| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6881 |
. . . 4
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
| 2 | | fveq2 6881 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (RSpan‘𝑟) = (RSpan‘𝑅)) |
| 3 | 2 | fveq1d 6883 |
. . . . 5
⊢ (𝑟 = 𝑅 → ((RSpan‘𝑟)‘{𝑔}) = ((RSpan‘𝑅)‘{𝑔})) |
| 4 | 3 | sneqd 4618 |
. . . 4
⊢ (𝑟 = 𝑅 → {((RSpan‘𝑟)‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})}) |
| 5 | 1, 4 | iuneq12d 5002 |
. . 3
⊢ (𝑟 = 𝑅 → ∪
𝑔 ∈ (Base‘𝑟){((RSpan‘𝑟)‘{𝑔})} = ∪
𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})}) |
| 6 | | df-lpidl 21288 |
. . 3
⊢ LPIdeal =
(𝑟 ∈ Ring ↦
∪ 𝑔 ∈ (Base‘𝑟){((RSpan‘𝑟)‘{𝑔})}) |
| 7 | | fvex 6894 |
. . . . . 6
⊢
(RSpan‘𝑅)
∈ V |
| 8 | 7 | rnex 7911 |
. . . . 5
⊢ ran
(RSpan‘𝑅) ∈
V |
| 9 | | p0ex 5359 |
. . . . 5
⊢ {∅}
∈ V |
| 10 | 8, 9 | unex 7743 |
. . . 4
⊢ (ran
(RSpan‘𝑅) ∪
{∅}) ∈ V |
| 11 | | iunss 5026 |
. . . . 5
⊢ (∪ 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}) ↔
∀𝑔 ∈
(Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪
{∅})) |
| 12 | | fvrn0 6911 |
. . . . . . 7
⊢
((RSpan‘𝑅)‘{𝑔}) ∈ (ran (RSpan‘𝑅) ∪ {∅}) |
| 13 | | snssi 4789 |
. . . . . . 7
⊢
(((RSpan‘𝑅)‘{𝑔}) ∈ (ran (RSpan‘𝑅) ∪ {∅}) →
{((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪
{∅})) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
⊢
{((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪
{∅}) |
| 15 | 14 | a1i 11 |
. . . . 5
⊢ (𝑔 ∈ (Base‘𝑅) → {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪
{∅})) |
| 16 | 11, 15 | mprgbir 3059 |
. . . 4
⊢ ∪ 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪
{∅}) |
| 17 | 10, 16 | ssexi 5297 |
. . 3
⊢ ∪ 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ∈ V |
| 18 | 5, 6, 17 | fvmpt 6991 |
. 2
⊢ (𝑅 ∈ Ring →
(LPIdeal‘𝑅) =
∪ 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})}) |
| 19 | | lpival.p |
. 2
⊢ 𝑃 = (LPIdeal‘𝑅) |
| 20 | | lpival.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 21 | | iuneq1 4989 |
. . . 4
⊢ (𝐵 = (Base‘𝑅) → ∪
𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} = ∪
𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})}) |
| 22 | 20, 21 | ax-mp 5 |
. . 3
⊢ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} = ∪
𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})} |
| 23 | | lpival.k |
. . . . . . 7
⊢ 𝐾 = (RSpan‘𝑅) |
| 24 | 23 | fveq1i 6882 |
. . . . . 6
⊢ (𝐾‘{𝑔}) = ((RSpan‘𝑅)‘{𝑔}) |
| 25 | 24 | sneqi 4617 |
. . . . 5
⊢ {(𝐾‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})} |
| 26 | 25 | a1i 11 |
. . . 4
⊢ (𝑔 ∈ (Base‘𝑅) → {(𝐾‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})}) |
| 27 | 26 | iuneq2i 4994 |
. . 3
⊢ ∪ 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})} = ∪
𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} |
| 28 | 22, 27 | eqtri 2759 |
. 2
⊢ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} = ∪
𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} |
| 29 | 18, 19, 28 | 3eqtr4g 2796 |
1
⊢ (𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})}) |