![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspfval | Structured version Visualization version GIF version |
Description: The span function for a left vector space (or a left module). (df-span 30549 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspval.v | β’ π = (Baseβπ) |
lspval.s | β’ π = (LSubSpβπ) |
lspval.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspfval | β’ (π β π β π = (π β π« π β¦ β© {π‘ β π β£ π β π‘})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspval.n | . 2 β’ π = (LSpanβπ) | |
2 | elex 3492 | . . 3 β’ (π β π β π β V) | |
3 | fveq2 6888 | . . . . . . 7 β’ (π€ = π β (Baseβπ€) = (Baseβπ)) | |
4 | lspval.v | . . . . . . 7 β’ π = (Baseβπ) | |
5 | 3, 4 | eqtr4di 2790 | . . . . . 6 β’ (π€ = π β (Baseβπ€) = π) |
6 | 5 | pweqd 4618 | . . . . 5 β’ (π€ = π β π« (Baseβπ€) = π« π) |
7 | fveq2 6888 | . . . . . . . 8 β’ (π€ = π β (LSubSpβπ€) = (LSubSpβπ)) | |
8 | lspval.s | . . . . . . . 8 β’ π = (LSubSpβπ) | |
9 | 7, 8 | eqtr4di 2790 | . . . . . . 7 β’ (π€ = π β (LSubSpβπ€) = π) |
10 | 9 | rabeqdv 3447 | . . . . . 6 β’ (π€ = π β {π‘ β (LSubSpβπ€) β£ π β π‘} = {π‘ β π β£ π β π‘}) |
11 | 10 | inteqd 4954 | . . . . 5 β’ (π€ = π β β© {π‘ β (LSubSpβπ€) β£ π β π‘} = β© {π‘ β π β£ π β π‘}) |
12 | 6, 11 | mpteq12dv 5238 | . . . 4 β’ (π€ = π β (π β π« (Baseβπ€) β¦ β© {π‘ β (LSubSpβπ€) β£ π β π‘}) = (π β π« π β¦ β© {π‘ β π β£ π β π‘})) |
13 | df-lsp 20575 | . . . 4 β’ LSpan = (π€ β V β¦ (π β π« (Baseβπ€) β¦ β© {π‘ β (LSubSpβπ€) β£ π β π‘})) | |
14 | 4 | fvexi 6902 | . . . . . 6 β’ π β V |
15 | 14 | pwex 5377 | . . . . 5 β’ π« π β V |
16 | 15 | mptex 7221 | . . . 4 β’ (π β π« π β¦ β© {π‘ β π β£ π β π‘}) β V |
17 | 12, 13, 16 | fvmpt 6995 | . . 3 β’ (π β V β (LSpanβπ) = (π β π« π β¦ β© {π‘ β π β£ π β π‘})) |
18 | 2, 17 | syl 17 | . 2 β’ (π β π β (LSpanβπ) = (π β π« π β¦ β© {π‘ β π β£ π β π‘})) |
19 | 1, 18 | eqtrid 2784 | 1 β’ (π β π β π = (π β π« π β¦ β© {π‘ β π β£ π β π‘})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 β wss 3947 π« cpw 4601 β© cint 4949 β¦ cmpt 5230 βcfv 6540 Basecbs 17140 LSubSpclss 20534 LSpanclspn 20574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-lsp 20575 |
This theorem is referenced by: lspf 20577 lspval 20578 00lsp 20584 mrclsp 20592 lsppropd 20621 |
Copyright terms: Public domain | W3C validator |