| Metamath
Proof Explorer Theorem List (p. 223 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ply1scl1OLD 22201 | Obsolete version of ply1scl1 22200 as of 12-Mar-2025. (Contributed by Stefan O'Rear, 1-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴‘ 1 ) = 𝑁) | ||
| Theorem | ply1idvr1 22202 | The identity of a polynomial ring expressed as power of the polynomial variable. (Contributed by AV, 14-Aug-2019.) (Proof shortened by SN, 3-Jul-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ (𝑅 ∈ Ring → (0 ↑ 𝑋) = (1r‘𝑃)) | ||
| Theorem | ply1idvr1OLD 22203 | Obsolete version of ply1idvr1 22202 as of 3-Jul-2025. (Contributed by AV, 14-Aug-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ (𝑅 ∈ Ring → (0 ↑ 𝑋) = (1r‘𝑃)) | ||
| Theorem | cply1mul 22204* | The product of two constant polynomials is a constant polynomial. (Contributed by AV, 18-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ × = (.r‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (∀𝑐 ∈ ℕ (((coe1‘𝐹)‘𝑐) = 0 ∧ ((coe1‘𝐺)‘𝑐) = 0 ) → ∀𝑐 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 )) | ||
| Theorem | ply1coefsupp 22205* | The decomposition of a univariate polynomial is finitely supported. Formerly part of proof for ply1coe 22206. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) & ⊢ 𝐴 = (coe1‘𝐾) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) finSupp (0g‘𝑃)) | ||
| Theorem | ply1coe 22206* | Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 7-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) & ⊢ 𝐴 = (coe1‘𝐾) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))))) | ||
| Theorem | eqcoe1ply1eq 22207* | Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) | ||
| Theorem | ply1coe1eq 22208* | Two polynomials over the same ring are equal iff they have identical coefficients. (Contributed by AV, 13-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) ↔ 𝐾 = 𝐿)) | ||
| Theorem | cply1coe0 22209* | All but the first coefficient of a constant polynomial ( i.e. a "lifted scalar") are zero. (Contributed by AV, 16-Nov-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾) → ∀𝑛 ∈ ℕ ((coe1‘(𝐴‘𝑆))‘𝑛) = 0 ) | ||
| Theorem | cply1coe0bi 22210* | A polynomial is constant (i.e. a "lifted scalar") iff all but the first coefficient are zero. (Contributed by AV, 16-Nov-2019.) |
| ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ 𝐾 𝑀 = (𝐴‘𝑠) ↔ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 )) | ||
| Theorem | coe1fzgsumdlem 22211* | Lemma for coe1fzgsumd 22212 (induction step). (Contributed by AV, 8-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → ((∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾)))))) | ||
| Theorem | coe1fzgsumd 22212* | Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ Fin) ⇒ ⊢ (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((coe1‘𝑀)‘𝐾)))) | ||
| Theorem | ply1scleq 22213 | Equality of a constant polynomial is the same as equality of the constant term. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐴‘𝐸) = (𝐴‘𝐹) ↔ 𝐸 = 𝐹)) | ||
| Theorem | ply1chr 22214 | The characteristic of a polynomial ring is the characteristic of the underlying ring. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → (chr‘𝑃) = (chr‘𝑅)) | ||
| Theorem | gsumsmonply1 22215* | A finite group sum of scaled monomials is a univariate polynomial. (Contributed by AV, 8-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐾) & ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐴) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))) ∈ 𝐵) | ||
| Theorem | gsummoncoe1 22216* | A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by AV, 13-Oct-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐾) & ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐴) finSupp 0 ) & ⊢ (𝜑 → 𝐿 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))))‘𝐿) = ⦋𝐿 / 𝑘⦌𝐴) | ||
| Theorem | gsumply1eq 22217* | Two univariate polynomials given as (finitely supported) sum of scaled monomials are equal iff the corresponding coefficients are equal. (Contributed by AV, 21-Nov-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐾) & ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐴) finSupp 0 ) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐵 ∈ 𝐾) & ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐵) finSupp 0 ) & ⊢ (𝜑 → 𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋))))) & ⊢ (𝜑 → 𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 ∗ (𝑘 ↑ 𝑋))))) ⇒ ⊢ (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵)) | ||
| Theorem | lply1binom 22218* | The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝑋↑𝑘)). (Contributed by AV, 25-Aug-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ + = (+g‘𝑃) & ⊢ × = (.r‘𝑃) & ⊢ · = (.g‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → (𝑁 ↑ (𝑋 + 𝐴)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝑋)))))) | ||
| Theorem | lply1binomsc 22219* | The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝑋↑𝑘)). (Contributed by AV, 25-Aug-2019.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ + = (+g‘𝑃) & ⊢ × = (.r‘𝑃) & ⊢ · = (.g‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾) → (𝑁 ↑ (𝑋 + (𝑆‘𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁 − 𝑘)𝐸𝐴)) × (𝑘 ↑ 𝑋)))))) | ||
| Theorem | ply1fermltlchr 22220 | Fermat's little theorem for polynomials in a commutative ring 𝐹 of characteristic 𝑃 prime: we have the polynomial equation (𝑋 + 𝐴)↑𝑃 = ((𝑋↑𝑃) + 𝐴). (Contributed by Thierry Arnoux, 9-Jan-2025.) |
| ⊢ 𝑊 = (Poly1‘𝐹) & ⊢ 𝑋 = (var1‘𝐹) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (mulGrp‘𝑊) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐶 = (algSc‘𝑊) & ⊢ 𝐴 = (𝐶‘((ℤRHom‘𝐹)‘𝐸)) & ⊢ 𝑃 = (chr‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ CRing) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐸 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝐴)) = ((𝑃 ↑ 𝑋) + 𝐴)) | ||
| Syntax | ces1 22221 | Evaluation of a univariate polynomial in a subring. |
| class evalSub1 | ||
| Syntax | ce1 22222 | Evaluation of a univariate polynomial. |
| class eval1 | ||
| Definition | df-evls1 22223* | Define the evaluation map for the univariate polynomial algebra. The function (𝑆 evalSub1 𝑅):𝑉⟶(𝑆 ↑m 𝑆) makes sense when 𝑆 is a ring and 𝑅 is a subring of 𝑆, and where 𝑉 is the set of polynomials in (Poly1‘𝑅). This function maps an element of the formal polynomial algebra (with coefficients in 𝑅) to a function from assignments to the variable from 𝑆 into an element of 𝑆 formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟))) | ||
| Definition | df-evl1 22224* | Define the evaluation map for the univariate polynomial algebra. The function (eval1‘𝑅):𝑉⟶(𝑅 ↑m 𝑅) makes sense when 𝑅 is a ring, and 𝑉 is the set of polynomials in (Poly1‘𝑅). This function maps an element of the formal polynomial algebra (with coefficients in 𝑅) to a function from assignments to the variable from 𝑅 into an element of 𝑅 formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ eval1 = (𝑟 ∈ V ↦ ⦋(Base‘𝑟) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟))) | ||
| Theorem | reldmevls1 22225 | Well-behaved binary operation property of evalSub1. (Contributed by AV, 7-Sep-2019.) |
| ⊢ Rel dom evalSub1 | ||
| Theorem | ply1frcl 22226 | Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.) |
| ⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) ⇒ ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) | ||
| Theorem | evls1fval 22227* | Value of the univariate polynomial evaluation map function. (Contributed by AV, 7-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐸 = (1o evalSub 𝑆) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))) | ||
| Theorem | evls1val 22228* | Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐸 = (1o evalSub 𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑀 = (1o mPoly (𝑆 ↾s 𝑅)) & ⊢ 𝐾 = (Base‘𝑀) ⇒ ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | ||
| Theorem | evls1rhmlem 22229* | Lemma for evl1rhm 22240 and evls1rhm 22230 (formerly part of the proof of evl1rhm 22240): The first function of the composition forming the univariate polynomial evaluation map function for a (sub)ring is a ring homomorphism. (Contributed by AV, 11-Sep-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑇 = (𝑅 ↑s 𝐵) & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ⇒ ⊢ (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) | ||
| Theorem | evls1rhm 22230 | Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑇 = (𝑆 ↑s 𝐵) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) ⇒ ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) | ||
| Theorem | evls1sca 22231 | Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) | ||
| Theorem | evls1gsumadd 22232* | Univariate polynomial evaluation maps (additive) group sums to group sums. (Contributed by AV, 14-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (𝑆 ↑s 𝐾) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) | ||
| Theorem | evls1gsummul 22233* | Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 14-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 1 = (1r‘𝑊) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (𝑆 ↑s 𝐾) & ⊢ 𝐻 = (mulGrp‘𝑃) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) ⇒ ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) | ||
| Theorem | evls1pw 22234 | Univariate polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆 ↑s 𝐾)))(𝑄‘𝑋))) | ||
| Theorem | evls1varpw 22235 | Univariate polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by AV, 14-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝑋 = (var1‘𝑈) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆 ↑s 𝐵)))(𝑄‘𝑋))) | ||
| Theorem | evl1fval 22236* | Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑄 = (1o eval 𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝑂 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄) | ||
| Theorem | evl1val 22237* | Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑄 = (1o eval 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (1o mPoly 𝑅) & ⊢ 𝐾 = (Base‘𝑀) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → (𝑂‘𝐴) = ((𝑄‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | ||
| Theorem | evl1fval1lem 22238 | Lemma for evl1fval1 22239. (Contributed by AV, 11-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) | ||
| Theorem | evl1fval1 22239 | Value of the simple/same ring evaluation map function for univariate polynomials. (Contributed by AV, 11-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝑄 = (𝑅 evalSub1 𝐵) | ||
| Theorem | evl1rhm 22240 | Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Mario Carneiro, 12-Jun-2015.) (Proof shortened by AV, 13-Sep-2019.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑇 = (𝑅 ↑s 𝐵) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom 𝑇)) | ||
| Theorem | fveval1fvcl 22241 | The function value of the evaluation function of a polynomial is an element of the underlying ring. (Contributed by AV, 17-Sep-2019.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) ∈ 𝐵) | ||
| Theorem | evl1sca 22242 | Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) | ||
| Theorem | evl1scad 22243 | Polynomial evaluation builder for scalars. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐴‘𝑋) ∈ 𝑈 ∧ ((𝑂‘(𝐴‘𝑋))‘𝑌) = 𝑋)) | ||
| Theorem | evl1var 22244 | Polynomial evaluation maps the variable to the identity function. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = ( I ↾ 𝐵)) | ||
| Theorem | evl1vard 22245 | Polynomial evaluation builder for the variable. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∧ ((𝑂‘𝑋)‘𝑌) = 𝑌)) | ||
| Theorem | evls1var 22246 | Univariate polynomial evaluation for subrings maps the variable to the identity function. (Contributed by AV, 13-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑋 = (var1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) ⇒ ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) | ||
| Theorem | evls1scasrng 22247 | The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 13-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑂 = (eval1‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (Poly1‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐶 = (algSc‘𝑃) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝑂‘(𝐶‘𝑋))) | ||
| Theorem | evls1varsrng 22248 | The evaluation of the variable of univariate polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑂 = (eval1‘𝑆) & ⊢ 𝑉 = (var1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) ⇒ ⊢ (𝜑 → (𝑄‘𝑉) = (𝑂‘𝑉)) | ||
| Theorem | evl1addd 22249 | Polynomial evaluation builder for addition of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) & ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) & ⊢ ✚ = (+g‘𝑃) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ✚ 𝑁))‘𝑌) = (𝑉 + 𝑊))) | ||
| Theorem | evl1subd 22250 | Polynomial evaluation builder for subtraction of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) & ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) & ⊢ − = (-g‘𝑃) & ⊢ 𝐷 = (-g‘𝑅) ⇒ ⊢ (𝜑 → ((𝑀 − 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊))) | ||
| Theorem | evl1muld 22251 | Polynomial evaluation builder for multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) & ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊))) | ||
| Theorem | evl1vsd 22252 | Polynomial evaluation builder for scalar multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ ∙ = ( ·𝑠 ‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝜑 → ((𝑁 ∙ 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 ∙ 𝑀))‘𝑌) = (𝑁 · 𝑉))) | ||
| Theorem | evl1expd 22253 | Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) & ⊢ ∙ = (.g‘(mulGrp‘𝑃)) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑁 ∙ 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 ∙ 𝑀))‘𝑌) = (𝑁 ↑ 𝑉))) | ||
| Theorem | pf1const 22254 | Constants are polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑄 = ran (eval1‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝐵 × {𝑋}) ∈ 𝑄) | ||
| Theorem | pf1id 22255 | The identity is a polynomial function. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑄 = ran (eval1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → ( I ↾ 𝐵) ∈ 𝑄) | ||
| Theorem | pf1subrg 22256 | Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑄 = ran (eval1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (SubRing‘(𝑅 ↑s 𝐵))) | ||
| Theorem | pf1rcl 22257 | Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = ran (eval1‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝑄 → 𝑅 ∈ CRing) | ||
| Theorem | pf1f 22258 | Polynomial functions are functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = ran (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝑄 → 𝐹:𝐵⟶𝐵) | ||
| Theorem | mpfpf1 22259* | Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = ran (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = ran (1o eval 𝑅) ⇒ ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄) | ||
| Theorem | pf1mpf 22260* | Convert a univariate polynomial function to multivariate. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = ran (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = ran (1o eval 𝑅) ⇒ ⊢ (𝐹 ∈ 𝑄 → (𝐹 ∘ (𝑥 ∈ (𝐵 ↑m 1o) ↦ (𝑥‘∅))) ∈ 𝐸) | ||
| Theorem | pf1addcl 22261 | The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = ran (eval1‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f + 𝐺) ∈ 𝑄) | ||
| Theorem | pf1mulcl 22262 | The product of multivariate polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = ran (eval1‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f · 𝐺) ∈ 𝑄) | ||
| Theorem | pf1ind 22263* | Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑄 = ran (eval1‘𝑅) & ⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜁) & ⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜎) & ⊢ (𝑥 = (𝐵 × {𝑓}) → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = ( I ↾ 𝐵) → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) & ⊢ (𝑥 = (𝑓 ∘f + 𝑔) → (𝜓 ↔ 𝜁)) & ⊢ (𝑥 = (𝑓 ∘f · 𝑔) → (𝜓 ↔ 𝜎)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐵) → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝐴 ∈ 𝑄) ⇒ ⊢ (𝜑 → 𝜌) | ||
| Theorem | evl1gsumdlem 22264* | Lemma for evl1gsumd 22265 (induction step). (Contributed by AV, 17-Sep-2019.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → ((∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))))) | ||
| Theorem | evl1gsumd 22265* | Polynomial evaluation builder for a finite group sum of polynomials. (Contributed by AV, 17-Sep-2019.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈) & ⊢ (𝜑 → 𝑁 ∈ Fin) ⇒ ⊢ (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌)))) | ||
| Theorem | evl1gsumadd 22266* | Univariate polynomial evaluation maps (additive) group sums to group sums. Remark: the proof would be shorter if the theorem is proved directly instead of using evls1gsumadd 22232. (Contributed by AV, 15-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝑃 = (𝑅 ↑s 𝐾) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) | ||
| Theorem | evl1gsumaddval 22267* | Value of a univariate polynomial evaluation mapping an additive group sum to a group sum of the evaluated variable. (Contributed by AV, 17-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝑃 = (𝑅 ↑s 𝐾) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑄‘𝑌)‘𝐶)))) | ||
| Theorem | evl1gsummul 22268* | Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 15-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝑃 = (𝑅 ↑s 𝐾) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ 1 = (1r‘𝑊) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝐻 = (mulGrp‘𝑃) & ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) ⇒ ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) | ||
| Theorem | evl1varpw 22269 | Univariate polynomial evaluation maps the exponentiation of a variable to the exponentiation of the evaluated variable. Remark: in contrast to evl1gsumadd 22266, the proof is shorter using evls1varpw 22235 instead of proving it directly. (Contributed by AV, 15-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) | ||
| Theorem | evl1varpwval 22270 | Value of a univariate polynomial evaluation mapping the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by AV, 14-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑁 ↑ 𝑋))‘𝐶) = (𝑁𝐸𝐶)) | ||
| Theorem | evl1scvarpw 22271 | Univariate polynomial evaluation maps a multiple of an exponentiation of a variable to the multiple of an exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ × = ( ·𝑠 ‘𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝑆 = (𝑅 ↑s 𝐵) & ⊢ ∙ = (.r‘𝑆) & ⊢ 𝑀 = (mulGrp‘𝑆) & ⊢ 𝐹 = (.g‘𝑀) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) | ||
| Theorem | evl1scvarpwval 22272 | Value of a univariate polynomial evaluation mapping a multiple of an exponentiation of a variable to the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ × = ( ·𝑠 ‘𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝜑 → ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶) = (𝐴 · (𝑁𝐸𝐶))) | ||
| Theorem | evl1gsummon 22273* | Value of a univariate polynomial evaluation mapping an additive group sum of a multiple of an exponentiation of a variable to a group sum of the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ ↑ = (.g‘𝐺) & ⊢ × = ( ·𝑠 ‘𝑊) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑀 ⊆ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) | ||
| Theorem | evls1scafv 22274 | Value of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑄‘(𝐴‘𝑋))‘𝐶) = 𝑋) | ||
| Theorem | evls1expd 22275 | Univariate polynomial evaluation builder for an exponential. See also evl1expd 22253. (Contributed by Thierry Arnoux, 24-Jan-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ ∧ = (.g‘(mulGrp‘𝑊)) & ⊢ ↑ = (.g‘(mulGrp‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑀))‘𝐶) = (𝑁 ↑ ((𝑄‘𝑀)‘𝐶))) | ||
| Theorem | evls1varpwval 22276 | Univariate polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. See evl1varpwval 22270. (Contributed by Thierry Arnoux, 24-Jan-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑋 = (var1‘𝑈) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ ∧ = (.g‘(mulGrp‘𝑊)) & ⊢ ↑ = (.g‘(mulGrp‘𝑆)) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑋))‘𝐶) = (𝑁 ↑ 𝐶)) | ||
| Theorem | evls1fpws 22277* | Evaluation of a univariate subring polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ · = (.r‘𝑆) & ⊢ ↑ = (.g‘(mulGrp‘𝑆)) & ⊢ 𝐴 = (coe1‘𝑀) ⇒ ⊢ (𝜑 → (𝑄‘𝑀) = (𝑥 ∈ 𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑥)))))) | ||
| Theorem | ressply1evl 22278 | Evaluation of a univariate subring polynomial is the same as the evaluation in the bigger ring. (Contributed by Thierry Arnoux, 23-Jan-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐸 = (eval1‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) ⇒ ⊢ (𝜑 → 𝑄 = (𝐸 ↾ 𝐵)) | ||
| Theorem | evls1addd 22279 | Univariate polynomial evaluation of a sum of polynomials. (Contributed by Thierry Arnoux, 8-Feb-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ⨣ = (+g‘𝑊) & ⊢ + = (+g‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑀 ⨣ 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶))) | ||
| Theorem | evls1muld 22280 | Univariate polynomial evaluation of a product of polynomials. (Contributed by Thierry Arnoux, 24-Jan-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ × = (.r‘𝑊) & ⊢ · = (.r‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) · ((𝑄‘𝑁)‘𝐶))) | ||
| Theorem | evls1vsca 22281 | Univariate polynomial evaluation of a scalar product of polynomials. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ × = ( ·𝑠 ‘𝑊) & ⊢ · = (.r‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ 𝑅) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝐴 × 𝑁))‘𝐶) = (𝐴 · ((𝑄‘𝑁)‘𝐶))) | ||
| Theorem | asclply1subcl 22282 | Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| ⊢ 𝐴 = (algSc‘𝑉) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝑉 = (Poly1‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑃 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑃) | ||
| Theorem | evls1fvcl 22283 | Variant of fveval1fvcl 22241 for the subring evaluation function evalSub1 (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) ∈ 𝐵) | ||
| Theorem | evls1maprhm 22284* | The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝑋 is a ring homomorphism. (Contributed by Thierry Arnoux, 8-Feb-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) | ||
| Theorem | evls1maplmhm 22285* | The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴 is a module homomorphism, when considering the subring algebra. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) & ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑆) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑃 LMHom 𝐴)) | ||
| Theorem | evls1maprnss 22286* | The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴 takes all values in the subring 𝑆. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ⇒ ⊢ (𝜑 → 𝑆 ⊆ ran 𝐹) | ||
| Theorem | evl1maprhm 22287* | The function 𝐹 mapping polynomials 𝑝 to their evaluation at a given point 𝑋 is a ring homomorphism. (Contributed by metakunt, 19-May-2025.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) | ||
| Theorem | mhmcompl 22288 | The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 7-Feb-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑄 = (𝐼 mPoly 𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) | ||
| Theorem | mhmcoaddmpl 22289 | Show that the ring homomorphism in rhmmpl 22291 preserves addition. (Contributed by SN, 8-Feb-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑄 = (𝐼 mPoly 𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ + = (+g‘𝑃) & ⊢ ✚ = (+g‘𝑄) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺))) | ||
| Theorem | rhmcomulmpl 22290 | Show that the ring homomorphism in rhmmpl 22291 preserves multiplication. (Contributed by SN, 8-Feb-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑄 = (𝐼 mPoly 𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ · = (.r‘𝑃) & ⊢ ∙ = (.r‘𝑄) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻 ∘ 𝐹) ∙ (𝐻 ∘ 𝐺))) | ||
| Theorem | rhmmpl 22291* | Provide a ring homomorphism between two polynomial algebras over their respective base rings given a ring homomorphism between the two base rings. Compare pwsco2rhm 20411. (Contributed by SN, 8-Feb-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑄 = (𝐼 mPoly 𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑄)) | ||
| Theorem | ply1vscl 22292 | Closure of scalar multiplication for univariate polynomials. (Contributed by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 · 𝑋) ∈ 𝐵) | ||
| Theorem | mhmcoply1 22293 | The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑄 = (Poly1‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) | ||
| Theorem | rhmply1 22294* | Provide a ring homomorphism between two univariate polynomial algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑄 = (Poly1‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑄)) | ||
| Theorem | rhmply1vr1 22295* | A ring homomorphism between two univariate polynomial algebras sends one variable to the other. (Contributed by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑄 = (Poly1‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑌 = (var1‘𝑆) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = 𝑌) | ||
| Theorem | rhmply1vsca 22296* | Apply a ring homomorphism between two univariate polynomial algebras to a scaled polynomial. (Contributed by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑄 = (Poly1‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝑄) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘(𝐶 · 𝑋)) = ((𝐻‘𝐶) ∙ (𝐹‘𝑋))) | ||
| Theorem | rhmply1mon 22297* | Apply a ring homomorphism between two univariate polynomial algebras to a scaled monomial, as in ply1coe 22206. (Contributed by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑄 = (Poly1‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑌 = (var1‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝑄) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑄) & ⊢ ↑ = (.g‘𝑀) & ⊢ ∧ = (.g‘𝑁) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐸 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐹‘(𝐶 · (𝐸 ↑ 𝑋))) = ((𝐻‘𝐶) ∙ (𝐸 ∧ 𝑌))) | ||
According to Wikipedia ("Matrix (mathemetics)", 02-Apr-2019, https://en.wikipedia.org/wiki/Matrix_(mathematics)) "A matrix is a rectangular array of numbers or other mathematical objects for which operations such as addition and multiplication are defined. Most commonly, a matrix over a field F is a rectangular array of scalars each of which is a member of F. The numbers, symbols or expressions in the matrix are called its entries or its elements. The horizontal and vertical lines of entries in a matrix are called rows and columns, respectively.", and in the definition of [Lang] p. 503 "By an m x n matrix in [a commutative ring] R one means a doubly indexed family of elements of R, (aij), (i= 1,..., m and j = 1,... n) ... We call the elements aij the coefficients or components of the matrix. A 1 x n matrix is called a row vector (of dimension, or size, n) and a m x 1 matrix is called a column vector (of dimension, or size, m). In general, we say that (m,n) is the size of the matrix, ...". In contrast to these definitions, we denote any free module over a (not necessarily commutative) ring (in the meaning of df-frlm 21677) with a Cartesian product as index set as "matrix". The two sets of the Cartesian product even need neither to be ordered or a range of (nonnegative/positive) integers nor finite. By this, the addition and scalar multiplication for matrices correspond to the addition (see frlmplusgval 21694) and scalar multiplication (see frlmvscafval 21696) for free modules. Actually, there is no definition for (arbitrary) matrices: Even the (general) matrix multiplication can be defined using functions from Cartesian products into a ring (which are elements of the base set of free modules), see df-mamu 22299. Thus, a statement like "Then the set of m x n matrices in R is a module (i.e., an R-module)" as in [Lang] p. 504 follows immediately from frlmlmod 21679. However, for square matrices there is Definition df-mat 22316, defining the algebras of square matrices (of the same size over the same ring), extending the structure of the corresponding free module by the matrix multiplication as ring multiplication. A "usual" matrix (aij), (i = 1,..., m and j = 1,... n) would be represented as an element of (the base set of) (𝑅 freeLMod ((1...𝑚) × (1...𝑛))) and a square matrix (aij), (i = 1,..., n and j = 1,... n) would be represented as an element of (the base set of) ((1...𝑛) Mat 𝑅). Finally, it should be mentioned that our definitions of matrices include the zero-dimensional cases, which are excluded from the definitions of many authors, e.g., in [Lang] p. 503. It is shown in mat0dimbas0 22374 that the empty set is the sole zero-dimensional matrix (also called "empty matrix", see Wikipedia https://en.wikipedia.org/wiki/Matrix_(mathematics)#Empty_matrices). 22374 Its determinant is the ring unity, see mdet0fv0 22502. | ||
This section is about the multiplication of m x n matrices. | ||
| Syntax | cmmul 22298 | Syntax for the matrix multiplication operator. |
| class maMul | ||
| Definition | df-mamu 22299* | The operator which multiplies an m x n matrix with an n x p matrix, see also the definition in [Lang] p. 504. Note that it is not generally possible to recover the dimensions from the matrix, since all n x 0 and all 0 x n matrices are represented by the empty set. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ maMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ ⦋(1st ‘(1st ‘𝑜)) / 𝑚⦌⦋(2nd ‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd ‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))))))) | ||
| Theorem | mamufval 22300* | Functional value of the matrix multiplication operator. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) ⇒ ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m (𝑁 × 𝑃)) ↦ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |