Detailed syntax breakdown of Definition df-lsp
| Step | Hyp | Ref
| Expression |
| 1 | | clspn 20969 |
. 2
class
LSpan |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vs |
. . . 4
setvar 𝑠 |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑤 |
| 6 | | cbs 17247 |
. . . . . 6
class
Base |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(Base‘𝑤) |
| 8 | 7 | cpw 4600 |
. . . 4
class 𝒫
(Base‘𝑤) |
| 9 | 4 | cv 1539 |
. . . . . . 7
class 𝑠 |
| 10 | | vt |
. . . . . . . 8
setvar 𝑡 |
| 11 | 10 | cv 1539 |
. . . . . . 7
class 𝑡 |
| 12 | 9, 11 | wss 3951 |
. . . . . 6
wff 𝑠 ⊆ 𝑡 |
| 13 | | clss 20929 |
. . . . . . 7
class
LSubSp |
| 14 | 5, 13 | cfv 6561 |
. . . . . 6
class
(LSubSp‘𝑤) |
| 15 | 12, 10, 14 | crab 3436 |
. . . . 5
class {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} |
| 16 | 15 | cint 4946 |
. . . 4
class ∩ {𝑡
∈ (LSubSp‘𝑤)
∣ 𝑠 ⊆ 𝑡} |
| 17 | 4, 8, 16 | cmpt 5225 |
. . 3
class (𝑠 ∈ 𝒫
(Base‘𝑤) ↦
∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡}) |
| 18 | 2, 3, 17 | cmpt 5225 |
. 2
class (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘𝑤) ↦
∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡})) |
| 19 | 1, 18 | wceq 1540 |
1
wff LSpan =
(𝑤 ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘𝑤) ↦
∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡})) |