MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpival Structured version   Visualization version   GIF version

Theorem lpival 21290
Description: Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdeal‘𝑅)
lpival.k 𝐾 = (RSpan‘𝑅)
lpival.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
lpival (𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 {(𝐾‘{𝑔})})
Distinct variable groups:   𝑅,𝑔   𝑃,𝑔   𝐵,𝑔   𝑔,𝐾

Proof of Theorem lpival
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
2 fveq2 6881 . . . . . 6 (𝑟 = 𝑅 → (RSpan‘𝑟) = (RSpan‘𝑅))
32fveq1d 6883 . . . . 5 (𝑟 = 𝑅 → ((RSpan‘𝑟)‘{𝑔}) = ((RSpan‘𝑅)‘{𝑔}))
43sneqd 4618 . . . 4 (𝑟 = 𝑅 → {((RSpan‘𝑟)‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})})
51, 4iuneq12d 5002 . . 3 (𝑟 = 𝑅 𝑔 ∈ (Base‘𝑟){((RSpan‘𝑟)‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})})
6 df-lpidl 21288 . . 3 LPIdeal = (𝑟 ∈ Ring ↦ 𝑔 ∈ (Base‘𝑟){((RSpan‘𝑟)‘{𝑔})})
7 fvex 6894 . . . . . 6 (RSpan‘𝑅) ∈ V
87rnex 7911 . . . . 5 ran (RSpan‘𝑅) ∈ V
9 p0ex 5359 . . . . 5 {∅} ∈ V
108, 9unex 7743 . . . 4 (ran (RSpan‘𝑅) ∪ {∅}) ∈ V
11 iunss 5026 . . . . 5 ( 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}) ↔ ∀𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}))
12 fvrn0 6911 . . . . . . 7 ((RSpan‘𝑅)‘{𝑔}) ∈ (ran (RSpan‘𝑅) ∪ {∅})
13 snssi 4789 . . . . . . 7 (((RSpan‘𝑅)‘{𝑔}) ∈ (ran (RSpan‘𝑅) ∪ {∅}) → {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}))
1412, 13ax-mp 5 . . . . . 6 {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅})
1514a1i 11 . . . . 5 (𝑔 ∈ (Base‘𝑅) → {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}))
1611, 15mprgbir 3059 . . . 4 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅})
1710, 16ssexi 5297 . . 3 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ∈ V
185, 6, 17fvmpt 6991 . 2 (𝑅 ∈ Ring → (LPIdeal‘𝑅) = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})})
19 lpival.p . 2 𝑃 = (LPIdeal‘𝑅)
20 lpival.b . . . 4 𝐵 = (Base‘𝑅)
21 iuneq1 4989 . . . 4 (𝐵 = (Base‘𝑅) → 𝑔𝐵 {(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})})
2220, 21ax-mp 5 . . 3 𝑔𝐵 {(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})}
23 lpival.k . . . . . . 7 𝐾 = (RSpan‘𝑅)
2423fveq1i 6882 . . . . . 6 (𝐾‘{𝑔}) = ((RSpan‘𝑅)‘{𝑔})
2524sneqi 4617 . . . . 5 {(𝐾‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})}
2625a1i 11 . . . 4 (𝑔 ∈ (Base‘𝑅) → {(𝐾‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})})
2726iuneq2i 4994 . . 3 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})}
2822, 27eqtri 2759 . 2 𝑔𝐵 {(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})}
2918, 19, 283eqtr4g 2796 1 (𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 {(𝐾‘{𝑔})})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3929  wss 3931  c0 4313  {csn 4606   ciun 4972  ran crn 5660  cfv 6536  Basecbs 17233  Ringcrg 20198  RSpancrsp 21173  LPIdealclpidl 21286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-lpidl 21288
This theorem is referenced by:  islpidl  21291
  Copyright terms: Public domain W3C validator