MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpival Structured version   Visualization version   GIF version

Theorem lpival 19461
Description: Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdeal‘𝑅)
lpival.k 𝐾 = (RSpan‘𝑅)
lpival.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
lpival (𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 {(𝐾‘{𝑔})})
Distinct variable groups:   𝑅,𝑔   𝑃,𝑔   𝐵,𝑔   𝑔,𝐾

Proof of Theorem lpival
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6333 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
2 fveq2 6333 . . . . . 6 (𝑟 = 𝑅 → (RSpan‘𝑟) = (RSpan‘𝑅))
32fveq1d 6335 . . . . 5 (𝑟 = 𝑅 → ((RSpan‘𝑟)‘{𝑔}) = ((RSpan‘𝑅)‘{𝑔}))
43sneqd 4329 . . . 4 (𝑟 = 𝑅 → {((RSpan‘𝑟)‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})})
51, 4iuneq12d 4681 . . 3 (𝑟 = 𝑅 𝑔 ∈ (Base‘𝑟){((RSpan‘𝑟)‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})})
6 df-lpidl 19459 . . 3 LPIdeal = (𝑟 ∈ Ring ↦ 𝑔 ∈ (Base‘𝑟){((RSpan‘𝑟)‘{𝑔})})
7 fvex 6343 . . . . . 6 (RSpan‘𝑅) ∈ V
87rnex 7248 . . . . 5 ran (RSpan‘𝑅) ∈ V
9 p0ex 4985 . . . . 5 {∅} ∈ V
108, 9unex 7104 . . . 4 (ran (RSpan‘𝑅) ∪ {∅}) ∈ V
11 iunss 4696 . . . . 5 ( 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}) ↔ ∀𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}))
12 fvrn0 6358 . . . . . . 7 ((RSpan‘𝑅)‘{𝑔}) ∈ (ran (RSpan‘𝑅) ∪ {∅})
13 snssi 4475 . . . . . . 7 (((RSpan‘𝑅)‘{𝑔}) ∈ (ran (RSpan‘𝑅) ∪ {∅}) → {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}))
1412, 13ax-mp 5 . . . . . 6 {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅})
1514a1i 11 . . . . 5 (𝑔 ∈ (Base‘𝑅) → {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}))
1611, 15mprgbir 3076 . . . 4 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅})
1710, 16ssexi 4938 . . 3 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ∈ V
185, 6, 17fvmpt 6425 . 2 (𝑅 ∈ Ring → (LPIdeal‘𝑅) = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})})
19 lpival.p . 2 𝑃 = (LPIdeal‘𝑅)
20 lpival.b . . . 4 𝐵 = (Base‘𝑅)
21 iuneq1 4669 . . . 4 (𝐵 = (Base‘𝑅) → 𝑔𝐵 {(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})})
2220, 21ax-mp 5 . . 3 𝑔𝐵 {(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})}
23 lpival.k . . . . . . 7 𝐾 = (RSpan‘𝑅)
2423fveq1i 6334 . . . . . 6 (𝐾‘{𝑔}) = ((RSpan‘𝑅)‘{𝑔})
2524sneqi 4328 . . . . 5 {(𝐾‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})}
2625a1i 11 . . . 4 (𝑔 ∈ (Base‘𝑅) → {(𝐾‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})})
2726iuneq2i 4674 . . 3 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})}
2822, 27eqtri 2793 . 2 𝑔𝐵 {(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})}
2918, 19, 283eqtr4g 2830 1 (𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 {(𝐾‘{𝑔})})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cun 3722  wss 3724  c0 4064  {csn 4317   ciun 4655  ran crn 5251  cfv 6032  Basecbs 16065  Ringcrg 18756  RSpancrsp 19387  LPIdealclpidl 19457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3589  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-iota 5995  df-fun 6034  df-fv 6040  df-lpidl 19459
This theorem is referenced by:  islpidl  19462
  Copyright terms: Public domain W3C validator