Home | Metamath
Proof Explorer Theorem List (p. 208 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | zrhpsgnmhm 20701 | Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018.) |
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅))) | ||
Theorem | zrhpsgninv 20702 | The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘◡𝐹) = ((𝑌 ∘ 𝑆)‘𝐹)) | ||
Theorem | evpmss 20703 | Even permutations are permutations. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ (pmEven‘𝐷) ⊆ 𝑃 | ||
Theorem | psgnevpmb 20704 | A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) | ||
Theorem | psgnodpm 20705 | A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) = -1) | ||
Theorem | psgnevpm 20706 | A permutation which is even has sign 1. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝐷)) → (𝑁‘𝐹) = 1) | ||
Theorem | psgnodpmr 20707 | If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑁 = (pmSgn‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = -1) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) | ||
Theorem | zrhpsgnevpm 20708 | The sign of an even permutation embedded into a ring is the multiplicative neutral element of the ring. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (pmEven‘𝑁)) → ((𝑌 ∘ 𝑆)‘𝐹) = 1 ) | ||
Theorem | zrhpsgnodpm 20709 | The sign of an odd permutation embedded into a ring is the additive inverse of the multiplicative neutral element of the ring. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑌 = (ℤRHom‘𝑅) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝐼 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) | ||
Theorem | cofipsgn 20710 | Composition of any class 𝑌 and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018.) (Revised by AV, 3-Jul-2022.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) | ||
Theorem | zrhpsgnelbas 20711 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅)) | ||
Theorem | zrhcopsgnelbas 20712 | Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) (Proof shortened by AV, 3-Jul-2022.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑌 = (ℤRHom‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅)) | ||
Theorem | evpmodpmf1o 20713* | The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷))) | ||
Theorem | pmtrodpm 20714 | A transposition is an odd permutation. (Contributed by SO, 9-Jul-2018.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑃 = (Base‘𝑆) & ⊢ 𝑇 = ran (pmTrsp‘𝐷) ⇒ ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) | ||
Theorem | psgnfix1 20715* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑇(𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑤))) | ||
Theorem | psgnfix2 20716* | A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑅𝑄 = (𝑍 Σg 𝑤))) | ||
Theorem | psgndiflemB 20717* | Lemma 1 for psgndif 20719. (Contributed by AV, 27-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈)))) | ||
Theorem | psgndiflemA 20718* | Lemma 2 for psgndif 20719. (Contributed by AV, 31-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) & ⊢ 𝑍 = (SymGrp‘𝑁) & ⊢ 𝑅 = ran (pmTrsp‘𝑁) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) ∧ 𝑈 ∈ Word 𝑅) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑈) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑈))))) | ||
Theorem | psgndif 20719* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆‘𝑄))) | ||
Theorem | copsgndif 20720* | Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.) (Revised by AV, 5-Jul-2022.) |
⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) & ⊢ 𝑆 = (pmSgn‘𝑁) & ⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ((𝑌 ∘ 𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑄))) | ||
Syntax | crefld 20721 | Extend class notation with the field of real numbers. |
class ℝfld | ||
Definition | df-refld 20722 | The field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ ℝfld = (ℂfld ↾s ℝ) | ||
Theorem | rebase 20723 | The base of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ ℝ = (Base‘ℝfld) | ||
Theorem | remulg 20724 | The multiplication (group power) operation of the group of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑁(.g‘ℝfld)𝐴) = (𝑁 · 𝐴)) | ||
Theorem | resubdrg 20725 | The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | ||
Theorem | resubgval 20726 | Subtraction in the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ − = (-g‘ℝfld) ⇒ ⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
Theorem | replusg 20727 | The addition operation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ + = (+g‘ℝfld) | ||
Theorem | remulr 20728 | The multiplication operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ · = (.r‘ℝfld) | ||
Theorem | re0g 20729 | The neutral element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ 0 = (0g‘ℝfld) | ||
Theorem | re1r 20730 | The multiplicative neutral element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ 1 = (1r‘ℝfld) | ||
Theorem | rele2 20731 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ ≤ = (le‘ℝfld) | ||
Theorem | relt 20732 | The ordering relation of the field of reals. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ < = (lt‘ℝfld) | ||
Theorem | reds 20733 | The distance of the field of reals. (Contributed by Thierry Arnoux, 20-Jun-2019.) |
⊢ (abs ∘ − ) = (dist‘ℝfld) | ||
Theorem | redvr 20734 | The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴(/r‘ℝfld)𝐵) = (𝐴 / 𝐵)) | ||
Theorem | retos 20735 | The real numbers are a totally ordered set. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
⊢ ℝfld ∈ Toset | ||
Theorem | refld 20736 | The real numbers form a field. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ ℝfld ∈ Field | ||
Theorem | refldcj 20737 | The conjugation operation of the field of real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ ∗ = (*𝑟‘ℝfld) | ||
Theorem | recrng 20738 | The real numbers form a star ring. (Contributed by Thierry Arnoux, 19-Apr-2019.) |
⊢ ℝfld ∈ *-Ring | ||
Theorem | regsumsupp 20739* | The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019.) (Proof shortened by AV, 19-Jul-2019.) |
⊢ ((𝐹:𝐼⟶ℝ ∧ 𝐹 finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld Σg 𝐹) = Σ𝑥 ∈ (𝐹 supp 0)(𝐹‘𝑥)) | ||
Theorem | rzgrp 20740 | The quotient group ℝ / ℤ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
⊢ 𝑅 = (ℝfld /s (ℝfld ~QG ℤ)) ⇒ ⊢ 𝑅 ∈ Grp | ||
Syntax | cphl 20741 | Extend class notation with class of all pre-Hilbert spaces. |
class PreHil | ||
Syntax | cipf 20742 | Extend class notation with inner product function. |
class ·if | ||
Definition | df-phl 20743* | Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011.) |
⊢ PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣 ↦ (𝑦ℎ𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 = (0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)))} | ||
Definition | df-ipf 20744* | Define the inner product function. Usually we will use ·𝑖 directly instead of ·if, and they have the same behavior in most cases. The main advantage of ·if is that it is a guaranteed function (ipffn 20768), while ·𝑖 only has closure (ipcl 20750). (Contributed by Mario Carneiro, 12-Aug-2015.) |
⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) | ||
Theorem | isphl 20745* | The predicate "is a generalized pre-Hilbert (inner product) space". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ∗ = (*𝑟‘𝐹) & ⊢ 𝑍 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ 𝑉 ((𝑦 ∈ 𝑉 ↦ (𝑦 , 𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥 , 𝑥) = 𝑍 → 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝑉 ( ∗ ‘(𝑥 , 𝑦)) = (𝑦 , 𝑥)))) | ||
Theorem | phllvec 20746 | A pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LVec) | ||
Theorem | phllmod 20747 | A pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | ||
Theorem | phlsrng 20748 | The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) | ||
Theorem | phllmhm 20749* | The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) | ||
Theorem | ipcl 20750 | Closure of the inner product operation in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ 𝐾) | ||
Theorem | ipcj 20751 | Conjugate of an inner product in a pre-Hilbert space. Equation I1 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ( ∗ ‘(𝐴 , 𝐵)) = (𝐵 , 𝐴)) | ||
Theorem | iporthcom 20752 | Orthogonality (meaning inner product is 0) is commutative. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 , 𝐵) = 𝑍 ↔ (𝐵 , 𝐴) = 𝑍)) | ||
Theorem | ip0l 20753 | Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) | ||
Theorem | ip0r 20754 | Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → (𝐴 , 0 ) = 𝑍) | ||
Theorem | ipeq0 20755 | The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of [Kreyszig] p. 129. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑍 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝐴 , 𝐴) = 𝑍 ↔ 𝐴 = 0 )) | ||
Theorem | ipdir 20756 | Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) | ||
Theorem | ipdi 20757 | Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 + 𝐶)) = ((𝐴 , 𝐵) ⨣ (𝐴 , 𝐶))) | ||
Theorem | ip2di 20758 | Distributive law for inner product. (Contributed by NM, 17-Apr-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ ⨣ = (+g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) , (𝐶 + 𝐷)) = (((𝐴 , 𝐶) ⨣ (𝐵 , 𝐷)) ⨣ ((𝐴 , 𝐷) ⨣ (𝐵 , 𝐶)))) | ||
Theorem | ipsubdir 20759 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶))) | ||
Theorem | ipsubdi 20760 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶))) | ||
Theorem | ip2subdi 20761 | Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (-g‘𝐹) & ⊢ + = (+g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ PreHil) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) , (𝐶 − 𝐷)) = (((𝐴 , 𝐶) + (𝐵 , 𝐷))𝑆((𝐴 , 𝐷) + (𝐵 , 𝐶)))) | ||
Theorem | ipass 20762 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶))) | ||
Theorem | ipassr 20763 | "Associative" law for second argument of inner product (compare ipass 20762). (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝐹) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → (𝐴 , (𝐶 · 𝐵)) = ((𝐴 , 𝐵) × ( ∗ ‘𝐶))) | ||
Theorem | ipassr2 20764 | "Associative" law for inner product. Conjugate version of ipassr 20763. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝐹) & ⊢ ∗ = (*𝑟‘𝐹) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾)) → ((𝐴 , 𝐵) × 𝐶) = (𝐴 , (( ∗ ‘𝐶) · 𝐵))) | ||
Theorem | ipffval 20765* | The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ · = (·if‘𝑊) ⇒ ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) | ||
Theorem | ipfval 20766 | The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ · = (·if‘𝑊) ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 · 𝑌) = (𝑋 , 𝑌)) | ||
Theorem | ipfeq 20767 | If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ · = (·if‘𝑊) ⇒ ⊢ ( , Fn (𝑉 × 𝑉) → · = , ) | ||
Theorem | ipffn 20768 | The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·if‘𝑊) ⇒ ⊢ , Fn (𝑉 × 𝑉) | ||
Theorem | phlipf 20769 | The inner product operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·if‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑊 ∈ PreHil → , :(𝑉 × 𝑉)⟶𝐾) | ||
Theorem | ip2eq 20770* | Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ , = (·𝑖‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ 𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵))) | ||
Theorem | isphld 20771* | Properties that determine a pre-Hilbert (inner product) space. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 7-Oct-2015.) |
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + = (+g‘𝑊)) & ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝐼 = (·𝑖‘𝑊)) & ⊢ (𝜑 → 0 = (0g‘𝑊)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐾 = (Base‘𝐹)) & ⊢ (𝜑 → ⨣ = (+g‘𝐹)) & ⊢ (𝜑 → × = (.r‘𝐹)) & ⊢ (𝜑 → ∗ = (*𝑟‘𝐹)) & ⊢ (𝜑 → 𝑂 = (0g‘𝐹)) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐹 ∈ *-Ring) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥𝐼𝑦) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐾 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝑞 · 𝑥) + 𝑦)𝐼𝑧) = ((𝑞 × (𝑥𝐼𝑧)) ⨣ (𝑦𝐼𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ (𝑥𝐼𝑥) = 𝑂) → 𝑥 = 0 ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ( ∗ ‘(𝑥𝐼𝑦)) = (𝑦𝐼𝑥)) ⇒ ⊢ (𝜑 → 𝑊 ∈ PreHil) | ||
Theorem | phlpropd 20772* | If two structures have the same components (properties), one is a pre-Hilbert space iff the other one is. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(·𝑖‘𝐾)𝑦) = (𝑥(·𝑖‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ PreHil ↔ 𝐿 ∈ PreHil)) | ||
Theorem | ssipeq 20773 | The inner product on a subspace equals the inner product on the parent space. (Contributed by AV, 19-Oct-2021.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑃 = (·𝑖‘𝑋) ⇒ ⊢ (𝑈 ∈ 𝑆 → 𝑃 = , ) | ||
Theorem | phssipval 20774 | The inner product on a subspace in terms of the inner product on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝑃 = (·𝑖‘𝑋) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈)) → (𝐴𝑃𝐵) = (𝐴 , 𝐵)) | ||
Theorem | phssip 20775 | The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ · = (·if‘𝑊) & ⊢ 𝑃 = (·if‘𝑋) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) | ||
Theorem | phlssphl 20776 | A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ PreHil) | ||
Syntax | cocv 20777 | Extend class notation with orthocomplement of a subset. |
class ocv | ||
Syntax | ccss 20778 | Extend class notation with set of closed subspaces. |
class ClSubSp | ||
Syntax | cthl 20779 | Extend class notation with the Hilbert lattice. |
class toHL | ||
Definition | df-ocv 20780* | Define the orthocomplement function in a given set (which usually is a pre-Hilbert space): it associates with a subset its orthogonal subset (which in the case of a closed linear subspace is its orthocomplement). (Contributed by NM, 7-Oct-2011.) |
⊢ ocv = (ℎ ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘ℎ) ↦ {𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))})) | ||
Definition | df-css 20781* | Define the set of closed (linear) subspaces of a given pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) |
⊢ ClSubSp = (ℎ ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocv‘ℎ)‘((ocv‘ℎ)‘𝑠))}) | ||
Definition | df-thl 20782 | Define the Hilbert lattice of closed subspaces of a given pre-Hilbert space. (Contributed by Mario Carneiro, 25-Oct-2015.) |
⊢ toHL = (ℎ ∈ V ↦ ((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉)) | ||
Theorem | ocvfval 20783* | The orthocomplement operation. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐹) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → ⊥ = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 })) | ||
Theorem | ocvval 20784* | Value of the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐹) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ (𝑆 ⊆ 𝑉 → ( ⊥ ‘𝑆) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑆 (𝑥 , 𝑦) = 0 }) | ||
Theorem | elocv 20785* | Elementhood in the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐹) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ (𝐴 ∈ ( ⊥ ‘𝑆) ↔ (𝑆 ⊆ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑆 (𝐴 , 𝑥) = 0 )) | ||
Theorem | ocvi 20786 | Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐹) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ((𝐴 ∈ ( ⊥ ‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝐴 , 𝐵) = 0 ) | ||
Theorem | ocvss 20787 | The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ( ⊥ ‘𝑆) ⊆ 𝑉 | ||
Theorem | ocvocv 20788 | A set is contained in its double orthocomplement. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ ( ⊥ ‘( ⊥ ‘𝑆))) | ||
Theorem | ocvlss 20789 | The orthocomplement of a subset is a linear subspace of the pre-Hilbert space. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘𝑆) ∈ 𝐿) | ||
Theorem | ocv2ss 20790 | Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ (𝑇 ⊆ 𝑆 → ( ⊥ ‘𝑆) ⊆ ( ⊥ ‘𝑇)) | ||
Theorem | ocvin 20791 | An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐿) → (𝑆 ∩ ( ⊥ ‘𝑆)) = { 0 }) | ||
Theorem | ocvsscon 20792 | Two ways to say that 𝑆 and 𝑇 are orthogonal subspaces. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑉) → (𝑆 ⊆ ( ⊥ ‘𝑇) ↔ 𝑇 ⊆ ( ⊥ ‘𝑆))) | ||
Theorem | ocvlsp 20793 | The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉) → ( ⊥ ‘(𝑁‘𝑆)) = ( ⊥ ‘𝑆)) | ||
Theorem | ocv0 20794 | The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ( ⊥ ‘∅) = 𝑉 | ||
Theorem | ocvz 20795 | The orthocomplement of the zero subspace. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → ( ⊥ ‘{ 0 }) = 𝑉) | ||
Theorem | ocv1 20796 | The orthocomplement of the base set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊥ = (ocv‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ PreHil → ( ⊥ ‘𝑉) = { 0 }) | ||
Theorem | unocv 20797 | The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) ⇒ ⊢ ( ⊥ ‘(𝐴 ∪ 𝐵)) = (( ⊥ ‘𝐴) ∩ ( ⊥ ‘𝐵)) | ||
Theorem | iunocv 20798* | The orthocomplement of an indexed union. (Contributed by Mario Carneiro, 23-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ( ⊥ ‘∪ 𝑥 ∈ 𝐴 𝐵) = (𝑉 ∩ ∩ 𝑥 ∈ 𝐴 ( ⊥ ‘𝐵)) | ||
Theorem | cssval 20799* | The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝐶 = {𝑠 ∣ 𝑠 = ( ⊥ ‘( ⊥ ‘𝑠))}) | ||
Theorem | iscss 20800 | The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.) |
⊢ ⊥ = (ocv‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘( ⊥ ‘𝑆)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |