MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspfval Structured version   Visualization version   GIF version

Theorem lspfval 20576
Description: The span function for a left vector space (or a left module). (df-span 30549 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Baseβ€˜π‘Š)
lspval.s 𝑆 = (LSubSpβ€˜π‘Š)
lspval.n 𝑁 = (LSpanβ€˜π‘Š)
Assertion
Ref Expression
lspfval (π‘Š ∈ 𝑋 β†’ 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑}))
Distinct variable groups:   𝑑,𝑠,𝑆   𝑉,𝑠,𝑑   π‘Š,𝑠
Allowed substitution hints:   𝑁(𝑑,𝑠)   π‘Š(𝑑)   𝑋(𝑑,𝑠)

Proof of Theorem lspfval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2 𝑁 = (LSpanβ€˜π‘Š)
2 elex 3492 . . 3 (π‘Š ∈ 𝑋 β†’ π‘Š ∈ V)
3 fveq2 6888 . . . . . . 7 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
4 lspval.v . . . . . . 7 𝑉 = (Baseβ€˜π‘Š)
53, 4eqtr4di 2790 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝑉)
65pweqd 4618 . . . . 5 (𝑀 = π‘Š β†’ 𝒫 (Baseβ€˜π‘€) = 𝒫 𝑉)
7 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ (LSubSpβ€˜π‘€) = (LSubSpβ€˜π‘Š))
8 lspval.s . . . . . . . 8 𝑆 = (LSubSpβ€˜π‘Š)
97, 8eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ (LSubSpβ€˜π‘€) = 𝑆)
109rabeqdv 3447 . . . . . 6 (𝑀 = π‘Š β†’ {𝑑 ∈ (LSubSpβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑} = {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑})
1110inteqd 4954 . . . . 5 (𝑀 = π‘Š β†’ ∩ {𝑑 ∈ (LSubSpβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑} = ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑})
126, 11mpteq12dv 5238 . . . 4 (𝑀 = π‘Š β†’ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ (LSubSpβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑}) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑}))
13 df-lsp 20575 . . . 4 LSpan = (𝑀 ∈ V ↦ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ (LSubSpβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑}))
144fvexi 6902 . . . . . 6 𝑉 ∈ V
1514pwex 5377 . . . . 5 𝒫 𝑉 ∈ V
1615mptex 7221 . . . 4 (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑}) ∈ V
1712, 13, 16fvmpt 6995 . . 3 (π‘Š ∈ V β†’ (LSpanβ€˜π‘Š) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑}))
182, 17syl 17 . 2 (π‘Š ∈ 𝑋 β†’ (LSpanβ€˜π‘Š) = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑}))
191, 18eqtrid 2784 1 (π‘Š ∈ 𝑋 β†’ 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑑 ∈ 𝑆 ∣ 𝑠 βŠ† 𝑑}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βŠ† wss 3947  π’« cpw 4601  βˆ© cint 4949   ↦ cmpt 5230  β€˜cfv 6540  Basecbs 17140  LSubSpclss 20534  LSpanclspn 20574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-lsp 20575
This theorem is referenced by:  lspf  20577  lspval  20578  00lsp  20584  mrclsp  20592  lsppropd  20621
  Copyright terms: Public domain W3C validator