| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspfval | Structured version Visualization version GIF version | ||
| Description: The span function for a left vector space (or a left module). (df-span 31271 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspfval | ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 2 | elex 3459 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 3 | fveq2 6826 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 4 | lspval.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
| 6 | 5 | pweqd 4570 | . . . . 5 ⊢ (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉) |
| 7 | fveq2 6826 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊)) | |
| 8 | lspval.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 9 | 7, 8 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆) |
| 10 | 9 | rabeqdv 3412 | . . . . . 6 ⊢ (𝑤 = 𝑊 → {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) |
| 11 | 10 | inteqd 4904 | . . . . 5 ⊢ (𝑤 = 𝑊 → ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) |
| 12 | 6, 11 | mpteq12dv 5182 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| 13 | df-lsp 20893 | . . . 4 ⊢ LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | |
| 14 | 4 | fvexi 6840 | . . . . . 6 ⊢ 𝑉 ∈ V |
| 15 | 14 | pwex 5322 | . . . . 5 ⊢ 𝒫 𝑉 ∈ V |
| 16 | 15 | mptex 7163 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) ∈ V |
| 17 | 12, 13, 16 | fvmpt 6934 | . . 3 ⊢ (𝑊 ∈ V → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| 18 | 2, 17 | syl 17 | . 2 ⊢ (𝑊 ∈ 𝑋 → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| 19 | 1, 18 | eqtrid 2776 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 ∩ cint 4899 ↦ cmpt 5176 ‘cfv 6486 Basecbs 17138 LSubSpclss 20852 LSpanclspn 20892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-lsp 20893 |
| This theorem is referenced by: lspf 20895 lspval 20896 00lsp 20902 mrclsp 20910 lsppropd 20940 |
| Copyright terms: Public domain | W3C validator |