HomeHome Metamath Proof Explorer
Theorem List (p. 208 of 497)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30845)
  Hilbert Space Explorer  Hilbert Space Explorer
(30846-32368)
  Users' Mathboxes  Users' Mathboxes
(32369-49617)
 

Theorem List for Metamath Proof Explorer - 20701-20800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremisdrng2 20701 A division ring can equivalently be defined as a ring such that the nonzero elements form a group under multiplication (from which it follows that this is the same group as the group of units). (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))       (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ Grp))
 
Theoremdrngprop 20702 If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 28-Dec-2014.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)    &   (.r𝐾) = (.r𝐿)       (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing)
 
Theoremdrngmgp 20703 A division ring contains a multiplicative group. (Contributed by NM, 8-Sep-2011.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))       (𝑅 ∈ DivRing → 𝐺 ∈ Grp)
 
Theoremdrngid 20704 A division ring's unity is the identity element of its multiplicative group. (Contributed by NM, 7-Sep-2011.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s (𝐵 ∖ { 0 }))       (𝑅 ∈ DivRing → 1 = (0g𝐺))
 
Theoremdrngunz 20705 A division ring's unity is different from its zero. (Contributed by NM, 8-Sep-2011.)
0 = (0g𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ DivRing → 10 )
 
Theoremdrngnzr 20706 A division ring is a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
(𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
 
Theoremdrngdomn 20707 A division ring is a domain. (Contributed by Mario Carneiro, 29-Mar-2015.)
(𝑅 ∈ DivRing → 𝑅 ∈ Domn)
 
Theoremdrngmcl 20708 The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011.) (Proof shortened by SN, 25-Jun-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ DivRing ∧ 𝑋 ∈ (𝐵 ∖ { 0 }) ∧ 𝑌 ∈ (𝐵 ∖ { 0 })) → (𝑋 · 𝑌) ∈ (𝐵 ∖ { 0 }))
 
TheoremdrngmclOLD 20709 Obsolete version of drngmcl 20708 as of 25-Jun-2025. The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ DivRing ∧ 𝑋 ∈ (𝐵 ∖ { 0 }) ∧ 𝑌 ∈ (𝐵 ∖ { 0 })) → (𝑋 · 𝑌) ∈ (𝐵 ∖ { 0 }))
 
Theoremdrngid2 20710 Properties showing that an element 𝐼 is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ DivRing → ((𝐼𝐵𝐼0 ∧ (𝐼 · 𝐼) = 𝐼) ↔ 1 = 𝐼))
 
Theoremdrnginvrcl 20711 Closure of the multiplicative inverse in a division ring. (reccl 11901 analog). (Contributed by NM, 19-Apr-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ∈ 𝐵)
 
Theoremdrnginvrn0 20712 The multiplicative inverse in a division ring is nonzero. (recne0 11907 analog). (Contributed by NM, 19-Apr-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ≠ 0 )
 
Theoremdrnginvrcld 20713 Closure of the multiplicative inverse in a division ring. (reccld 12008 analog). (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑋0 )       (𝜑 → (𝐼𝑋) ∈ 𝐵)
 
Theoremdrnginvrl 20714 Property of the multiplicative inverse in a division ring. (recid2 11909 analog). (Contributed by NM, 19-Apr-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ((𝐼𝑋) · 𝑋) = 1 )
 
Theoremdrnginvrr 20715 Property of the multiplicative inverse in a division ring. (recid 11908 analog). (Contributed by NM, 19-Apr-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝑋 · (𝐼𝑋)) = 1 )
 
Theoremdrnginvrld 20716 Property of the multiplicative inverse in a division ring. (recid2d 12011 analog). (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑋0 )       (𝜑 → ((𝐼𝑋) · 𝑋) = 1 )
 
Theoremdrnginvrrd 20717 Property of the multiplicative inverse in a division ring. (recidd 12010 analog). (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑋0 )       (𝜑 → (𝑋 · (𝐼𝑋)) = 1 )
 
Theoremdrngmul0or 20718 A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014.) (Proof shortened by SN, 25-Jun-2025.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
 
Theoremdrngmul0orOLD 20719 Obsolete version of drngmul0or 20718 as of 25-Jun-2025. (Contributed by NM, 8-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
 
Theoremdrngmulne0 20720 A product is nonzero iff both its factors are nonzero. (Contributed by NM, 18-Oct-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋 · 𝑌) ≠ 0 ↔ (𝑋0𝑌0 )))
 
Theoremdrngmuleq0 20721 An element is zero iff its product with a nonzero element is zero. (Contributed by NM, 8-Oct-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑌0 )       (𝜑 → ((𝑋 · 𝑌) = 0𝑋 = 0 ))
 
Theoremopprdrng 20722 The opposite of a division ring is also a division ring. (Contributed by NM, 18-Oct-2014.)
𝑂 = (oppr𝑅)       (𝑅 ∈ DivRing ↔ 𝑂 ∈ DivRing)
 
Theoremisdrngd 20723* Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element 𝑥 should have a left-inverse 𝐼(𝑥). See isdrngrd 20724 for the characterization using right-inverses. (Contributed by NM, 2-Aug-2013.) Remove hypothesis. (Revised by SN, 19-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑0 = (0g𝑅))    &   (𝜑1 = (1r𝑅))    &   (𝜑𝑅 ∈ Ring)    &   ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )    &   (𝜑10 )    &   ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼 · 𝑥) = 1 )       (𝜑𝑅 ∈ DivRing)
 
Theoremisdrngrd 20724* Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element 𝑥 should have a right-inverse 𝐼(𝑥). See isdrngd 20723 for the characterization using left-inverses. (Contributed by NM, 10-Aug-2013.) Remove hypothesis. (Revised by SN, 19-Feb-2025.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑0 = (0g𝑅))    &   (𝜑1 = (1r𝑅))    &   (𝜑𝑅 ∈ Ring)    &   ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )    &   (𝜑10 )    &   ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = 1 )       (𝜑𝑅 ∈ DivRing)
 
TheoremisdrngdOLD 20725* Obsolete version of isdrngd 20723 as of 19-Feb-2025. (Contributed by NM, 2-Aug-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑0 = (0g𝑅))    &   (𝜑1 = (1r𝑅))    &   (𝜑𝑅 ∈ Ring)    &   ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )    &   (𝜑10 )    &   ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )    &   ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝐼 · 𝑥) = 1 )       (𝜑𝑅 ∈ DivRing)
 
TheoremisdrngrdOLD 20726* Obsolete version of isdrngrd 20724 as of 19-Feb-2025. (Contributed by NM, 10-Aug-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑0 = (0g𝑅))    &   (𝜑1 = (1r𝑅))    &   (𝜑𝑅 ∈ Ring)    &   ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝑥 · 𝑦) ≠ 0 )    &   (𝜑10 )    &   ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑥0 )) → 𝐼0 )    &   ((𝜑 ∧ (𝑥𝐵𝑥0 )) → (𝑥 · 𝐼) = 1 )       (𝜑𝑅 ∈ DivRing)
 
Theoremdrngpropd 20727* If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing))
 
Theoremfldpropd 20728* If two structures have the same group components (properties), one is a field iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (𝐾 ∈ Field ↔ 𝐿 ∈ Field))
 
Theoremfldidom 20729 A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015.) (Proof shortened by SN, 11-Nov-2024.)
(𝑅 ∈ Field → 𝑅 ∈ IDomn)
 
Theoremfidomndrnglem 20730* Lemma for fidomndrng 20731. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &    = (∥r𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ Domn)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))    &   𝐹 = (𝑥𝐵 ↦ (𝑥 · 𝐴))       (𝜑𝐴 1 )
 
Theoremfidomndrng 20731 A finite domain is a division ring. Note that Wedderburn's little theorem (not proved) states that finite division rings are fields. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝐵 = (Base‘𝑅)       (𝐵 ∈ Fin → (𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing))
 
Theoremfiidomfld 20732 A finite integral domain is a field. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝐵 = (Base‘𝑅)       (𝐵 ∈ Fin → (𝑅 ∈ IDomn ↔ 𝑅 ∈ Field))
 
Theoremrng1nnzr 20733 The (smallest) structure representing a zero ring is not a nonzero ring. (Contributed by AV, 29-Apr-2019.)
𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}       (𝑍𝑉𝑀 ∉ NzRing)
 
Theoremring1zr 20734 The only (unital) ring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). Note: The assumption 𝑅 ∈ Ring could be weakened if a definition of a non-unital ring ("Rng") was available (it would be sufficient that the multiplication is closed). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) (Proof shortened by AV, 7-Feb-2020.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    = (.r𝑅)       (((𝑅 ∈ Ring ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
 
Theoremrngen1zr 20735 The only (unital) ring with one element is the zero ring (at least if its operations are internal binary operations). Note: The assumption 𝑅 ∈ Ring could be weakened if a definition of a non-unital ring ("Rng") was available (it would be sufficient that the multiplication is closed). (Contributed by FL, 14-Feb-2010.) (Revised by AV, 25-Jan-2020.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    = (.r𝑅)       (((𝑅 ∈ Ring ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 ≈ 1o ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
 
Theoremringen1zr 20736 The only unital ring with one element is the zero ring (at least if its operations are internal binary operations). Note: The assumption 𝑅 ∈ Ring could be weakened if a definition of a non-unital ring ("Rng") was available (it would be sufficient that the multiplication is closed). (Contributed by FL, 15-Feb-2010.) (Revised by AV, 25-Jan-2020.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    = (.r𝑅)    &   𝑍 = (0g𝑅)       ((𝑅 ∈ Ring ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → (𝐵 ≈ 1o ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
 
Theoremrng1nfld 20737 The zero ring is not a field. (Contributed by AV, 29-Apr-2019.)
𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}       (𝑍𝑉𝑀 ∉ Field)
 
Theoremissubdrg 20738* Characterize the subfields of a division ring. (Contributed by Mario Carneiro, 3-Dec-2014.)
𝑆 = (𝑅s 𝐴)    &    0 = (0g𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (𝑆 ∈ DivRing ↔ ∀𝑥 ∈ (𝐴 ∖ { 0 })(𝐼𝑥) ∈ 𝐴))
 
Theoremdrhmsubc 20739* According to df-subc 17823, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17851 and subcss2 17854). Therefore, the set of division ring homomorphisms is a "subcategory" of the category of (unital) rings. (Contributed by AV, 20-Feb-2020.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉𝐽 ∈ (Subcat‘(RingCat‘𝑈)))
 
Theoremdrngcat 20740* The restriction of the category of (unital) rings to the set of division ring homomorphisms is a category, the "category of division rings". (Contributed by AV, 20-Feb-2020.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → ((RingCat‘𝑈) ↾cat 𝐽) ∈ Cat)
 
Theoremfldcat 20741* The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))    &   𝐷 = (𝑈 ∩ Field)    &   𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → ((RingCat‘𝑈) ↾cat 𝐹) ∈ Cat)
 
Theoremfldc 20742* The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))    &   𝐷 = (𝑈 ∩ Field)    &   𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉 → (((RingCat‘𝑈) ↾cat 𝐽) ↾cat 𝐹) ∈ Cat)
 
Theoremfldhmsubc 20743* According to df-subc 17823, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17851 and subcss2 17854). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.)
𝐶 = (𝑈 ∩ DivRing)    &   𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))    &   𝐷 = (𝑈 ∩ Field)    &   𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))       (𝑈𝑉𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)))
 
10.4.2  Sub-division rings
 
Syntaxcsdrg 20744 Syntax for subfields (sub-division-rings).
class SubDRing
 
Definitiondf-sdrg 20745* Define the function associating with a ring the set of its sub-division-rings. A sub-division-ring of a ring is a subset of its base set which is a division ring when equipped with the induced structure (sum, multiplication, zero, and unity). If a ring is commutative (resp., a field), then its sub-division-rings are commutative (resp., are fields) (fldsdrgfld 20756), so we do not make a specific definition for subfields. (Contributed by Stefan O'Rear, 3-Oct-2015.) TODO: extend this definition to a function with domain V or at least Ring and not only DivRing.
SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤s 𝑠) ∈ DivRing})
 
Theoremissdrg 20746 Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.)
(𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing))
 
Theoremsdrgrcl 20747 Reverse closure for a sub-division-ring predicate. (Contributed by SN, 19-Feb-2025.)
(𝐴 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing)
 
Theoremsdrgdrng 20748 A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing)
 
Theoremsdrgsubrg 20749 A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025.)
(𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅))
 
Theoremsdrgid 20750 Every division ring is a division subring of itself. (Contributed by Thierry Arnoux, 21-Aug-2023.)
𝐵 = (Base‘𝑅)       (𝑅 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝑅))
 
Theoremsdrgss 20751 A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.)
𝐵 = (Base‘𝑅)       (𝑆 ∈ (SubDRing‘𝑅) → 𝑆𝐵)
 
Theoremsdrgbas 20752 Base set of a sub-division-ring structure. (Contributed by SN, 19-Feb-2025.)
𝑆 = (𝑅s 𝐴)       (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 = (Base‘𝑆))
 
Theoremissdrg2 20753* Property of a division subring (closure version). (Contributed by Mario Carneiro, 3-Oct-2015.)
𝐼 = (invr𝑅)    &    0 = (0g𝑅)       (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ ∀𝑥 ∈ (𝑆 ∖ { 0 })(𝐼𝑥) ∈ 𝑆))
 
Theoremsdrgunit 20754 A unit of a sub-division-ring is a nonzero element of the subring. (Contributed by SN, 19-Feb-2025.)
𝑆 = (𝑅s 𝐴)    &    0 = (0g𝑅)    &   𝑈 = (Unit‘𝑆)       (𝐴 ∈ (SubDRing‘𝑅) → (𝑋𝑈 ↔ (𝑋𝐴𝑋0 )))
 
Theoremimadrhmcl 20755 The image of a (nontrivial) division ring homomorphism is a division ring. (Contributed by SN, 17-Feb-2025.)
𝑅 = (𝑁s (𝐹𝑆))    &    0 = (0g𝑁)    &   (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))    &   (𝜑𝑆 ∈ (SubDRing‘𝑀))    &   (𝜑 → ran 𝐹 ≠ { 0 })       (𝜑𝑅 ∈ DivRing)
 
Theoremfldsdrgfld 20756 A sub-division-ring of a field is itself a field, so it is a subfield. We can therefore use SubDRing to express subfields. (Contributed by Thierry Arnoux, 11-Jan-2025.)
((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹s 𝐴) ∈ Field)
 
Theoremacsfn1p 20757* Construction of a closure rule from a one-parameter partial operation. (Contributed by Stefan O'Rear, 12-Sep-2015.)
((𝑋𝑉 ∧ ∀𝑏𝑌 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ (𝑎𝑌)𝐸𝑎} ∈ (ACS‘𝑋))
 
Theoremsubrgacs 20758 Closure property of subrings. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → (SubRing‘𝑅) ∈ (ACS‘𝐵))
 
Theoremsdrgacs 20759 Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.)
𝐵 = (Base‘𝑅)       (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (ACS‘𝐵))
 
Theoremcntzsdrg 20760 Centralizers in division rings/fields are subfields. (Contributed by Mario Carneiro, 3-Oct-2015.)
𝐵 = (Base‘𝑅)    &   𝑀 = (mulGrp‘𝑅)    &   𝑍 = (Cntz‘𝑀)       ((𝑅 ∈ DivRing ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubDRing‘𝑅))
 
Theoremsubdrgint 20761* The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
𝐿 = (𝑅s 𝑆)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑆 ⊆ (SubRing‘𝑅))    &   (𝜑𝑆 ≠ ∅)    &   ((𝜑𝑠𝑆) → (𝑅s 𝑠) ∈ DivRing)       (𝜑𝐿 ∈ DivRing)
 
Theoremsdrgint 20762 The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubDRing‘𝑅))
 
Theoremprimefld 20763 The smallest sub division ring of a division ring, here named 𝑃, is a field, called the Prime Field of 𝑅. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 21-Aug-2023.)
𝑃 = (𝑅s (SubDRing‘𝑅))       (𝑅 ∈ DivRing → 𝑃 ∈ Field)
 
Theoremprimefld0cl 20764 The prime field contains the zero element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.)
0 = (0g𝑅)       (𝑅 ∈ DivRing → 0 (SubDRing‘𝑅))
 
Theoremprimefld1cl 20765 The prime field contains the unity element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.)
1 = (1r𝑅)       (𝑅 ∈ DivRing → 1 (SubDRing‘𝑅))
 
10.4.3  Absolute value (abstract algebra)
 
Syntaxcabv 20766 The set of absolute values on a ring.
class AbsVal
 
Definitiondf-abv 20767* Define the set of absolute values on a ring. An absolute value is a generalization of the usual absolute value function df-abs 15253 to arbitrary rings. (Contributed by Mario Carneiro, 8-Sep-2014.)
AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
 
Theoremabvfval 20768* Value of the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → 𝐴 = {𝑓 ∈ ((0[,)+∞) ↑m 𝐵) ∣ ∀𝑥𝐵 (((𝑓𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥 + 𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
 
Theoremisabv 20769* Elementhood in the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → (𝐹𝐴 ↔ (𝐹:𝐵⟶(0[,)+∞) ∧ ∀𝑥𝐵 (((𝐹𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝐵 ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)) ∧ (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))))))
 
Theoremisabvd 20770* Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 4-Dec-2014.)
(𝜑𝐴 = (AbsVal‘𝑅))    &   (𝜑𝐵 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑0 = (0g𝑅))    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐹:𝐵⟶ℝ)    &   (𝜑 → (𝐹0 ) = 0)    &   ((𝜑𝑥𝐵𝑥0 ) → 0 < (𝐹𝑥))    &   ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) · (𝐹𝑦)))    &   ((𝜑 ∧ (𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )) → (𝐹‘(𝑥 + 𝑦)) ≤ ((𝐹𝑥) + (𝐹𝑦)))       (𝜑𝐹𝐴)
 
Theoremabvrcl 20771 Reverse closure for the absolute value set. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)       (𝐹𝐴𝑅 ∈ Ring)
 
Theoremabvfge0 20772 An absolute value is a function from the ring to the nonnegative real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝐹𝐴𝐹:𝐵⟶(0[,)+∞))
 
Theoremabvf 20773 An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝐹𝐴𝐹:𝐵⟶ℝ)
 
Theoremabvcl 20774 An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)       ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
 
Theoremabvge0 20775 The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)       ((𝐹𝐴𝑋𝐵) → 0 ≤ (𝐹𝑋))
 
Theoremabveq0 20776 The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝐹𝐴𝑋𝐵) → ((𝐹𝑋) = 0 ↔ 𝑋 = 0 ))
 
Theoremabvne0 20777 The absolute value of a nonzero number is nonzero. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)
 
Theoremabvgt0 20778 The absolute value of a nonzero number is strictly positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝐹𝐴𝑋𝐵𝑋0 ) → 0 < (𝐹𝑋))
 
Theoremabvmul 20779 An absolute value distributes under multiplication. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))
 
Theoremabvtri 20780 An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌)))
 
Theoremabv0 20781 The absolute value of zero is zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &    0 = (0g𝑅)       (𝐹𝐴 → (𝐹0 ) = 0)
 
Theoremabv1z 20782 The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       ((𝐹𝐴10 ) → (𝐹1 ) = 1)
 
Theoremabv1 20783 The absolute value of one is one in a division ring. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ DivRing ∧ 𝐹𝐴) → (𝐹1 ) = 1)
 
Theoremabvneg 20784 The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑁 = (invg𝑅)       ((𝐹𝐴𝑋𝐵) → (𝐹‘(𝑁𝑋)) = (𝐹𝑋))
 
Theoremabvsubtri 20785 An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    = (-g𝑅)       ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 𝑌)) ≤ ((𝐹𝑋) + (𝐹𝑌)))
 
Theoremabvrec 20786 The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐼 = (invr𝑅)       (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) = (1 / (𝐹𝑋)))
 
Theoremabvdiv 20787 The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    / = (/r𝑅)       (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 / 𝑌)) = ((𝐹𝑋) / (𝐹𝑌)))
 
Theoremabvdom 20788 Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)       ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )
 
Theoremabvres 20789 The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐴 = (AbsVal‘𝑅)    &   𝑆 = (𝑅s 𝐶)    &   𝐵 = (AbsVal‘𝑆)       ((𝐹𝐴𝐶 ∈ (SubRing‘𝑅)) → (𝐹𝐶) ∈ 𝐵)
 
Theoremabvtrivd 20790* The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ≠ 0 )       (𝜑𝐹𝐴)
 
Theoremabvtrivg 20791* The trivial absolute value. This theorem is not true for rings with zero divisors, which violate the multiplication axiom; abvdom 20788 is the converse of this theorem. (Contributed by SN, 25-Jun-2025.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))       (𝑅 ∈ Domn → 𝐹𝐴)
 
Theoremabvtriv 20792* The trivial absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 6-May-2015.)
𝐴 = (AbsVal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))       (𝑅 ∈ DivRing → 𝐹𝐴)
 
Theoremabvpropd 20793* If two structures have the same ring components, they have the same collection of absolute values. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿))
 
Theoremabvn0b 20794 Another characterization of domains, hinted at in abvtrivg 20791: a nonzero ring is a domain iff it has an absolute value. (Contributed by Mario Carneiro, 6-May-2015.)
𝐴 = (AbsVal‘𝑅)       (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ 𝐴 ≠ ∅))
 
10.4.4  Star rings
 
Syntaxcstf 20795 Extend class notation with the functionalization of the *-ring involution.
class *rf
 
Syntaxcsr 20796 Extend class notation with class of all *-rings.
class *-Ring
 
Definitiondf-staf 20797* Define the functionalization of the involution in a star ring. This is not strictly necessary but by having *𝑟 as an actual function we can state the principal properties of an involution much more cleanly. (Contributed by Mario Carneiro, 6-Oct-2015.)
*rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟𝑓)‘𝑥)))
 
Definitiondf-srng 20798* Define class of all star rings. A star ring is a ring with an involution (conjugation) function. Involution (unlike say the ring zero) is not unique and therefore must be added as a new component to the ring. For example, two possible involutions for complex numbers are the identity function and complex conjugation. Definition of involution in [Holland95] p. 204. (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.)
*-Ring = {𝑓[(*rf𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr𝑓)) ∧ 𝑖 = 𝑖)}
 
Theoremstaffval 20799* The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.)
𝐵 = (Base‘𝑅)    &    = (*𝑟𝑅)    &    = (*rf𝑅)        = (𝑥𝐵 ↦ ( 𝑥))
 
Theoremstafval 20800 The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.)
𝐵 = (Base‘𝑅)    &    = (*𝑟𝑅)    &    = (*rf𝑅)       (𝐴𝐵 → ( 𝐴) = ( 𝐴))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49617
  Copyright terms: Public domain < Previous  Next >