Detailed syntax breakdown of Definition df-mamu
Step | Hyp | Ref
| Expression |
1 | | cmmul 21442 |
. 2
class
maMul |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | vo |
. . 3
setvar 𝑜 |
4 | | cvv 3422 |
. . 3
class
V |
5 | | vm |
. . . 4
setvar 𝑚 |
6 | 3 | cv 1538 |
. . . . . 6
class 𝑜 |
7 | | c1st 7802 |
. . . . . 6
class
1st |
8 | 6, 7 | cfv 6418 |
. . . . 5
class
(1st ‘𝑜) |
9 | 8, 7 | cfv 6418 |
. . . 4
class
(1st ‘(1st ‘𝑜)) |
10 | | vn |
. . . . 5
setvar 𝑛 |
11 | | c2nd 7803 |
. . . . . 6
class
2nd |
12 | 8, 11 | cfv 6418 |
. . . . 5
class
(2nd ‘(1st ‘𝑜)) |
13 | | vp |
. . . . . 6
setvar 𝑝 |
14 | 6, 11 | cfv 6418 |
. . . . . 6
class
(2nd ‘𝑜) |
15 | | vx |
. . . . . . 7
setvar 𝑥 |
16 | | vy |
. . . . . . 7
setvar 𝑦 |
17 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑟 |
18 | | cbs 16840 |
. . . . . . . . 9
class
Base |
19 | 17, 18 | cfv 6418 |
. . . . . . . 8
class
(Base‘𝑟) |
20 | 5 | cv 1538 |
. . . . . . . . 9
class 𝑚 |
21 | 10 | cv 1538 |
. . . . . . . . 9
class 𝑛 |
22 | 20, 21 | cxp 5578 |
. . . . . . . 8
class (𝑚 × 𝑛) |
23 | | cmap 8573 |
. . . . . . . 8
class
↑m |
24 | 19, 22, 23 | co 7255 |
. . . . . . 7
class
((Base‘𝑟)
↑m (𝑚
× 𝑛)) |
25 | 13 | cv 1538 |
. . . . . . . . 9
class 𝑝 |
26 | 21, 25 | cxp 5578 |
. . . . . . . 8
class (𝑛 × 𝑝) |
27 | 19, 26, 23 | co 7255 |
. . . . . . 7
class
((Base‘𝑟)
↑m (𝑛
× 𝑝)) |
28 | | vi |
. . . . . . . 8
setvar 𝑖 |
29 | | vk |
. . . . . . . 8
setvar 𝑘 |
30 | | vj |
. . . . . . . . . 10
setvar 𝑗 |
31 | 28 | cv 1538 |
. . . . . . . . . . . 12
class 𝑖 |
32 | 30 | cv 1538 |
. . . . . . . . . . . 12
class 𝑗 |
33 | 15 | cv 1538 |
. . . . . . . . . . . 12
class 𝑥 |
34 | 31, 32, 33 | co 7255 |
. . . . . . . . . . 11
class (𝑖𝑥𝑗) |
35 | 29 | cv 1538 |
. . . . . . . . . . . 12
class 𝑘 |
36 | 16 | cv 1538 |
. . . . . . . . . . . 12
class 𝑦 |
37 | 32, 35, 36 | co 7255 |
. . . . . . . . . . 11
class (𝑗𝑦𝑘) |
38 | | cmulr 16889 |
. . . . . . . . . . . 12
class
.r |
39 | 17, 38 | cfv 6418 |
. . . . . . . . . . 11
class
(.r‘𝑟) |
40 | 34, 37, 39 | co 7255 |
. . . . . . . . . 10
class ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘)) |
41 | 30, 21, 40 | cmpt 5153 |
. . . . . . . . 9
class (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))) |
42 | | cgsu 17068 |
. . . . . . . . 9
class
Σg |
43 | 17, 41, 42 | co 7255 |
. . . . . . . 8
class (𝑟 Σg
(𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘)))) |
44 | 28, 29, 20, 25, 43 | cmpo 7257 |
. . . . . . 7
class (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))))) |
45 | 15, 16, 24, 27, 44 | cmpo 7257 |
. . . . . 6
class (𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘)))))) |
46 | 13, 14, 45 | csb 3828 |
. . . . 5
class
⦋(2nd ‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘)))))) |
47 | 10, 12, 46 | csb 3828 |
. . . 4
class
⦋(2nd ‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd
‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘)))))) |
48 | 5, 9, 47 | csb 3828 |
. . 3
class
⦋(1st ‘(1st ‘𝑜)) / 𝑚⦌⦋(2nd
‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd
‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘)))))) |
49 | 2, 3, 4, 4, 48 | cmpo 7257 |
. 2
class (𝑟 ∈ V, 𝑜 ∈ V ↦
⦋(1st ‘(1st ‘𝑜)) / 𝑚⦌⦋(2nd
‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd
‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))))))) |
50 | 1, 49 | wceq 1539 |
1
wff maMul =
(𝑟 ∈ V, 𝑜 ∈ V ↦
⦋(1st ‘(1st ‘𝑜)) / 𝑚⦌⦋(2nd
‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd
‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))))))) |