Detailed syntax breakdown of Definition df-mamu
| Step | Hyp | Ref
| Expression |
| 1 | | cmmul 22394 |
. 2
class
maMul |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | vo |
. . 3
setvar 𝑜 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | vm |
. . . 4
setvar 𝑚 |
| 6 | 3 | cv 1539 |
. . . . . 6
class 𝑜 |
| 7 | | c1st 8012 |
. . . . . 6
class
1st |
| 8 | 6, 7 | cfv 6561 |
. . . . 5
class
(1st ‘𝑜) |
| 9 | 8, 7 | cfv 6561 |
. . . 4
class
(1st ‘(1st ‘𝑜)) |
| 10 | | vn |
. . . . 5
setvar 𝑛 |
| 11 | | c2nd 8013 |
. . . . . 6
class
2nd |
| 12 | 8, 11 | cfv 6561 |
. . . . 5
class
(2nd ‘(1st ‘𝑜)) |
| 13 | | vp |
. . . . . 6
setvar 𝑝 |
| 14 | 6, 11 | cfv 6561 |
. . . . . 6
class
(2nd ‘𝑜) |
| 15 | | vx |
. . . . . . 7
setvar 𝑥 |
| 16 | | vy |
. . . . . . 7
setvar 𝑦 |
| 17 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑟 |
| 18 | | cbs 17247 |
. . . . . . . . 9
class
Base |
| 19 | 17, 18 | cfv 6561 |
. . . . . . . 8
class
(Base‘𝑟) |
| 20 | 5 | cv 1539 |
. . . . . . . . 9
class 𝑚 |
| 21 | 10 | cv 1539 |
. . . . . . . . 9
class 𝑛 |
| 22 | 20, 21 | cxp 5683 |
. . . . . . . 8
class (𝑚 × 𝑛) |
| 23 | | cmap 8866 |
. . . . . . . 8
class
↑m |
| 24 | 19, 22, 23 | co 7431 |
. . . . . . 7
class
((Base‘𝑟)
↑m (𝑚
× 𝑛)) |
| 25 | 13 | cv 1539 |
. . . . . . . . 9
class 𝑝 |
| 26 | 21, 25 | cxp 5683 |
. . . . . . . 8
class (𝑛 × 𝑝) |
| 27 | 19, 26, 23 | co 7431 |
. . . . . . 7
class
((Base‘𝑟)
↑m (𝑛
× 𝑝)) |
| 28 | | vi |
. . . . . . . 8
setvar 𝑖 |
| 29 | | vk |
. . . . . . . 8
setvar 𝑘 |
| 30 | | vj |
. . . . . . . . . 10
setvar 𝑗 |
| 31 | 28 | cv 1539 |
. . . . . . . . . . . 12
class 𝑖 |
| 32 | 30 | cv 1539 |
. . . . . . . . . . . 12
class 𝑗 |
| 33 | 15 | cv 1539 |
. . . . . . . . . . . 12
class 𝑥 |
| 34 | 31, 32, 33 | co 7431 |
. . . . . . . . . . 11
class (𝑖𝑥𝑗) |
| 35 | 29 | cv 1539 |
. . . . . . . . . . . 12
class 𝑘 |
| 36 | 16 | cv 1539 |
. . . . . . . . . . . 12
class 𝑦 |
| 37 | 32, 35, 36 | co 7431 |
. . . . . . . . . . 11
class (𝑗𝑦𝑘) |
| 38 | | cmulr 17298 |
. . . . . . . . . . . 12
class
.r |
| 39 | 17, 38 | cfv 6561 |
. . . . . . . . . . 11
class
(.r‘𝑟) |
| 40 | 34, 37, 39 | co 7431 |
. . . . . . . . . 10
class ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘)) |
| 41 | 30, 21, 40 | cmpt 5225 |
. . . . . . . . 9
class (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))) |
| 42 | | cgsu 17485 |
. . . . . . . . 9
class
Σg |
| 43 | 17, 41, 42 | co 7431 |
. . . . . . . 8
class (𝑟 Σg
(𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘)))) |
| 44 | 28, 29, 20, 25, 43 | cmpo 7433 |
. . . . . . 7
class (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))))) |
| 45 | 15, 16, 24, 27, 44 | cmpo 7433 |
. . . . . 6
class (𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘)))))) |
| 46 | 13, 14, 45 | csb 3899 |
. . . . 5
class
⦋(2nd ‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘)))))) |
| 47 | 10, 12, 46 | csb 3899 |
. . . 4
class
⦋(2nd ‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd
‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘)))))) |
| 48 | 5, 9, 47 | csb 3899 |
. . 3
class
⦋(1st ‘(1st ‘𝑜)) / 𝑚⦌⦋(2nd
‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd
‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘)))))) |
| 49 | 2, 3, 4, 4, 48 | cmpo 7433 |
. 2
class (𝑟 ∈ V, 𝑜 ∈ V ↦
⦋(1st ‘(1st ‘𝑜)) / 𝑚⦌⦋(2nd
‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd
‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))))))) |
| 50 | 1, 49 | wceq 1540 |
1
wff maMul =
(𝑟 ∈ V, 𝑜 ∈ V ↦
⦋(1st ‘(1st ‘𝑜)) / 𝑚⦌⦋(2nd
‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd
‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))))))) |