MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpival Structured version   Visualization version   GIF version

Theorem lpival 20071
Description: Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdeal‘𝑅)
lpival.k 𝐾 = (RSpan‘𝑅)
lpival.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
lpival (𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 {(𝐾‘{𝑔})})
Distinct variable groups:   𝑅,𝑔   𝑃,𝑔   𝐵,𝑔   𝑔,𝐾

Proof of Theorem lpival
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6651 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
2 fveq2 6651 . . . . . 6 (𝑟 = 𝑅 → (RSpan‘𝑟) = (RSpan‘𝑅))
32fveq1d 6653 . . . . 5 (𝑟 = 𝑅 → ((RSpan‘𝑟)‘{𝑔}) = ((RSpan‘𝑅)‘{𝑔}))
43sneqd 4527 . . . 4 (𝑟 = 𝑅 → {((RSpan‘𝑟)‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})})
51, 4iuneq12d 4904 . . 3 (𝑟 = 𝑅 𝑔 ∈ (Base‘𝑟){((RSpan‘𝑟)‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})})
6 df-lpidl 20069 . . 3 LPIdeal = (𝑟 ∈ Ring ↦ 𝑔 ∈ (Base‘𝑟){((RSpan‘𝑟)‘{𝑔})})
7 fvex 6664 . . . . . 6 (RSpan‘𝑅) ∈ V
87rnex 7615 . . . . 5 ran (RSpan‘𝑅) ∈ V
9 p0ex 5246 . . . . 5 {∅} ∈ V
108, 9unex 7460 . . . 4 (ran (RSpan‘𝑅) ∪ {∅}) ∈ V
11 iunss 4927 . . . . 5 ( 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}) ↔ ∀𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}))
12 fvrn0 6679 . . . . . . 7 ((RSpan‘𝑅)‘{𝑔}) ∈ (ran (RSpan‘𝑅) ∪ {∅})
13 snssi 4691 . . . . . . 7 (((RSpan‘𝑅)‘{𝑔}) ∈ (ran (RSpan‘𝑅) ∪ {∅}) → {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}))
1412, 13ax-mp 5 . . . . . 6 {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅})
1514a1i 11 . . . . 5 (𝑔 ∈ (Base‘𝑅) → {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}))
1611, 15mprgbir 3083 . . . 4 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅})
1710, 16ssexi 5185 . . 3 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ∈ V
185, 6, 17fvmpt 6752 . 2 (𝑅 ∈ Ring → (LPIdeal‘𝑅) = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})})
19 lpival.p . 2 𝑃 = (LPIdeal‘𝑅)
20 lpival.b . . . 4 𝐵 = (Base‘𝑅)
21 iuneq1 4892 . . . 4 (𝐵 = (Base‘𝑅) → 𝑔𝐵 {(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})})
2220, 21ax-mp 5 . . 3 𝑔𝐵 {(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})}
23 lpival.k . . . . . . 7 𝐾 = (RSpan‘𝑅)
2423fveq1i 6652 . . . . . 6 (𝐾‘{𝑔}) = ((RSpan‘𝑅)‘{𝑔})
2524sneqi 4526 . . . . 5 {(𝐾‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})}
2625a1i 11 . . . 4 (𝑔 ∈ (Base‘𝑅) → {(𝐾‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})})
2726iuneq2i 4897 . . 3 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})}
2822, 27eqtri 2782 . 2 𝑔𝐵 {(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})}
2918, 19, 283eqtr4g 2819 1 (𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 {(𝐾‘{𝑔})})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  cun 3852  wss 3854  c0 4221  {csn 4515   ciun 4876  ran crn 5518  cfv 6328  Basecbs 16526  Ringcrg 19350  RSpancrsp 19996  LPIdealclpidl 20067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-rab 3077  df-v 3409  df-sbc 3694  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-iota 6287  df-fun 6330  df-fv 6336  df-lpidl 20069
This theorem is referenced by:  islpidl  20072
  Copyright terms: Public domain W3C validator