Step | Hyp | Ref
| Expression |
1 | | fveq2 6768 |
. . . 4
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
2 | | fveq2 6768 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (RSpan‘𝑟) = (RSpan‘𝑅)) |
3 | 2 | fveq1d 6770 |
. . . . 5
⊢ (𝑟 = 𝑅 → ((RSpan‘𝑟)‘{𝑔}) = ((RSpan‘𝑅)‘{𝑔})) |
4 | 3 | sneqd 4578 |
. . . 4
⊢ (𝑟 = 𝑅 → {((RSpan‘𝑟)‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})}) |
5 | 1, 4 | iuneq12d 4957 |
. . 3
⊢ (𝑟 = 𝑅 → ∪
𝑔 ∈ (Base‘𝑟){((RSpan‘𝑟)‘{𝑔})} = ∪
𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})}) |
6 | | df-lpidl 20495 |
. . 3
⊢ LPIdeal =
(𝑟 ∈ Ring ↦
∪ 𝑔 ∈ (Base‘𝑟){((RSpan‘𝑟)‘{𝑔})}) |
7 | | fvex 6781 |
. . . . . 6
⊢
(RSpan‘𝑅)
∈ V |
8 | 7 | rnex 7746 |
. . . . 5
⊢ ran
(RSpan‘𝑅) ∈
V |
9 | | p0ex 5310 |
. . . . 5
⊢ {∅}
∈ V |
10 | 8, 9 | unex 7587 |
. . . 4
⊢ (ran
(RSpan‘𝑅) ∪
{∅}) ∈ V |
11 | | iunss 4979 |
. . . . 5
⊢ (∪ 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}) ↔
∀𝑔 ∈
(Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪
{∅})) |
12 | | fvrn0 6796 |
. . . . . . 7
⊢
((RSpan‘𝑅)‘{𝑔}) ∈ (ran (RSpan‘𝑅) ∪ {∅}) |
13 | | snssi 4746 |
. . . . . . 7
⊢
(((RSpan‘𝑅)‘{𝑔}) ∈ (ran (RSpan‘𝑅) ∪ {∅}) →
{((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪
{∅})) |
14 | 12, 13 | ax-mp 5 |
. . . . . 6
⊢
{((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪
{∅}) |
15 | 14 | a1i 11 |
. . . . 5
⊢ (𝑔 ∈ (Base‘𝑅) → {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪
{∅})) |
16 | 11, 15 | mprgbir 3080 |
. . . 4
⊢ ∪ 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪
{∅}) |
17 | 10, 16 | ssexi 5249 |
. . 3
⊢ ∪ 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ∈ V |
18 | 5, 6, 17 | fvmpt 6869 |
. 2
⊢ (𝑅 ∈ Ring →
(LPIdeal‘𝑅) =
∪ 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})}) |
19 | | lpival.p |
. 2
⊢ 𝑃 = (LPIdeal‘𝑅) |
20 | | lpival.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
21 | | iuneq1 4945 |
. . . 4
⊢ (𝐵 = (Base‘𝑅) → ∪
𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} = ∪
𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})}) |
22 | 20, 21 | ax-mp 5 |
. . 3
⊢ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} = ∪
𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})} |
23 | | lpival.k |
. . . . . . 7
⊢ 𝐾 = (RSpan‘𝑅) |
24 | 23 | fveq1i 6769 |
. . . . . 6
⊢ (𝐾‘{𝑔}) = ((RSpan‘𝑅)‘{𝑔}) |
25 | 24 | sneqi 4577 |
. . . . 5
⊢ {(𝐾‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})} |
26 | 25 | a1i 11 |
. . . 4
⊢ (𝑔 ∈ (Base‘𝑅) → {(𝐾‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})}) |
27 | 26 | iuneq2i 4950 |
. . 3
⊢ ∪ 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})} = ∪
𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} |
28 | 22, 27 | eqtri 2767 |
. 2
⊢ ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})} = ∪
𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} |
29 | 18, 19, 28 | 3eqtr4g 2804 |
1
⊢ (𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 {(𝐾‘{𝑔})}) |