MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpival Structured version   Visualization version   GIF version

Theorem lpival 20011
Description: Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p 𝑃 = (LPIdeal‘𝑅)
lpival.k 𝐾 = (RSpan‘𝑅)
lpival.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
lpival (𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 {(𝐾‘{𝑔})})
Distinct variable groups:   𝑅,𝑔   𝑃,𝑔   𝐵,𝑔   𝑔,𝐾

Proof of Theorem lpival
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . 4 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
2 fveq2 6645 . . . . . 6 (𝑟 = 𝑅 → (RSpan‘𝑟) = (RSpan‘𝑅))
32fveq1d 6647 . . . . 5 (𝑟 = 𝑅 → ((RSpan‘𝑟)‘{𝑔}) = ((RSpan‘𝑅)‘{𝑔}))
43sneqd 4537 . . . 4 (𝑟 = 𝑅 → {((RSpan‘𝑟)‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})})
51, 4iuneq12d 4909 . . 3 (𝑟 = 𝑅 𝑔 ∈ (Base‘𝑟){((RSpan‘𝑟)‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})})
6 df-lpidl 20009 . . 3 LPIdeal = (𝑟 ∈ Ring ↦ 𝑔 ∈ (Base‘𝑟){((RSpan‘𝑟)‘{𝑔})})
7 fvex 6658 . . . . . 6 (RSpan‘𝑅) ∈ V
87rnex 7599 . . . . 5 ran (RSpan‘𝑅) ∈ V
9 p0ex 5250 . . . . 5 {∅} ∈ V
108, 9unex 7449 . . . 4 (ran (RSpan‘𝑅) ∪ {∅}) ∈ V
11 iunss 4932 . . . . 5 ( 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}) ↔ ∀𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}))
12 fvrn0 6673 . . . . . . 7 ((RSpan‘𝑅)‘{𝑔}) ∈ (ran (RSpan‘𝑅) ∪ {∅})
13 snssi 4701 . . . . . . 7 (((RSpan‘𝑅)‘{𝑔}) ∈ (ran (RSpan‘𝑅) ∪ {∅}) → {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}))
1412, 13ax-mp 5 . . . . . 6 {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅})
1514a1i 11 . . . . 5 (𝑔 ∈ (Base‘𝑅) → {((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅}))
1611, 15mprgbir 3121 . . . 4 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ⊆ (ran (RSpan‘𝑅) ∪ {∅})
1710, 16ssexi 5190 . . 3 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})} ∈ V
185, 6, 17fvmpt 6745 . 2 (𝑅 ∈ Ring → (LPIdeal‘𝑅) = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})})
19 lpival.p . 2 𝑃 = (LPIdeal‘𝑅)
20 lpival.b . . . 4 𝐵 = (Base‘𝑅)
21 iuneq1 4897 . . . 4 (𝐵 = (Base‘𝑅) → 𝑔𝐵 {(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})})
2220, 21ax-mp 5 . . 3 𝑔𝐵 {(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})}
23 lpival.k . . . . . . 7 𝐾 = (RSpan‘𝑅)
2423fveq1i 6646 . . . . . 6 (𝐾‘{𝑔}) = ((RSpan‘𝑅)‘{𝑔})
2524sneqi 4536 . . . . 5 {(𝐾‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})}
2625a1i 11 . . . 4 (𝑔 ∈ (Base‘𝑅) → {(𝐾‘{𝑔})} = {((RSpan‘𝑅)‘{𝑔})})
2726iuneq2i 4902 . . 3 𝑔 ∈ (Base‘𝑅){(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})}
2822, 27eqtri 2821 . 2 𝑔𝐵 {(𝐾‘{𝑔})} = 𝑔 ∈ (Base‘𝑅){((RSpan‘𝑅)‘{𝑔})}
2918, 19, 283eqtr4g 2858 1 (𝑅 ∈ Ring → 𝑃 = 𝑔𝐵 {(𝐾‘{𝑔})})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  cun 3879  wss 3881  c0 4243  {csn 4525   ciun 4881  ran crn 5520  cfv 6324  Basecbs 16475  Ringcrg 19290  RSpancrsp 19936  LPIdealclpidl 20007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fv 6332  df-lpidl 20009
This theorem is referenced by:  islpidl  20012
  Copyright terms: Public domain W3C validator