplication operation of the field of complex numbers. Version of cnfldmul 21287 using maps-to notation, which does not require ax-mulf 11108. (Contributed by GG, 31-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (.r‘ℂfld) | ||
| Theorem | cnfldmul 21287 | The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21280. (Revised by GG, 27-Apr-2025.) |
| ⊢ · = (.r‘ℂfld) | ||
| Theorem | cnfldcj 21288 | The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21280. (Revised by GG, 31-Mar-2025.) |
| ⊢ ∗ = (*𝑟‘ℂfld) | ||
| Theorem | cnfldtset 21289 | The topology component of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21280. (Revised by GG, 31-Mar-2025.) |
| ⊢ (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld) | ||
| Theorem | cnfldle 21290 | The ordering of the field of complex numbers. Note that this is not actually an ordering on ℂ, but we put it in the structure anyway because restricting to ℝ does not affect this component, so that (ℂfld ↾s ℝ) is an ordered field even though ℂfld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21280. (Revised by GG, 31-Mar-2025.) |
| ⊢ ≤ = (le‘ℂfld) | ||
| Theorem | cnfldds 21291 | The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21280. (Revised by GG, 31-Mar-2025.) |
| ⊢ (abs ∘ − ) = (dist‘ℂfld) | ||
| Theorem | cnfldunif 21292 | The uniform structure component of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 21280. (Revised by GG, 31-Mar-2025.) |
| ⊢ (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld) | ||
| Theorem | cnfldfun 21293 | The field of complex numbers is a function. The proof is much shorter than the proof of cnfldfunALT 21294 by using cnfldstr 21281 and structn0fun 17080: in addition, it must be shown that ∅ ∉ ℂfld. (Contributed by AV, 18-Nov-2021.) Revise df-cnfld 21280. (Revised by GG, 31-Mar-2025.) |
| ⊢ Fun ℂfld | ||
| Theorem | cnfldfunALT 21294 | The field of complex numbers is a function. Alternate proof of cnfldfun 21293 not requiring that the index set of the components is ordered, but using quadratically many inequalities for the indices. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 11-Nov-2024.) Revise df-cnfld 21280. (Revised by GG, 31-Mar-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Fun ℂfld | ||
| Theorem | dfcnfldOLD 21295 | Obsolete version of df-cnfld 21280 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℂfld = (({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗〉}) ∪ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉})) | ||
| Theorem | cnfldstrOLD 21296 | Obsolete version of cnfldstr 21281 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℂfld Struct 〈1, ;13〉 | ||
| Theorem | cnfldexOLD 21297 | Obsolete version of cnfldex 21282 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℂfld ∈ V | ||
| Theorem | cnfldbasOLD 21298 | Obsolete version of cnfldbas 21283 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℂ = (Base‘ℂfld) | ||
| Theorem | cnfldaddOLD 21299 | Obsolete version of cnfldadd 21285 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ + = (+g‘ℂfld) | ||
| Theorem | cnfldmulOLD 21300 | Obsolete version of cnfldmul 21287 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ · = (.r‘ℂfld) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |