| Metamath
Proof Explorer Theorem List (p. 208 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49931) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fldc 20701* | The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.) |
| ⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat) | ||
| Theorem | fldhmsubc 20702* | According to df-subc 17721, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17749 and subcss2 17752). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.) |
| ⊢ 𝐶 = (𝑈 ∩ DivRing) & ⊢ 𝐽 = (𝑟 ∈ 𝐶, 𝑠 ∈ 𝐶 ↦ (𝑟 RingHom 𝑠)) & ⊢ 𝐷 = (𝑈 ∩ Field) & ⊢ 𝐹 = (𝑟 ∈ 𝐷, 𝑠 ∈ 𝐷 ↦ (𝑟 RingHom 𝑠)) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽))) | ||
| Syntax | csdrg 20703 | Syntax for subfields (sub-division-rings). |
| class SubDRing | ||
| Definition | df-sdrg 20704* | Define the function associating with a ring the set of its sub-division-rings. A sub-division-ring of a ring is a subset of its base set which is a division ring when equipped with the induced structure (sum, multiplication, zero, and unity). If a ring is commutative (resp., a field), then its sub-division-rings are commutative (resp., are fields) (fldsdrgfld 20715), so we do not make a specific definition for subfields. (Contributed by Stefan O'Rear, 3-Oct-2015.) TODO: extend this definition to a function with domain V or at least Ring and not only DivRing. |
| ⊢ SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing}) | ||
| Theorem | issdrg 20705 | Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.) |
| ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) | ||
| Theorem | sdrgrcl 20706 | Reverse closure for a sub-division-ring predicate. (Contributed by SN, 19-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing) | ||
| Theorem | sdrgdrng 20707 | A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) | ||
| Theorem | sdrgsubrg 20708 | A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) | ||
| Theorem | sdrgid 20709 | Every division ring is a division subring of itself. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝑅)) | ||
| Theorem | sdrgss 20710 | A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) | ||
| Theorem | sdrgbas 20711 | Base set of a sub-division-ring structure. (Contributed by SN, 19-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 = (Base‘𝑆)) | ||
| Theorem | issdrg2 20712* | Property of a division subring (closure version). (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐼 = (invr‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑆 ∖ { 0 })(𝐼‘𝑥) ∈ 𝑆)) | ||
| Theorem | sdrgunit 20713 | A unit of a sub-division-ring is a nonzero element of the subring. (Contributed by SN, 19-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Unit‘𝑆) ⇒ ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ≠ 0 ))) | ||
| Theorem | imadrhmcl 20714 | The image of a (nontrivial) division ring homomorphism is a division ring. (Contributed by SN, 17-Feb-2025.) |
| ⊢ 𝑅 = (𝑁 ↾s (𝐹 “ 𝑆)) & ⊢ 0 = (0g‘𝑁) & ⊢ (𝜑 → 𝐹 ∈ (𝑀 RingHom 𝑁)) & ⊢ (𝜑 → 𝑆 ∈ (SubDRing‘𝑀)) & ⊢ (𝜑 → ran 𝐹 ≠ { 0 }) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
| Theorem | fldsdrgfld 20715 | A sub-division-ring of a field is itself a field, so it is a subfield. We can therefore use SubDRing to express subfields. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| ⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ Field) | ||
| Theorem | acsfn1p 20716* | Construction of a closure rule from a one-parameter partial operation. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑌 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎 ∩ 𝑌)𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) | ||
| Theorem | subrgacs 20717 | Closure property of subrings. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵)) | ||
| Theorem | sdrgacs 20718 | Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵)) | ||
| Theorem | cntzsdrg 20719 | Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubDRing‘𝑅)) | ||
| Theorem | subdrgint 20720* | The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝐿 = (𝑅 ↾s ∩ 𝑆) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑆 ⊆ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑆) → (𝑅 ↾s 𝑠) ∈ DivRing) ⇒ ⊢ (𝜑 → 𝐿 ∈ DivRing) | ||
| Theorem | sdrgint 20721 | The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubDRing‘𝑅)) | ||
| Theorem | primefld 20722 | The smallest sub division ring of a division ring, here named 𝑃, is a field, called the Prime Field of 𝑅. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝑃 = (𝑅 ↾s ∩ (SubDRing‘𝑅)) ⇒ ⊢ (𝑅 ∈ DivRing → 𝑃 ∈ Field) | ||
| Theorem | primefld0cl 20723 | The prime field contains the zero element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.) |
| ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 0 ∈ ∩ (SubDRing‘𝑅)) | ||
| Theorem | primefld1cl 20724 | The prime field contains the unity element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.) |
| ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ DivRing → 1 ∈ ∩ (SubDRing‘𝑅)) | ||
| Syntax | cabv 20725 | The set of absolute values on a ring. |
| class AbsVal | ||
| Definition | df-abv 20726* | Define the set of absolute values on a ring. An absolute value is a generalization of the usual absolute value function df-abs 15145 to arbitrary rings. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | ||
| Theorem | abvfval 20727* | Value of the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 (((𝑓‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) | ||
| Theorem | isabv 20728* | Elementhood in the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐹 ∈ 𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥 ∈ 𝐵 (((𝐹‘𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))))))) | ||
| Theorem | isabvd 20729* | Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 4-Dec-2014.) |
| ⊢ (𝜑 → 𝐴 = (AbsVal‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 0 = (0g‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ) & ⊢ (𝜑 → (𝐹‘ 0 ) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 0 < (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) · (𝐹‘𝑦))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 )) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹‘𝑥) + (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐴) | ||
| Theorem | abvrcl 20730 | Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝑅 ∈ Ring) | ||
| Theorem | abvfge0 20731 | An absolute value is a function from the ring to the nonnegative real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶(0[,)+∞)) | ||
| Theorem | abvf 20732 | An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶ℝ) | ||
| Theorem | abvcl 20733 | An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) | ||
| Theorem | abvge0 20734 | The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 0 ≤ (𝐹‘𝑋)) | ||
| Theorem | abveq0 20735 | The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 0 )) | ||
| Theorem | abvne0 20736 | The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ≠ 0) | ||
| Theorem | abvgt0 20737 | The absolute value of a nonzero number is strictly positive. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 0 < (𝐹‘𝑋)) | ||
| Theorem | abvmul 20738 | An absolute value distributes under multiplication. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) · (𝐹‘𝑌))) | ||
| Theorem | abvtri 20739 | An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) | ||
| Theorem | abv0 20740 | The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) | ||
| Theorem | abv1z 20741 | The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → (𝐹‘ 1 ) = 1) | ||
| Theorem | abv1 20742 | The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) → (𝐹‘ 1 ) = 1) | ||
| Theorem | abvneg 20743 | The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁‘𝑋)) = (𝐹‘𝑋)) | ||
| Theorem | abvsubtri 20744 | An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ − = (-g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 − 𝑌)) ≤ ((𝐹‘𝑋) + (𝐹‘𝑌))) | ||
| Theorem | abvrec 20745 | The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) = (1 / (𝐹‘𝑋))) | ||
| Theorem | abvdiv 20746 | The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹‘𝑋) / (𝐹‘𝑌))) | ||
| Theorem | abvdom 20747 | Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) | ||
| Theorem | abvres 20748 | The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝑆 = (𝑅 ↾s 𝐶) & ⊢ 𝐵 = (AbsVal‘𝑆) ⇒ ⊢ ((𝐹 ∈ 𝐴 ∧ 𝐶 ∈ (SubRing‘𝑅)) → (𝐹 ↾ 𝐶) ∈ 𝐵) | ||
| Theorem | abvtrivd 20749* | The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦 · 𝑧) ≠ 0 ) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐴) | ||
| Theorem | abvtrivg 20750* | The trivial absolute value. This theorem is not true for rings with zero divisors, which violate the multiplication axiom; abvdom 20747 is the converse of this theorem. (Contributed by SN, 25-Jun-2025.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) ⇒ ⊢ (𝑅 ∈ Domn → 𝐹 ∈ 𝐴) | ||
| Theorem | abvtriv 20751* | The trivial absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) ⇒ ⊢ (𝑅 ∈ DivRing → 𝐹 ∈ 𝐴) | ||
| Theorem | abvpropd 20752* | If two structures have the same ring components, they have the same collection of absolute values. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿)) | ||
| Theorem | abvn0b 20753 | Another characterization of domains, hinted at in abvtrivg 20750: a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐴 = (AbsVal‘𝑅) ⇒ ⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅)) | ||
| Syntax | cstf 20754 | Extend class notation with the functionalization of the *-ring involution. |
| class *rf | ||
| Syntax | csr 20755 | Extend class notation with class of all *-rings. |
| class *-Ring | ||
| Definition | df-staf 20756* | Define the functionalization of the involution in a star ring. This is not strictly necessary but by having *𝑟 as an actual function we can state the principal properties of an involution much more cleanly. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ *rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟‘𝑓)‘𝑥))) | ||
| Definition | df-srng 20757* | Define class of all star rings. A star ring is a ring with an involution (conjugation) function. Involution (unlike say the ring zero) is not unique and therefore must be added as a new component to the ring. For example, two possible involutions for complex numbers are the identity function and complex conjugation. Definition of involution in [Holland95] p. 204. (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
| ⊢ *-Ring = {𝑓 ∣ [(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖)} | ||
| Theorem | staffval 20758* | The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ ∙ = (*rf‘𝑅) ⇒ ⊢ ∙ = (𝑥 ∈ 𝐵 ↦ ( ∗ ‘𝑥)) | ||
| Theorem | stafval 20759 | The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ ∙ = (*rf‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝐵 → ( ∙ ‘𝐴) = ( ∗ ‘𝐴)) | ||
| Theorem | staffn 20760 | The functionalization is equal to the original function, if it is a function on the right base set. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ ∙ = (*rf‘𝑅) ⇒ ⊢ ( ∗ Fn 𝐵 → ∙ = ∗ ) | ||
| Theorem | issrng 20761 | The predicate "is a star ring". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∗ = (*rf‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) | ||
| Theorem | srngrhm 20762 | The involution function in a star ring is an antiautomorphism. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∗ = (*rf‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ∗ ∈ (𝑅 RingHom 𝑂)) | ||
| Theorem | srngring 20763 | A star ring is a ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ (𝑅 ∈ *-Ring → 𝑅 ∈ Ring) | ||
| Theorem | srngcnv 20764 | The involution function in a star ring is its own inverse function. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*rf‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ∗ = ◡ ∗ ) | ||
| Theorem | srngf1o 20765 | The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*rf‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ∗ :𝐵–1-1-onto→𝐵) | ||
| Theorem | srngcl 20766 | The involution function in a star ring is closed in the ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘𝑋) ∈ 𝐵) | ||
| Theorem | srngnvl 20767 | The involution function in a star ring is an involution. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵) → ( ∗ ‘( ∗ ‘𝑋)) = 𝑋) | ||
| Theorem | srngadd 20768 | The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 + 𝑌)) = (( ∗ ‘𝑋) + ( ∗ ‘𝑌))) | ||
| Theorem | srngmul 20769 | The involution function in a star ring distributes over multiplication, with a change in the order of the factors. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*𝑟‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ∗ ‘(𝑋 · 𝑌)) = (( ∗ ‘𝑌) · ( ∗ ‘𝑋))) | ||
| Theorem | srng1 20770 | The conjugate of the ring identity is the identity. (This is sometimes taken as an axiom, and indeed the proof here follows because we defined *𝑟 to be a ring homomorphism, which preserves 1; nevertheless, it is redundant, as can be seen from the proof of issrngd 20772.) (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ ∗ = (*𝑟‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ( ∗ ‘ 1 ) = 1 ) | ||
| Theorem | srng0 20771 | The conjugate of the ring zero is zero. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| ⊢ ∗ = (*𝑟‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ *-Ring → ( ∗ ‘ 0 ) = 0 ) | ||
| Theorem | issrngd 20772* | Properties that determine a star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2015.) |
| ⊢ (𝜑 → 𝐾 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → ∗ = (*𝑟‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → ( ∗ ‘𝑥) ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → ( ∗ ‘(𝑥 + 𝑦)) = (( ∗ ‘𝑥) + ( ∗ ‘𝑦))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → ( ∗ ‘(𝑥 · 𝑦)) = (( ∗ ‘𝑦) · ( ∗ ‘𝑥))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → ( ∗ ‘( ∗ ‘𝑥)) = 𝑥) ⇒ ⊢ (𝜑 → 𝑅 ∈ *-Ring) | ||
| Theorem | idsrngd 20773* | A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( ∗ ‘𝑥) = 𝑥) ⇒ ⊢ (𝜑 → 𝑅 ∈ *-Ring) | ||
| Syntax | corng 20774 | Extend class notation with the class of all ordered rings. |
| class oRing | ||
| Syntax | cofld 20775 | Extend class notation with the class of all ordered fields. |
| class oField | ||
| Definition | df-orng 20776* | Define class of all ordered rings. An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ oRing = {𝑟 ∈ (Ring ∩ oGrp) ∣ [(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))} | ||
| Definition | df-ofld 20777 | Define class of all ordered fields. An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.) |
| ⊢ oField = (Field ∩ oRing) | ||
| Theorem | isorng 20778* | An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ≤ = (le‘𝑅) ⇒ ⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) | ||
| Theorem | orngring 20779 | An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝑅 ∈ oRing → 𝑅 ∈ Ring) | ||
| Theorem | orngogrp 20780 | An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝑅 ∈ oRing → 𝑅 ∈ oGrp) | ||
| Theorem | isofld 20781 | An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) | ||
| Theorem | orngmul 20782 | In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ≤ = (le‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ oRing ∧ (𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌)) → 0 ≤ (𝑋 · 𝑌)) | ||
| Theorem | orngsqr 20783 | In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ ≤ = (le‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵) → 0 ≤ (𝑋 · 𝑋)) | ||
| Theorem | ornglmulle 20784 | In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ ≤ = (le‘𝑅) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 0 ≤ 𝑍) ⇒ ⊢ (𝜑 → (𝑍 · 𝑋) ≤ (𝑍 · 𝑌)) | ||
| Theorem | orngrmulle 20785 | In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ ≤ = (le‘𝑅) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 0 ≤ 𝑍) ⇒ ⊢ (𝜑 → (𝑋 · 𝑍) ≤ (𝑌 · 𝑍)) | ||
| Theorem | ornglmullt 20786 | In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ < = (lt‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 < 𝑌) & ⊢ (𝜑 → 0 < 𝑍) ⇒ ⊢ (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌)) | ||
| Theorem | orngrmullt 20787 | In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ < = (lt‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 < 𝑌) & ⊢ (𝜑 → 0 < 𝑍) ⇒ ⊢ (𝜑 → (𝑋 · 𝑍) < (𝑌 · 𝑍)) | ||
| Theorem | orngmullt 20788 | In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ < = (lt‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ oRing) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑋) & ⊢ (𝜑 → 0 < 𝑌) ⇒ ⊢ (𝜑 → 0 < (𝑋 · 𝑌)) | ||
| Theorem | ofldfld 20789 | An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ (𝐹 ∈ oField → 𝐹 ∈ Field) | ||
| Theorem | ofldtos 20790 | An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ (𝐹 ∈ oField → 𝐹 ∈ Toset) | ||
| Theorem | orng0le1 20791 | In an ordered ring, the ring unity is positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ 0 = (0g‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ ≤ = (le‘𝐹) ⇒ ⊢ (𝐹 ∈ oRing → 0 ≤ 1 ) | ||
| Theorem | ofldlt1 20792 | In an ordered field, the ring unity is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ 0 = (0g‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ < = (lt‘𝐹) ⇒ ⊢ (𝐹 ∈ oField → 0 < 1 ) | ||
| Theorem | suborng 20793 | Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ((𝑅 ∈ oRing ∧ (𝑅 ↾s 𝐴) ∈ Ring) → (𝑅 ↾s 𝐴) ∈ oRing) | ||
| Theorem | subofld 20794 | Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
| ⊢ ((𝐹 ∈ oField ∧ (𝐹 ↾s 𝐴) ∈ Field) → (𝐹 ↾s 𝐴) ∈ oField) | ||
| Syntax | clmod 20795 | Extend class notation with class of all left modules. |
| class LMod | ||
| Syntax | cscaf 20796 | The functionalization of the scalar multiplication operation. |
| class ·sf | ||
| Definition | df-lmod 20797* | Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013.) |
| ⊢ LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][( ·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))} | ||
| Definition | df-scaf 20798* | Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| ⊢ ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠 ‘𝑔)𝑦))) | ||
| Theorem | islmod 20799* | The predicate "is a left module". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤)))) | ||
| Theorem | lmodlema 20800 | Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |