| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspfval | Structured version Visualization version GIF version | ||
| Description: The span function for a left vector space (or a left module). (df-span 31284 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspfval | ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 2 | elex 3457 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
| 3 | fveq2 6822 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) | |
| 4 | lspval.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2784 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
| 6 | 5 | pweqd 4567 | . . . . 5 ⊢ (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉) |
| 7 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊)) | |
| 8 | lspval.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 9 | 7, 8 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆) |
| 10 | 9 | rabeqdv 3410 | . . . . . 6 ⊢ (𝑤 = 𝑊 → {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} = {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) |
| 11 | 10 | inteqd 4902 | . . . . 5 ⊢ (𝑤 = 𝑊 → ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡} = ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) |
| 12 | 6, 11 | mpteq12dv 5178 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| 13 | df-lsp 20903 | . . . 4 ⊢ LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | |
| 14 | 4 | fvexi 6836 | . . . . . 6 ⊢ 𝑉 ∈ V |
| 15 | 14 | pwex 5318 | . . . . 5 ⊢ 𝒫 𝑉 ∈ V |
| 16 | 15 | mptex 7157 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡}) ∈ V |
| 17 | 12, 13, 16 | fvmpt 6929 | . . 3 ⊢ (𝑊 ∈ V → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| 18 | 2, 17 | syl 17 | . 2 ⊢ (𝑊 ∈ 𝑋 → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| 19 | 1, 18 | eqtrid 2778 | 1 ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3902 𝒫 cpw 4550 ∩ cint 4897 ↦ cmpt 5172 ‘cfv 6481 Basecbs 17117 LSubSpclss 20862 LSpanclspn 20902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-lsp 20903 |
| This theorem is referenced by: lspf 20905 lspval 20906 00lsp 20912 mrclsp 20920 lsppropd 20950 |
| Copyright terms: Public domain | W3C validator |