MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspfval Structured version   Visualization version   GIF version

Theorem lspfval 20930
Description: The span function for a left vector space (or a left module). (df-span 31290 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspfval (𝑊𝑋𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
Distinct variable groups:   𝑡,𝑠,𝑆   𝑉,𝑠,𝑡   𝑊,𝑠
Allowed substitution hints:   𝑁(𝑡,𝑠)   𝑊(𝑡)   𝑋(𝑡,𝑠)

Proof of Theorem lspfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2 𝑁 = (LSpan‘𝑊)
2 elex 3480 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6876 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lspval.v . . . . . . 7 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2788 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 4592 . . . . 5 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
7 fveq2 6876 . . . . . . . 8 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
8 lspval.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
97, 8eqtr4di 2788 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
109rabeqdv 3431 . . . . . 6 (𝑤 = 𝑊 → {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡} = {𝑡𝑆𝑠𝑡})
1110inteqd 4927 . . . . 5 (𝑤 = 𝑊 {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡} = {𝑡𝑆𝑠𝑡})
126, 11mpteq12dv 5207 . . . 4 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
13 df-lsp 20929 . . . 4 LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}))
144fvexi 6890 . . . . . 6 𝑉 ∈ V
1514pwex 5350 . . . . 5 𝒫 𝑉 ∈ V
1615mptex 7215 . . . 4 (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}) ∈ V
1712, 13, 16fvmpt 6986 . . 3 (𝑊 ∈ V → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
182, 17syl 17 . 2 (𝑊𝑋 → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
191, 18eqtrid 2782 1 (𝑊𝑋𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  wss 3926  𝒫 cpw 4575   cint 4922  cmpt 5201  cfv 6531  Basecbs 17228  LSubSpclss 20888  LSpanclspn 20928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-lsp 20929
This theorem is referenced by:  lspf  20931  lspval  20932  00lsp  20938  mrclsp  20946  lsppropd  20976
  Copyright terms: Public domain W3C validator