| Metamath
Proof Explorer Theorem List (p. 208 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sdrgid 20701 | Every division ring is a division subring of itself. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝑅)) | ||
| Theorem | sdrgss 20702 | A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) | ||
| Theorem | sdrgbas 20703 | Base set of a sub-division-ring structure. (Contributed by SN, 19-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 = (Base‘𝑆)) | ||
| Theorem | issdrg2 20704* | Property of a division subring (closure version). (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐼 = (invr‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑆 ∖ { 0 })(𝐼‘𝑥) ∈ 𝑆)) | ||
| Theorem | sdrgunit 20705 | A unit of a sub-division-ring is a nonzero element of the subring. (Contributed by SN, 19-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ))) | ||
| Theorem | imadrhmcl 20706 | The image of a (nontrivial) division ring homomorphism is a division ring. (Contributed by SN, 17-Feb-2025.) |
| ⊢ 𝑅 = (𝑁 ↾s (𝐹 “ 𝑆)) & ⊢ 0 = (0g‘𝑁) & ⊢ (𝜑 → 𝐹 ∈ (𝑀 RingHom 𝑁)) & ⊢ (𝜑 → 𝑆 ∈ (SubDRing‘𝑀)) & ⊢ (𝜑 → ran 𝐹 ≠ { 0 }) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
| Theorem | fldsdrgfld 20707 | A sub-division-ring of a field is itself a field, so it is a subfield. We can therefore use SubDRing to express subfields. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ Field) | ||
| Theorem | acsfn1p 20708* | Construction of a closure rule from a one-parameter partial operation. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
| Theorem | subrgacs 20709 | Closure property of subrings. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵)) | ||
| Theorem | sdrgacs 20710 | Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵)) | ||
| Theorem | cntzsdrg 20711 | Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubDRing‘𝑅)) | ||
| Theorem | subdrgint 20712* | The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝐿 = (𝑅 ↾s ∩ 𝑆) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → (𝑅 ↾s 𝑠) ∈ DivRing) ⇒ ⊢ (𝜑 → 𝐿 ∈ DivRing) | ||
| Theorem | sdrgint 20713 | The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubDRing‘𝑅)) | ||
| Theorem | primefld 20714 | The smallest sub division ring of a division ring, here named 𝑃, is a field, called the Prime Field of 𝑅. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝑃 = (𝑅 ↾s ∩ (SubDRing‘𝑅)) ⇒ ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ Field) | ||
| Theorem | primefld0cl 20715 | The prime field contains the zero element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.) |
| ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 0 ∈ ∩ (SubDRing‘𝑅)) | ||
| Theorem | primefld1cl 20716 | The prime field contains the unity element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.) |
| ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 1 ∈ ∩ (SubDRing‘𝑅)) | ||
| Syntax | cabv 20717 | The set of absolute values on a ring. |
| class AbsVal | ||
| Definition | df-abv 20718* | Define the set of absolute values on a ring. An absolute value is a generalization of the usual absolute value function df-abs 15202 to arbitrary rings. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | ||
| Theorem | abvfval 20719* | Value of the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | ||
| Theorem | isabv 20720* | Elementhood in the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) | ||
| Theorem | isabvd 20721* | Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 4-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 = (AbsVal‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 0 = (0g‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ) & ⊢ (𝜑 → (𝐹‘ 0 ) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 0 < (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐴) | ||
| Theorem | abvrcl 20722 | Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) | ||
| Theorem | abvfge0 20723 | An absolute value is a function from the ring to the nonnegative real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶(0[,)+∞)) | ||
| Theorem | abvf 20724 | An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶ℝ) | ||
| Theorem | abvcl 20725 | An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) | ||
| Theorem | abvge0 20726 | The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 0 ≤ (𝐹‘𝑋)) | ||
| Theorem | abveq0 20727 | The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) | ||
| Theorem | abvne0 20728 | The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ≠ 0) | ||
| Theorem | abvgt0 20729 | The absolute value of a nonzero number is strictly positive. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 0 < (𝐹‘𝑋)) | ||
| Theorem | abvmul 20730 | An absolute value distributes under multiplication. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) · (𝐹‘𝑌))) | ||
| Theorem | abvtri 20731 | An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) | ||
| Theorem | abv0 20732 | The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) | ||
| Theorem | abv1z 20733 | The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) | ||
| Theorem | abv1 20734 | The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) → (𝐹‘ 1 ) = 1) | ||
| Theorem | abvneg 20735 | The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁‘𝑋)) = (𝐹‘𝑋)) | ||
| Theorem | abvsubtri 20736 | An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ − = (-g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) | ||
| Theorem | abvrec 20737 | The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) = (1 / (𝐹‘𝑋))) | ||
| Theorem | abvdiv 20738 | The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹‘𝑋) / (𝐹‘𝑌))) | ||
| Theorem | abvdom 20739 | Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) | ||
| Theorem | abvres 20740 | The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝑆 = (𝑅 ↾s 𝐶) & ⊢ 𝐵 = (AbsVal‘𝑆) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝐶 ∈ (SubRing‘𝑅)) → (𝐹 ↾ 𝐶) ∈ 𝐵) | ||
| Theorem | abvtrivd 20741* | The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦 · 𝑧) ≠ 0 ) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐴) | ||
| Theorem | abvtrivg 20742* | The trivial absolute value. This theorem is not true for rings with zero divisors, which violate the multiplication axiom; abvdom 20739 is the converse of this theorem. (Contributed by SN, 25-Jun-2025.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) ⇒ ⊢ (𝑅 ∈ Domn → 𝐹 ∈ 𝐴) | ||
| Theorem | abvtriv 20743* | The trivial absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) ⇒ ⊢ (𝑅 ∈ DivRing → 𝐹 ∈ 𝐴) | ||
| Theorem | abvpropd 20744* | If two structures have the same ring components, they have the same collection of absolute values. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿)) | ||
| Theorem | abvn0b 20745 | Another characterization of domains, hinted at in abvtrivg 20742: a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) | ||
| Syntax | cstf 20746 | Extend class notation with the functionalization of the *-ring involution. |
| class *rf | ||
| Syntax | csr 20747 | Extend class notation with class of all *-rings. |
| class *-Ring | ||
| Definition | df-staf 20748* | Define the functionalization of the involution in a star ring. This is not strictly necessary but by having *𝑟 as an actual function we can state the principal properties of an involution much more cleanly. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ *rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟‘𝑓)‘𝑥))) | ||
| Definition | df-srng 20749* | Define class of all star rings. A star ring is a ring with an involution (conjugation) function. Involution (unlike say the ring zero) is not unique and therefore must be added as a new component to the ring. For example, two possible involutions for complex numbers are the identity function and complex conjugation. Definition of involution in [Holland95] p. 204. (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
| ⊢ *-Ring = {𝑓 ∣ [(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖)} | ||
| Theorem | staffval 20750* | The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ ∙ = (*rf‘𝑅) ⇒ ⊢ ∙ = (𝑥 ∈ 𝐵 ↦ ( ∗ ‘𝑥)) | ||
| Theorem | stafval 20751 | The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ ∙ = (*rf‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝐵 → ( ∙ ‘𝐴) = ( ∗ ‘𝐴)) | ||
| Theorem | staffn 20752 | The functionalization is equal to the original function, if it is a function on the right base set. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ ∙ = (*rf‘𝑅) ⇒ ⊢ ( ∗ Fn 𝐵 → ∙ = ∗ ) | ||
| Theorem | issrng 20753 | The predicate "is a star ring". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∗ = (*rf‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) | ||
| Theorem | srngrhm 20754 | The involution function in a star ring is an antiautomorphism. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∗ = (*rf‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ∗ ∈ (𝑅 RingHom 𝑂)) | ||
| Theorem | srngring 20755 | A star ring is a ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ (𝑅 ∈ *-Ring → 𝑅 ∈ Ring) | ||
| Theorem | srngcnv 20756 | The involution function in a star ring is its own inverse function. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*rf‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ∗ = ◡ ∗ ) | ||
| Theorem | srngf1o 20757 | The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*rf‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ∗ :𝐵–1-1-onto→𝐵) | ||
| Theorem | srngcl 20758 | The involution function in a star ring is closed in the ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘𝑋) ∈ 𝐵) | ||
| Theorem | srngnvl 20759 | The involution function in a star ring is an involution. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘( ∗ ‘𝑋)) = 𝑋) | ||
| Theorem | srngadd 20760 | The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 + 𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) | ||
| Theorem | srngmul 20761 | The involution function in a star ring distributes over multiplication, with a change in the order of the factors. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 · 𝑌)) = (( ∗ ‘𝑌) · ( ∗ ‘𝑋))) | ||
| Theorem | srng1 20762 | The conjugate of the ring identity is the identity. (This is sometimes taken as an axiom, and indeed the proof here follows because we defined *𝑟 to be a ring homomorphism, which preserves 1; nevertheless, it is redundant, as can be seen from the proof of issrngd 20764.) (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*𝑟‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ( ∗ ‘ 1 ) = 1 ) | ||
| Theorem | srng0 20763 | The conjugate of the ring zero is zero. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ ∗ = (*𝑟‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ( ∗ ‘ 0 ) = 0 ) | ||
| Theorem | issrngd 20764* | Properties that determine a star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2015.) |
| ⊢ (𝜑 → 𝐾 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → ∗ = (*𝑟‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → ( ∗ ‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → ( ∗ ‘(𝑥 + 𝑦)) = (( ∗ ‘𝑥) + ( ∗ ‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → ( ∗ ‘(𝑥 · 𝑦)) = (( ∗ ‘𝑦) · ( ∗ ‘𝑥))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → ( ∗ ‘( ∗ ‘𝑥)) = 𝑥) ⇒ ⊢ (𝜑 → 𝑅 ∈ *-Ring) | ||
| Theorem | idsrngd 20765* | A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( ∗ ‘𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝑅 ∈ *-Ring) | ||
| Syntax | clmod 20766 | Extend class notation with class of all left modules. |
| class LMod | ||
| Syntax | cscaf 20767 | The functionalization of the scalar multiplication operation. |
| class ·sf | ||
| Definition | df-lmod 20768* | Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013.) |
| ⊢ LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][( ·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))} | ||
| Definition | df-scaf 20769* | Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠 ‘𝑔)𝑦))) | ||
| Theorem | islmod 20770* | The predicate "is a left module". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) | ||
| Theorem | lmodlema 20771 | Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌))) | ||
| Theorem | islmodd 20772* | Properties that determine a left module. See note in isgrpd2 18888 regarding the 𝜑 on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014.) |
| ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + = (+g‘𝑊)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → ⨣ = (+g‘𝐹)) & ⊢ (𝜑 → × = (.r‘𝐹)) & ⊢ (𝜑 → 1 = (1r‘𝐹)) & ⊢ (𝜑 → 𝐹 ∈ Ring) & ⊢ (𝜑 → 𝑊 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉) → (𝑥 · 𝑦) ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ⨣ 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 × 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 1 · 𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝑊 ∈ LMod) | ||
| Theorem | lmodgrp 20773 | A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | ||
| Theorem | lmodring 20774 | The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) | ||
| Theorem | lmodfgrp 20775 | The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) | ||
| Theorem | lmodgrpd 20776 | A left module is a group. (Contributed by SN, 16-May-2024.) |
| ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑊 ∈ Grp) | ||
| Theorem | lmodbn0 20777 | The base set of a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) | ||
| Theorem | lmodacl 20778 | Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ + = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) | ||
| Theorem | lmodmcl 20779 | Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 · 𝑌) ∈ 𝐾) | ||
| Theorem | lmodsn0 20780 | The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 𝐵 ≠ ∅) | ||
| Theorem | lmodvacl 20781 | Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) | ||
| Theorem | lmodass 20782 | Left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
| Theorem | lmodlcan 20783 | Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑍 + 𝑋) = (𝑍 + 𝑌) ↔ 𝑋 = 𝑌)) | ||
| Theorem | lmodvscl 20784 | Closure of scalar product for a left module. (hvmulcl 30942 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) | ||
| Theorem | lmodvscld 20785 | Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑅 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝑉) | ||
| Theorem | scaffval 20786* | The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ∙ = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ (𝑥 · 𝑦)) | ||
| Theorem | scafval 20787 | The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = (𝑋 · 𝑌)) | ||
| Theorem | scafeq 20788 | If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ( · Fn (𝐾 × 𝐵) → ∙ = · ) | ||
| Theorem | scaffn 20789 | The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) ⇒ ⊢ ∙ Fn (𝐾 × 𝐵) | ||
| Theorem | lmodscaf 20790 | The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ∙ = ( ·sf ‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → ∙ :(𝐾 × 𝐵)⟶𝐵) | ||
| Theorem | lmodvsdi 20791 | Distributive law for scalar product (left-distributivity). (ax-hvdistr1 30937 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) | ||
| Theorem | lmodvsdir 20792 | Distributive law for scalar product (right-distributivity). (ax-hvdistr1 30937 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) | ||
| Theorem | lmodvsass 20793 | Associative law for scalar product. (ax-hvmulass 30936 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ × = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) | ||
| Theorem | lmod0cl 20794 | The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) | ||
| Theorem | lmod1cl 20795 | The ring unity in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod → 1 ∈ 𝐾) | ||
| Theorem | lmodvs1 20796 | Scalar product with the ring unity. (ax-hvmulid 30935 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) | ||
| Theorem | lmod0vcl 20797 | The zero vector is a vector. (ax-hv0cl 30932 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) | ||
| Theorem | lmod0vlid 20798 | Left identity law for the zero vector. (hvaddlid 30952 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) | ||
| Theorem | lmod0vrid 20799 | Right identity law for the zero vector. (ax-hvaddid 30933 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) | ||
| Theorem | lmod0vid 20800 | Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑋 + 𝑋) = 𝑋 ↔ 0 = 𝑋)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |