![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspfval | Structured version Visualization version GIF version |
Description: The span function for a left vector space (or a left module). (df-span 31341 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspfval | ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspval.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
2 | elex 3509 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
3 | fveq2 6920 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
4 | lspval.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
5 | 3, 4 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
6 | 5 | pweqd 4639 | . . . . 5 ⊢ (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉) |
7 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊)) | |
8 | lspval.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
9 | 7, 8 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆) |
10 | 9 | rabeqdv 3459 | . . . . . 6 ⊢ (𝑤 = 𝑊 → {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) |
11 | 10 | inteqd 4975 | . . . . 5 ⊢ (𝑤 = 𝑊 → ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) |
12 | 6, 11 | mpteq12dv 5257 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
13 | df-lsp 20993 | . . . 4 ⊢ LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | |
14 | 4 | fvexi 6934 | . . . . . 6 ⊢ 𝑉 ∈ V |
15 | 14 | pwex 5398 | . . . . 5 ⊢ 𝒫 𝑉 ∈ V |
16 | 15 | mptex 7260 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) ∈ V |
17 | 12, 13, 16 | fvmpt 7029 | . . 3 ⊢ (𝑊 ∈ V → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
18 | 2, 17 | syl 17 | . 2 ⊢ (𝑊 ∈ 𝑋 → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
19 | 1, 18 | eqtrid 2792 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ∩ cint 4970 ↦ cmpt 5249 ‘cfv 6573 Basecbs 17258 LSubSpclss 20952 LSpanclspn 20992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-lsp 20993 |
This theorem is referenced by: lspf 20995 lspval 20996 00lsp 21002 mrclsp 21010 lsppropd 21040 |
Copyright terms: Public domain | W3C validator |