HomeHome Metamath Proof Explorer
Theorem List (p. 208 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 20701-20800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremzringsubgval 20701 Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.)
= (-g‘ℤring)       ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋𝑌) = (𝑋 𝑌))
 
Theoremzringmpg 20702 The multiplication group of the ring of integers is the restriction of the multiplication group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.)
((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
 
Theoremprmirredlem 20703 A positive integer is irreducible over iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
𝐼 = (Irred‘ℤring)       (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))
 
Theoremdfprm2 20704 The positive irreducible elements of are the prime numbers. This is an alternative way to define . (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
𝐼 = (Irred‘ℤring)       ℙ = (ℕ ∩ 𝐼)
 
Theoremprmirred 20705 The irreducible elements of are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
𝐼 = (Irred‘ℤring)       (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ))
 
Theoremexpghm 20706* Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.)
𝑀 = (mulGrp‘ℂfld)    &   𝑈 = (𝑀s (ℂ ∖ {0}))       ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
 
Theoremmulgghm2 20707* The powers of a group element give a homomorphism from to a group. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
· = (.g𝑅)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅))
 
Theoremmulgrhm 20708* The powers of the element 1 give a ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
· = (.g𝑅)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
 
Theoremmulgrhm2 20709* The powers of the element 1 give the unique ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
· = (.g𝑅)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))    &    1 = (1r𝑅)       (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
 
10.8.3  Algebraic constructions based on the complex numbers
 
Syntaxczrh 20710 Map the rationals into a field, or the integers into a ring.
class ℤRHom
 
Syntaxczlm 20711 Augment an abelian group with vector space operations to turn it into a -module.
class ℤMod
 
Syntaxcchr 20712 Syntax for ring characteristic.
class chr
 
Syntaxczn 20713 The ring of integers modulo 𝑛.
class ℤ/n
 
Definitiondf-zrh 20714 Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 𝑛 = 1r + 1r + ... + 1r for integers (see also df-mulg 18710). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
ℤRHom = (𝑟 ∈ V ↦ (ℤring RingHom 𝑟))
 
Definitiondf-zlm 20715 Augment an abelian group with vector space operations to turn it into a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩))
 
Definitiondf-chr 20716 The characteristic of a ring is the smallest positive integer which is equal to 0 when interpreted in the ring, or 0 if there is no such positive integer. (Contributed by Stefan O'Rear, 5-Sep-2015.)
chr = (𝑔 ∈ V ↦ ((od‘𝑔)‘(1r𝑔)))
 
Definitiondf-zn 20717* Define the ring of integers mod 𝑛. This is literally the quotient ring of by the ideal 𝑛, but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
ℤ/nℤ = (𝑛 ∈ ℕ0ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩))
 
Theoremzrhval 20718 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
𝐿 = (ℤRHom‘𝑅)       𝐿 = (ℤring RingHom 𝑅)
 
Theoremzrhval2 20719* Alternate value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
𝐿 = (ℤRHom‘𝑅)    &    · = (.g𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 𝐿 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 )))
 
Theoremzrhmulg 20720 Value of the ℤRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐿 = (ℤRHom‘𝑅)    &    · = (.g𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿𝑁) = (𝑁 · 1 ))
 
Theoremzrhrhmb 20721 The ℤRHom homomorphism is the unique ring homomorphism from 𝑍. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 12-Jun-2019.)
𝐿 = (ℤRHom‘𝑅)       (𝑅 ∈ Ring → (𝐹 ∈ (ℤring RingHom 𝑅) ↔ 𝐹 = 𝐿))
 
Theoremzrhrhm 20722 The ℤRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 12-Jun-2019.)
𝐿 = (ℤRHom‘𝑅)       (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
 
Theoremzrh1 20723 Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝐿 = (ℤRHom‘𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → (𝐿‘1) = 1 )
 
Theoremzrh0 20724 Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝐿 = (ℤRHom‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → (𝐿‘0) = 0 )
 
Theoremzrhpropd 20725* The ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿))
 
Theoremzlmval 20726 Augment an abelian group with vector space operations to turn it into a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
𝑊 = (ℤMod‘𝐺)    &    · = (.g𝐺)       (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
 
Theoremzlmlem 20727 Lemma for zlmbas 20729 and zlmplusg 20731. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
𝑊 = (ℤMod‘𝐺)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ≠ (Scalar‘ndx)    &   (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)       (𝐸𝐺) = (𝐸𝑊)
 
TheoremzlmlemOLD 20728 Obsolete version of zlmlem 20727 as of 3-Nov-2024. Lemma for zlmbas 20729 and zlmplusg 20731. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑊 = (ℤMod‘𝐺)    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ    &   𝑁 < 5       (𝐸𝐺) = (𝐸𝑊)
 
Theoremzlmbas 20729 Base set of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
𝑊 = (ℤMod‘𝐺)    &   𝐵 = (Base‘𝐺)       𝐵 = (Base‘𝑊)
 
TheoremzlmbasOLD 20730 Obsolete version of zlmbas 20729 as of 3-Nov-2024. Base set of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑊 = (ℤMod‘𝐺)    &   𝐵 = (Base‘𝐺)       𝐵 = (Base‘𝑊)
 
Theoremzlmplusg 20731 Group operation of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
𝑊 = (ℤMod‘𝐺)    &    + = (+g𝐺)        + = (+g𝑊)
 
TheoremzlmplusgOLD 20732 Obsolete version of zlmbas 20729 as of 3-Nov-2024. Group operation of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑊 = (ℤMod‘𝐺)    &    + = (+g𝐺)        + = (+g𝑊)
 
Theoremzlmmulr 20733 Ring operation of a -module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
𝑊 = (ℤMod‘𝐺)    &    · = (.r𝐺)        · = (.r𝑊)
 
TheoremzlmmulrOLD 20734 Obsolete version of zlmbas 20729 as of 3-Nov-2024. Ring operation of a -module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑊 = (ℤMod‘𝐺)    &    · = (.r𝐺)        · = (.r𝑊)
 
Theoremzlmsca 20735 Scalar ring of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.)
𝑊 = (ℤMod‘𝐺)       (𝐺𝑉 → ℤring = (Scalar‘𝑊))
 
Theoremzlmvsca 20736 Scalar multiplication operation of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑊 = (ℤMod‘𝐺)    &    · = (.g𝐺)        · = ( ·𝑠𝑊)
 
Theoremzlmlmod 20737 The -module operation turns an arbitrary abelian group into a left module over . Also see zlmassa 21115. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑊 = (ℤMod‘𝐺)       (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)
 
Theoremchrval 20738 Definition substitution of the ring characteristic. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝑂 = (od‘𝑅)    &    1 = (1r𝑅)    &   𝐶 = (chr‘𝑅)       (𝑂1 ) = 𝐶
 
Theoremchrcl 20739 Closure of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015.)
𝐶 = (chr‘𝑅)       (𝑅 ∈ Ring → 𝐶 ∈ ℕ0)
 
Theoremchrid 20740 The canonical ring homomorphism applied to a ring's characteristic is zero. (Contributed by Mario Carneiro, 23-Sep-2015.)
𝐶 = (chr‘𝑅)    &   𝐿 = (ℤRHom‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → (𝐿𝐶) = 0 )
 
Theoremchrdvds 20741 The ring homomorphism is zero only at multiples of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015.)
𝐶 = (chr‘𝑅)    &   𝐿 = (ℤRHom‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐶𝑁 ↔ (𝐿𝑁) = 0 ))
 
Theoremchrcong 20742 If two integers are congruent relative to the ring characteristic, their images in the ring are the same. (Contributed by Mario Carneiro, 24-Sep-2015.)
𝐶 = (chr‘𝑅)    &   𝐿 = (ℤRHom‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀𝑁) ↔ (𝐿𝑀) = (𝐿𝑁)))
 
Theoremchrnzr 20743 Nonzero rings are precisely those with characteristic not 1. (Contributed by Stefan O'Rear, 6-Sep-2015.)
(𝑅 ∈ Ring → (𝑅 ∈ NzRing ↔ (chr‘𝑅) ≠ 1))
 
Theoremchrrhm 20744 The characteristic restriction on ring homomorphisms. (Contributed by Stefan O'Rear, 6-Sep-2015.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → (chr‘𝑆) ∥ (chr‘𝑅))
 
Theoremdomnchr 20745 The characteristic of a domain can only be zero or a prime. (Contributed by Stefan O'Rear, 6-Sep-2015.)
(𝑅 ∈ Domn → ((chr‘𝑅) = 0 ∨ (chr‘𝑅) ∈ ℙ))
 
Theoremznlidl 20746 The set 𝑛 is an ideal in . (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)       (𝑁 ∈ ℤ → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring))
 
Theoremzncrng2 20747 The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added to make it a Toset. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))       (𝑁 ∈ ℤ → 𝑈 ∈ CRing)
 
Theoremznval 20748 The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added to make it a Toset. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = ((𝐹 ∘ ≤ ) ∘ 𝐹)       (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))
 
Theoremznle 20749 The value of the ℤ/n structure. It is defined as the quotient ring ℤ / 𝑛, with an "artificial" ordering added to make it a Toset. (In other words, ℤ/n is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑈) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = (le‘𝑌)       (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
 
Theoremznval2 20750 Self-referential expression for the ℤ/n structure. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &    = (le‘𝑌)       (𝑁 ∈ ℕ0𝑌 = (𝑈 sSet ⟨(le‘ndx), ⟩))
 
Theoremznbaslem 20751 Lemma for znbas 20760. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ≠ (le‘ndx)       (𝑁 ∈ ℕ0 → (𝐸𝑈) = (𝐸𝑌))
 
TheoremznbaslemOLD 20752 Obsolete version of znbaslem 20751 as of 3-Nov-2024. Lemma for znbas 20760. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐸 = Slot 𝐾    &   𝐾 ∈ ℕ    &   𝐾 < 10       (𝑁 ∈ ℕ0 → (𝐸𝑈) = (𝐸𝑌))
 
Theoremznbas2 20753 The base set of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (Base‘𝑈) = (Base‘𝑌))
 
Theoremznbas2OLD 20754 Obsolete version of znbas2 20753 as of 3-Nov-2024. The base set of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (Base‘𝑈) = (Base‘𝑌))
 
Theoremznadd 20755 The additive structure of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (+g𝑈) = (+g𝑌))
 
TheoremznaddOLD 20756 Obsolete version of znadd 20755 as of 3-Nov-2024. The additive structure of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (+g𝑈) = (+g𝑌))
 
Theoremznmul 20757 The multiplicative structure of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (.r𝑈) = (.r𝑌))
 
TheoremznmulOLD 20758 Obsolete version of znadd 20755 as of 3-Nov-2024. The multiplicative structure of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (.r𝑈) = (.r𝑌))
 
Theoremznzrh 20759 The ring homomorphism of ℤ/n is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (ℤRHom‘𝑈) = (ℤRHom‘𝑌))
 
Theoremznbas 20760 The base set of ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝑅 = (ℤring ~QG (𝑆‘{𝑁}))       (𝑁 ∈ ℕ0 → (ℤ / 𝑅) = (Base‘𝑌))
 
Theoremzncrng 20761 ℤ/n is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0𝑌 ∈ CRing)
 
Theoremznzrh2 20762* The ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &    = (ℤring ~QG (𝑆‘{𝑁}))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐿 = (ℤRHom‘𝑌)       (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ))
 
Theoremznzrhval 20763 The ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑆 = (RSpan‘ℤring)    &    = (ℤring ~QG (𝑆‘{𝑁}))    &   𝑌 = (ℤ/nℤ‘𝑁)    &   𝐿 = (ℤRHom‘𝑌)       ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) = [𝐴] )
 
Theoremznzrhfo 20764 The ring homomorphism is a surjection onto ℤ / 𝑛. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)    &   𝐿 = (ℤRHom‘𝑌)       (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
 
Theoremzncyg 20765 The group ℤ / 𝑛 is cyclic for all 𝑛 (including 𝑛 = 0). (Contributed by Mario Carneiro, 21-Apr-2016.)
𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0𝑌 ∈ CycGrp)
 
Theoremzndvds 20766 Express equality of equivalence classes in ℤ / 𝑛 in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐿 = (ℤRHom‘𝑌)       ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))
 
Theoremzndvds0 20767 Special case of zndvds 20766 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐿 = (ℤRHom‘𝑌)    &    0 = (0g𝑌)       ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) = 0𝑁𝐴))
 
Theoremznf1o 20768 The function 𝐹 enumerates all equivalence classes in ℤ/n for each 𝑛. When 𝑛 = 0, ℤ / 0ℤ = ℤ / {0} ≈ ℤ so we let 𝑊 = ℤ; otherwise 𝑊 = {0, ..., 𝑛 − 1} enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)    &   𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))       (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝐵)
 
Theoremzzngim 20769 The ring homomorphism is an isomorphism for 𝑁 = 0. (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 13-Jun-2019.)
𝑌 = (ℤ/nℤ‘0)    &   𝐿 = (ℤRHom‘𝑌)       𝐿 ∈ (ℤring GrpIso 𝑌)
 
Theoremznle2 20770 The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = (le‘𝑌)       (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
 
Theoremznleval 20771 The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = (le‘𝑌)    &   𝑋 = (Base‘𝑌)       (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
 
Theoremznleval2 20772 The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = (le‘𝑌)    &   𝑋 = (Base‘𝑌)       ((𝑁 ∈ ℕ0𝐴𝑋𝐵𝑋) → (𝐴 𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
 
Theoremzntoslem 20773 Lemma for zntos 20774. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)    &   𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))    &    = (le‘𝑌)    &   𝑋 = (Base‘𝑌)       (𝑁 ∈ ℕ0𝑌 ∈ Toset)
 
Theoremzntos 20774 The ℤ/n structure is a totally ordered set. (The order is not respected by the operations, except in the case 𝑁 = 0 when it coincides with the ordering on .) (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0𝑌 ∈ Toset)
 
Theoremznhash 20775 The ℤ/n structure has 𝑛 elements. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)       (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁)
 
Theoremznfi 20776 The ℤ/n structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)       (𝑁 ∈ ℕ → 𝐵 ∈ Fin)
 
Theoremznfld 20777 The ℤ/n structure is a finite field when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℙ → 𝑌 ∈ Field)
 
Theoremznidomb 20778 The ℤ/n structure is a domain (and hence a field) precisely when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ))
 
Theoremznchr 20779 Cyclic rings are defined by their characteristic. (Contributed by Stefan O'Rear, 6-Sep-2015.)
𝑌 = (ℤ/nℤ‘𝑁)       (𝑁 ∈ ℕ0 → (chr‘𝑌) = 𝑁)
 
Theoremznunit 20780 The units of ℤ/n are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝑈 = (Unit‘𝑌)    &   𝐿 = (ℤRHom‘𝑌)       ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1))
 
Theoremznunithash 20781 The size of the unit group of ℤ/n. (Contributed by Mario Carneiro, 19-Apr-2016.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝑈 = (Unit‘𝑌)       (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁))
 
Theoremznrrg 20782 The regular elements of ℤ/n are exactly the units. (This theorem fails for 𝑁 = 0, where all nonzero integers are regular, but only ±1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝑈 = (Unit‘𝑌)    &   𝐸 = (RLReg‘𝑌)       (𝑁 ∈ ℕ → 𝐸 = 𝑈)
 
Theoremcygznlem1 20783* Lemma for cygzn 20787. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)    &   𝑌 = (ℤ/nℤ‘𝑁)    &    · = (.g𝐺)    &   𝐿 = (ℤRHom‘𝑌)    &   𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}    &   (𝜑𝐺 ∈ CycGrp)    &   (𝜑𝑋𝐸)       ((𝜑 ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝐿𝐾) = (𝐿𝑀) ↔ (𝐾 · 𝑋) = (𝑀 · 𝑋)))
 
Theoremcygznlem2a 20784* Lemma for cygzn 20787. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐵 = (Base‘𝐺)    &   𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)    &   𝑌 = (ℤ/nℤ‘𝑁)    &    · = (.g𝐺)    &   𝐿 = (ℤRHom‘𝑌)    &   𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}    &   (𝜑𝐺 ∈ CycGrp)    &   (𝜑𝑋𝐸)    &   𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)       (𝜑𝐹:(Base‘𝑌)⟶𝐵)
 
Theoremcygznlem2 20785* Lemma for cygzn 20787. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by Mario Carneiro, 23-Dec-2016.)
𝐵 = (Base‘𝐺)    &   𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)    &   𝑌 = (ℤ/nℤ‘𝑁)    &    · = (.g𝐺)    &   𝐿 = (ℤRHom‘𝑌)    &   𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}    &   (𝜑𝐺 ∈ CycGrp)    &   (𝜑𝑋𝐸)    &   𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)       ((𝜑𝑀 ∈ ℤ) → (𝐹‘(𝐿𝑀)) = (𝑀 · 𝑋))
 
Theoremcygznlem3 20786* A cyclic group with 𝑛 elements is isomorphic to ℤ / 𝑛. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)    &   𝑌 = (ℤ/nℤ‘𝑁)    &    · = (.g𝐺)    &   𝐿 = (ℤRHom‘𝑌)    &   𝐸 = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛 · 𝑥)) = 𝐵}    &   (𝜑𝐺 ∈ CycGrp)    &   (𝜑𝑋𝐸)    &   𝐹 = ran (𝑚 ∈ ℤ ↦ ⟨(𝐿𝑚), (𝑚 · 𝑋)⟩)       (𝜑𝐺𝑔 𝑌)
 
Theoremcygzn 20787 A cyclic group with 𝑛 elements is isomorphic to ℤ / 𝑛, and an infinite cyclic group is isomorphic to ℤ / 0ℤ ≈ ℤ. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝑁 = if(𝐵 ∈ Fin, (♯‘𝐵), 0)    &   𝑌 = (ℤ/nℤ‘𝑁)       (𝐺 ∈ CycGrp → 𝐺𝑔 𝑌)
 
Theoremcygth 20788* The "fundamental theorem of cyclic groups". Cyclic groups are exactly the additive groups ℤ / 𝑛, for 0 ≤ 𝑛 (where 𝑛 = 0 is the infinite cyclic group ), up to isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
(𝐺 ∈ CycGrp ↔ ∃𝑛 ∈ ℕ0 𝐺𝑔 (ℤ/nℤ‘𝑛))
 
Theoremcyggic 20789 Cyclic groups are isomorphic precisely when they have the same order. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &   𝐶 = (Base‘𝐻)       ((𝐺 ∈ CycGrp ∧ 𝐻 ∈ CycGrp) → (𝐺𝑔 𝐻𝐵𝐶))
 
Theoremfrgpcyg 20790 A free group is cyclic iff it has zero or one generator. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 18-Apr-2021.)
𝐺 = (freeGrp‘𝐼)       (𝐼 ≼ 1o𝐺 ∈ CycGrp)
 
10.8.4  Signs as subgroup of the complex numbers
 
Theoremcnmsgnsubg 20791 The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.)
𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))       {1, -1} ∈ (SubGrp‘𝑀)
 
Theoremcnmsgnbas 20792 The base set of the sign subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015.)
𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})       {1, -1} = (Base‘𝑈)
 
Theoremcnmsgngrp 20793 The group of signs under multiplication. (Contributed by Stefan O'Rear, 28-Aug-2015.)
𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})       𝑈 ∈ Grp
 
Theorempsgnghm 20794 The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.)
𝑆 = (SymGrp‘𝐷)    &   𝑁 = (pmSgn‘𝐷)    &   𝐹 = (𝑆s dom 𝑁)    &   𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})       (𝐷𝑉𝑁 ∈ (𝐹 GrpHom 𝑈))
 
Theorempsgnghm2 20795 The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.)
𝑆 = (SymGrp‘𝐷)    &   𝑁 = (pmSgn‘𝐷)    &   𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})       (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom 𝑈))
 
Theorempsgninv 20796 The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.)
𝑆 = (SymGrp‘𝐷)    &   𝑁 = (pmSgn‘𝐷)    &   𝑃 = (Base‘𝑆)       ((𝐷 ∈ Fin ∧ 𝐹𝑃) → (𝑁𝐹) = (𝑁𝐹))
 
Theorempsgnco 20797 Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018.)
𝑆 = (SymGrp‘𝐷)    &   𝑁 = (pmSgn‘𝐷)    &   𝑃 = (Base‘𝑆)       ((𝐷 ∈ Fin ∧ 𝐹𝑃𝐺𝑃) → (𝑁‘(𝐹𝐺)) = ((𝑁𝐹) · (𝑁𝐺)))
 
10.8.5  Embedding of permutation signs into a ring
 
Theoremzrhpsgnmhm 20798 Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018.)
((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅)))
 
Theoremzrhpsgninv 20799 The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.)
𝑃 = (Base‘(SymGrp‘𝑁))    &   𝑌 = (ℤRHom‘𝑅)    &   𝑆 = (pmSgn‘𝑁)       ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = ((𝑌𝑆)‘𝐹))
 
Theoremevpmss 20800 Even permutations are permutations. (Contributed by SO, 9-Jul-2018.)
𝑆 = (SymGrp‘𝐷)    &   𝑃 = (Base‘𝑆)       (pmEven‘𝐷) ⊆ 𝑃
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >