| Metamath
Proof Explorer Theorem List (p. 223 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | ce1 22201 | Evaluation of a univariate polynomial. |
| class eval1 | ||
| Definition | df-evls1 22202* | Define the evaluation map for the univariate polynomial algebra. The function (𝑆 evalSub1 𝑅):𝑉⟶(𝑆 ↑m 𝑆) makes sense when 𝑆 is a ring and 𝑅 is a subring of 𝑆, and where 𝑉 is the set of polynomials in (Poly1‘𝑅). This function maps an element of the formal polynomial algebra (with coefficients in 𝑅) to a function from assignments to the variable from 𝑆 into an element of 𝑆 formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟))) | ||
| Definition | df-evl1 22203* | Define the evaluation map for the univariate polynomial algebra. The function (eval1‘𝑅):𝑉⟶(𝑅 ↑m 𝑅) makes sense when 𝑅 is a ring, and 𝑉 is the set of polynomials in (Poly1‘𝑅). This function maps an element of the formal polynomial algebra (with coefficients in 𝑅) to a function from assignments to the variable from 𝑅 into an element of 𝑅 formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ eval1 = (𝑟 ∈ V ↦ ⦋(Base‘𝑟) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟))) | ||
| Theorem | reldmevls1 22204 | Well-behaved binary operation property of evalSub1. (Contributed by AV, 7-Sep-2019.) |
| ⊢ Rel dom evalSub1 | ||
| Theorem | ply1frcl 22205 | Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.) |
| ⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) ⇒ ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) | ||
| Theorem | evls1fval 22206* | Value of the univariate polynomial evaluation map function. (Contributed by AV, 7-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐸 = (1o evalSub 𝑆) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))) | ||
| Theorem | evls1val 22207* | Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐸 = (1o evalSub 𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑀 = (1o mPoly (𝑆 ↾s 𝑅)) & ⊢ 𝐾 = (Base‘𝑀) ⇒ ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | ||
| Theorem | evls1rhmlem 22208* | Lemma for evl1rhm 22219 and evls1rhm 22209 (formerly part of the proof of evl1rhm 22219): The first function of the composition forming the univariate polynomial evaluation map function for a (sub)ring is a ring homomorphism. (Contributed by AV, 11-Sep-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑇 = (𝑅 ↑s 𝐵) & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ⇒ ⊢ (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) | ||
| Theorem | evls1rhm 22209 | Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑇 = (𝑆 ↑s 𝐵) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) ⇒ ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) | ||
| Theorem | evls1sca 22210 | Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) | ||
| Theorem | evls1gsumadd 22211* | Univariate polynomial evaluation maps (additive) group sums to group sums. (Contributed by AV, 14-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (𝑆 ↑s 𝐾) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) | ||
| Theorem | evls1gsummul 22212* | Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 14-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 1 = (1r‘𝑊) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (𝑆 ↑s 𝐾) & ⊢ 𝐻 = (mulGrp‘𝑃) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) ⇒ ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) | ||
| Theorem | evls1pw 22213 | Univariate polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆 ↑s 𝐾)))(𝑄‘𝑋))) | ||
| Theorem | evls1varpw 22214 | Univariate polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by AV, 14-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝑋 = (var1‘𝑈) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆 ↑s 𝐵)))(𝑄‘𝑋))) | ||
| Theorem | evl1fval 22215* | Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑄 = (1o eval 𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝑂 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄) | ||
| Theorem | evl1val 22216* | Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑄 = (1o eval 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (1o mPoly 𝑅) & ⊢ 𝐾 = (Base‘𝑀) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → (𝑂‘𝐴) = ((𝑄‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | ||
| Theorem | evl1fval1lem 22217 | Lemma for evl1fval1 22218. (Contributed by AV, 11-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) | ||
| Theorem | evl1fval1 22218 | Value of the simple/same ring evaluation map function for univariate polynomials. (Contributed by AV, 11-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝑄 = (𝑅 evalSub1 𝐵) | ||
| Theorem | evl1rhm 22219 | Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Mario Carneiro, 12-Jun-2015.) (Proof shortened by AV, 13-Sep-2019.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑇 = (𝑅 ↑s 𝐵) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom 𝑇)) | ||
| Theorem | fveval1fvcl 22220 | The function value of the evaluation function of a polynomial is an element of the underlying ring. (Contributed by AV, 17-Sep-2019.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) ∈ 𝐵) | ||
| Theorem | evl1sca 22221 | Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) | ||
| Theorem | evl1scad 22222 | Polynomial evaluation builder for scalars. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐴‘𝑋) ∈ 𝑈 ∧ ((𝑂‘(𝐴‘𝑋))‘𝑌) = 𝑋)) | ||
| Theorem | evl1var 22223 | Polynomial evaluation maps the variable to the identity function. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = ( I ↾ 𝐵)) | ||
| Theorem | evl1vard 22224 | Polynomial evaluation builder for the variable. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∧ ((𝑂‘𝑋)‘𝑌) = 𝑌)) | ||
| Theorem | evls1var 22225 | Univariate polynomial evaluation for subrings maps the variable to the identity function. (Contributed by AV, 13-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑋 = (var1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) ⇒ ⊢ (𝜑 → (𝑄‘𝑋) = ( I ↾ 𝐵)) | ||
| Theorem | evls1scasrng 22226 | The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 13-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑂 = (eval1‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (Poly1‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐶 = (algSc‘𝑃) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝑂‘(𝐶‘𝑋))) | ||
| Theorem | evls1varsrng 22227 | The evaluation of the variable of univariate polynomials over subring yields the same result as evaluated as variable of the polynomials over the ring itself. (Contributed by AV, 12-Sep-2019.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑂 = (eval1‘𝑆) & ⊢ 𝑉 = (var1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) ⇒ ⊢ (𝜑 → (𝑄‘𝑉) = (𝑂‘𝑉)) | ||
| Theorem | evl1addd 22228 | Polynomial evaluation builder for addition of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) & ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) & ⊢ ✚ = (+g‘𝑃) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ✚ 𝑁))‘𝑌) = (𝑉 + 𝑊))) | ||
| Theorem | evl1subd 22229 | Polynomial evaluation builder for subtraction of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) & ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) & ⊢ − = (-g‘𝑃) & ⊢ 𝐷 = (-g‘𝑅) ⇒ ⊢ (𝜑 → ((𝑀 − 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊))) | ||
| Theorem | evl1muld 22230 | Polynomial evaluation builder for multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) & ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝜑 → ((𝑀 ∙ 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 ∙ 𝑁))‘𝑌) = (𝑉 · 𝑊))) | ||
| Theorem | evl1vsd 22231 | Polynomial evaluation builder for scalar multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ ∙ = ( ·𝑠 ‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝜑 → ((𝑁 ∙ 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 ∙ 𝑀))‘𝑌) = (𝑁 · 𝑉))) | ||
| Theorem | evl1expd 22232 | Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) & ⊢ ∙ = (.g‘(mulGrp‘𝑃)) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑁 ∙ 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 ∙ 𝑀))‘𝑌) = (𝑁 ↑ 𝑉))) | ||
| Theorem | pf1const 22233 | Constants are polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑄 = ran (eval1‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝐵 × {𝑋}) ∈ 𝑄) | ||
| Theorem | pf1id 22234 | The identity is a polynomial function. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑄 = ran (eval1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → ( I ↾ 𝐵) ∈ 𝑄) | ||
| Theorem | pf1subrg 22235 | Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑄 = ran (eval1‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (SubRing‘(𝑅 ↑s 𝐵))) | ||
| Theorem | pf1rcl 22236 | Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = ran (eval1‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝑄 → 𝑅 ∈ CRing) | ||
| Theorem | pf1f 22237 | Polynomial functions are functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = ran (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐹 ∈ 𝑄 → 𝐹:𝐵⟶𝐵) | ||
| Theorem | mpfpf1 22238* | Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = ran (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = ran (1o eval 𝑅) ⇒ ⊢ (𝐹 ∈ 𝐸 → (𝐹 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄) | ||
| Theorem | pf1mpf 22239* | Convert a univariate polynomial function to multivariate. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = ran (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐸 = ran (1o eval 𝑅) ⇒ ⊢ (𝐹 ∈ 𝑄 → (𝐹 ∘ (𝑥 ∈ (𝐵 ↑m 1o) ↦ (𝑥‘∅))) ∈ 𝐸) | ||
| Theorem | pf1addcl 22240 | The sum of multivariate polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = ran (eval1‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f + 𝐺) ∈ 𝑄) | ||
| Theorem | pf1mulcl 22241 | The product of multivariate polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑄 = ran (eval1‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐹 ∈ 𝑄 ∧ 𝐺 ∈ 𝑄) → (𝐹 ∘f · 𝐺) ∈ 𝑄) | ||
| Theorem | pf1ind 22242* | Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑄 = ran (eval1‘𝑅) & ⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜁) & ⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑄 ∧ 𝜏) ∧ (𝑔 ∈ 𝑄 ∧ 𝜂))) → 𝜎) & ⊢ (𝑥 = (𝐵 × {𝑓}) → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = ( I ↾ 𝐵) → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) & ⊢ (𝑥 = (𝑓 ∘f + 𝑔) → (𝜓 ↔ 𝜁)) & ⊢ (𝑥 = (𝑓 ∘f · 𝑔) → (𝜓 ↔ 𝜎)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐵) → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝐴 ∈ 𝑄) ⇒ ⊢ (𝜑 → 𝜌) | ||
| Theorem | evl1gsumdlem 22243* | Lemma for evl1gsumd 22244 (induction step). (Contributed by AV, 17-Sep-2019.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → ((∀𝑥 ∈ 𝑚 𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((𝑂‘𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂‘𝑀)‘𝑌)))))) | ||
| Theorem | evl1gsumd 22244* | Polynomial evaluation builder for a finite group sum of polynomials. (Contributed by AV, 17-Sep-2019.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝑈) & ⊢ (𝜑 → 𝑁 ∈ Fin) ⇒ ⊢ (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑂‘𝑀)‘𝑌)))) | ||
| Theorem | evl1gsumadd 22245* | Univariate polynomial evaluation maps (additive) group sums to group sums. Remark: the proof would be shorter if the theorem is proved directly instead of using evls1gsumadd 22211. (Contributed by AV, 15-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝑃 = (𝑅 ↑s 𝐾) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) | ||
| Theorem | evl1gsumaddval 22246* | Value of a univariate polynomial evaluation mapping an additive group sum to a group sum of the evaluated variable. (Contributed by AV, 17-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝑃 = (𝑅 ↑s 𝐾) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((𝑄‘𝑌)‘𝐶)))) | ||
| Theorem | evl1gsummul 22247* | Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 15-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝑃 = (𝑅 ↑s 𝐾) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ 1 = (1r‘𝑊) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝐻 = (mulGrp‘𝑃) & ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) ⇒ ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) | ||
| Theorem | evl1varpw 22248 | Univariate polynomial evaluation maps the exponentiation of a variable to the exponentiation of the evaluated variable. Remark: in contrast to evl1gsumadd 22245, the proof is shorter using evls1varpw 22214 instead of proving it directly. (Contributed by AV, 15-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) | ||
| Theorem | evl1varpwval 22249 | Value of a univariate polynomial evaluation mapping the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by AV, 14-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑁 ↑ 𝑋))‘𝐶) = (𝑁𝐸𝐶)) | ||
| Theorem | evl1scvarpw 22250 | Univariate polynomial evaluation maps a multiple of an exponentiation of a variable to the multiple of an exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ × = ( ·𝑠 ‘𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 𝑆 = (𝑅 ↑s 𝐵) & ⊢ ∙ = (.r‘𝑆) & ⊢ 𝑀 = (mulGrp‘𝑆) & ⊢ 𝐹 = (.g‘𝑀) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴 × (𝑁 ↑ 𝑋))) = ((𝐵 × {𝐴}) ∙ (𝑁𝐹(𝑄‘𝑋)))) | ||
| Theorem | evl1scvarpwval 22251 | Value of a univariate polynomial evaluation mapping a multiple of an exponentiation of a variable to the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ × = ( ·𝑠 ‘𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝜑 → ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶) = (𝐴 · (𝑁𝐸𝐶))) | ||
| Theorem | evl1gsummon 22252* | Value of a univariate polynomial evaluation mapping an additive group sum of a multiple of an exponentiation of a variable to a group sum of the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
| ⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ ↑ = (.g‘𝐺) & ⊢ × = ( ·𝑠 ‘𝑊) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑀 ⊆ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑀 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑊 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 × (𝑁 ↑ 𝑋)))))‘𝐶) = (𝑅 Σg (𝑥 ∈ 𝑀 ↦ (𝐴 · (𝑁𝐸𝐶))))) | ||
| Theorem | evls1scafv 22253 | Value of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑄‘(𝐴‘𝑋))‘𝐶) = 𝑋) | ||
| Theorem | evls1expd 22254 | Univariate polynomial evaluation builder for an exponential. See also evl1expd 22232. (Contributed by Thierry Arnoux, 24-Jan-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ ∧ = (.g‘(mulGrp‘𝑊)) & ⊢ ↑ = (.g‘(mulGrp‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑀))‘𝐶) = (𝑁 ↑ ((𝑄‘𝑀)‘𝐶))) | ||
| Theorem | evls1varpwval 22255 | Univariate polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. See evl1varpwval 22249. (Contributed by Thierry Arnoux, 24-Jan-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑋 = (var1‘𝑈) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ ∧ = (.g‘(mulGrp‘𝑊)) & ⊢ ↑ = (.g‘(mulGrp‘𝑆)) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑋))‘𝐶) = (𝑁 ↑ 𝐶)) | ||
| Theorem | evls1fpws 22256* | Evaluation of a univariate subring polynomial as a function in a power series. (Contributed by Thierry Arnoux, 23-Jan-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ · = (.r‘𝑆) & ⊢ ↑ = (.g‘(mulGrp‘𝑆)) & ⊢ 𝐴 = (coe1‘𝑀) ⇒ ⊢ (𝜑 → (𝑄‘𝑀) = (𝑥 ∈ 𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑥)))))) | ||
| Theorem | ressply1evl 22257 | Evaluation of a univariate subring polynomial is the same as the evaluation in the bigger ring. (Contributed by Thierry Arnoux, 23-Jan-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐸 = (eval1‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) ⇒ ⊢ (𝜑 → 𝑄 = (𝐸 ↾ 𝐵)) | ||
| Theorem | evls1addd 22258 | Univariate polynomial evaluation of a sum of polynomials. (Contributed by Thierry Arnoux, 8-Feb-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ⨣ = (+g‘𝑊) & ⊢ + = (+g‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑀 ⨣ 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) + ((𝑄‘𝑁)‘𝐶))) | ||
| Theorem | evls1muld 22259 | Univariate polynomial evaluation of a product of polynomials. (Contributed by Thierry Arnoux, 24-Jan-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ × = (.r‘𝑊) & ⊢ · = (.r‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝑀 × 𝑁))‘𝐶) = (((𝑄‘𝑀)‘𝐶) · ((𝑄‘𝑁)‘𝐶))) | ||
| Theorem | evls1vsca 22260 | Univariate polynomial evaluation of a scalar product of polynomials. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ × = ( ·𝑠 ‘𝑊) & ⊢ · = (.r‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ 𝑅) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑄‘(𝐴 × 𝑁))‘𝐶) = (𝐴 · ((𝑄‘𝑁)‘𝐶))) | ||
| Theorem | asclply1subcl 22261 | Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| ⊢ 𝐴 = (algSc‘𝑉) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝑉 = (Poly1‘𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑃 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑍 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐴‘𝑍) ∈ 𝑃) | ||
| Theorem | evls1fvcl 22262 | Variant of fveval1fvcl 22220 for the subring evaluation function evalSub1 (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) ∈ 𝐵) | ||
| Theorem | evls1maprhm 22263* | The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝑋 is a ring homomorphism. (Contributed by Thierry Arnoux, 8-Feb-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) | ||
| Theorem | evls1maplmhm 22264* | The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴 is a module homomorphism, when considering the subring algebra. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) & ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑆) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑃 LMHom 𝐴)) | ||
| Theorem | evls1maprnss 22265* | The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴 takes all values in the subring 𝑆. (Contributed by Thierry Arnoux, 25-Feb-2025.) |
| ⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ⇒ ⊢ (𝜑 → 𝑆 ⊆ ran 𝐹) | ||
| Theorem | evl1maprhm 22266* | The function 𝐹 mapping polynomials 𝑝 to their evaluation at a given point 𝑋 is a ring homomorphism. (Contributed by metakunt, 19-May-2025.) |
| ⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) | ||
| Theorem | mhmcompl 22267 | The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 7-Feb-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑄 = (𝐼 mPoly 𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) | ||
| Theorem | mhmcoaddmpl 22268 | Show that the ring homomorphism in rhmmpl 22270 preserves addition. (Contributed by SN, 8-Feb-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑄 = (𝐼 mPoly 𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ + = (+g‘𝑃) & ⊢ ✚ = (+g‘𝑄) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻 ∘ (𝐹 + 𝐺)) = ((𝐻 ∘ 𝐹) ✚ (𝐻 ∘ 𝐺))) | ||
| Theorem | rhmcomulmpl 22269 | Show that the ring homomorphism in rhmmpl 22270 preserves multiplication. (Contributed by SN, 8-Feb-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑄 = (𝐼 mPoly 𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ · = (.r‘𝑃) & ⊢ ∙ = (.r‘𝑄) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻 ∘ (𝐹 · 𝐺)) = ((𝐻 ∘ 𝐹) ∙ (𝐻 ∘ 𝐺))) | ||
| Theorem | rhmmpl 22270* | Provide a ring homomorphism between two polynomial algebras over their respective base rings given a ring homomorphism between the two base rings. Compare pwsco2rhm 20412. (Contributed by SN, 8-Feb-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑄 = (𝐼 mPoly 𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑄)) | ||
| Theorem | ply1vscl 22271 | Closure of scalar multiplication for univariate polynomials. (Contributed by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 · 𝑋) ∈ 𝐵) | ||
| Theorem | mhmcoply1 22272 | The composition of a monoid homomorphism and a polynomial is a polynomial. (Contributed by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑄 = (Poly1‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑄) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 MndHom 𝑆)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ 𝐶) | ||
| Theorem | rhmply1 22273* | Provide a ring homomorphism between two univariate polynomial algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑄 = (Poly1‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑄)) | ||
| Theorem | rhmply1vr1 22274* | A ring homomorphism between two univariate polynomial algebras sends one variable to the other. (Contributed by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑄 = (Poly1‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑌 = (var1‘𝑆) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) = 𝑌) | ||
| Theorem | rhmply1vsca 22275* | Apply a ring homomorphism between two univariate polynomial algebras to a scaled polynomial. (Contributed by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑄 = (Poly1‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝑄) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘(𝐶 · 𝑋)) = ((𝐻‘𝐶) ∙ (𝐹‘𝑋))) | ||
| Theorem | rhmply1mon 22276* | Apply a ring homomorphism between two univariate polynomial algebras to a scaled monomial, as in ply1coe 22185. (Contributed by SN, 20-May-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑄 = (Poly1‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐹 = (𝑝 ∈ 𝐵 ↦ (𝐻 ∘ 𝑝)) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑌 = (var1‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝑄) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑄) & ⊢ ↑ = (.g‘𝑀) & ⊢ ∧ = (.g‘𝑁) & ⊢ (𝜑 → 𝐻 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐸 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐹‘(𝐶 · (𝐸 ↑ 𝑋))) = ((𝐻‘𝐶) ∙ (𝐸 ∧ 𝑌))) | ||
According to Wikipedia ("Matrix (mathemetics)", 02-Apr-2019, https://en.wikipedia.org/wiki/Matrix_(mathematics)) "A matrix is a rectangular array of numbers or other mathematical objects for which operations such as addition and multiplication are defined. Most commonly, a matrix over a field F is a rectangular array of scalars each of which is a member of F. The numbers, symbols or expressions in the matrix are called its entries or its elements. The horizontal and vertical lines of entries in a matrix are called rows and columns, respectively.", and in the definition of [Lang] p. 503 "By an m x n matrix in [a commutative ring] R one means a doubly indexed family of elements of R, (aij), (i= 1,..., m and j = 1,... n) ... We call the elements aij the coefficients or components of the matrix. A 1 x n matrix is called a row vector (of dimension, or size, n) and a m x 1 matrix is called a column vector (of dimension, or size, m). In general, we say that (m,n) is the size of the matrix, ...". In contrast to these definitions, we denote any free module over a (not necessarily commutative) ring (in the meaning of df-frlm 21656) with a Cartesian product as index set as "matrix". The two sets of the Cartesian product even need neither to be ordered or a range of (nonnegative/positive) integers nor finite. By this, the addition and scalar multiplication for matrices correspond to the addition (see frlmplusgval 21673) and scalar multiplication (see frlmvscafval 21675) for free modules. Actually, there is no definition for (arbitrary) matrices: Even the (general) matrix multiplication can be defined using functions from Cartesian products into a ring (which are elements of the base set of free modules), see df-mamu 22278. Thus, a statement like "Then the set of m x n matrices in R is a module (i.e., an R-module)" as in [Lang] p. 504 follows immediately from frlmlmod 21658. However, for square matrices there is Definition df-mat 22295, defining the algebras of square matrices (of the same size over the same ring), extending the structure of the corresponding free module by the matrix multiplication as ring multiplication. A "usual" matrix (aij), (i = 1,..., m and j = 1,... n) would be represented as an element of (the base set of) (𝑅 freeLMod ((1...𝑚) × (1...𝑛))) and a square matrix (aij), (i = 1,..., n and j = 1,... n) would be represented as an element of (the base set of) ((1...𝑛) Mat 𝑅). Finally, it should be mentioned that our definitions of matrices include the zero-dimensional cases, which are excluded from the definitions of many authors, e.g., in [Lang] p. 503. It is shown in mat0dimbas0 22353 that the empty set is the sole zero-dimensional matrix (also called "empty matrix", see Wikipedia https://en.wikipedia.org/wiki/Matrix_(mathematics)#Empty_matrices). 22353 Its determinant is the ring unity, see mdet0fv0 22481. | ||
This section is about the multiplication of m x n matrices. | ||
| Syntax | cmmul 22277 | Syntax for the matrix multiplication operator. |
| class maMul | ||
| Definition | df-mamu 22278* | The operator which multiplies an m x n matrix with an n x p matrix, see also the definition in [Lang] p. 504. Note that it is not generally possible to recover the dimensions from the matrix, since all n x 0 and all 0 x n matrices are represented by the empty set. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ maMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ ⦋(1st ‘(1st ‘𝑜)) / 𝑚⦌⦋(2nd ‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd ‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))))))) | ||
| Theorem | mamufval 22279* | Functional value of the matrix multiplication operator. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) ⇒ ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m (𝑁 × 𝑃)) ↦ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))))) | ||
| Theorem | mamuval 22280* | Multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) ⇒ ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) | ||
| Theorem | mamufv 22281* | A cell in the multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) & ⊢ (𝜑 → 𝐼 ∈ 𝑀) & ⊢ (𝜑 → 𝐾 ∈ 𝑃) ⇒ ⊢ (𝜑 → (𝐼(𝑋𝐹𝑌)𝐾) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾))))) | ||
| Theorem | mamudm 22282 | The domain of the matrix multiplication function. (Contributed by AV, 10-Feb-2019.) |
| ⊢ 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃)) & ⊢ 𝐶 = (Base‘𝐹) & ⊢ × = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶)) | ||
| Theorem | mamufacex 22283 | Every solution of the equation 𝐴∗𝑋 = 𝐵 for matrices 𝐴 and 𝐵 is a matrix. (Contributed by AV, 10-Feb-2019.) |
| ⊢ 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃)) & ⊢ 𝐶 = (Base‘𝐹) & ⊢ × = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐺 = (𝑅 freeLMod (𝑀 × 𝑃)) & ⊢ 𝐷 = (Base‘𝐺) ⇒ ⊢ (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅 ∈ 𝑉 ∧ 𝑌 ∈ 𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌 → 𝑍 ∈ 𝐶)) | ||
| Theorem | mamures 22284 | Rows in a matrix product are functions only of the corresponding rows in the left argument. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐺 = (𝑅 maMul 〈𝐼, 𝑁, 𝑃〉) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝐼 ⊆ 𝑀) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) ⇒ ⊢ (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌)) | ||
| Theorem | grpvlinv 22285 | Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → ((𝑁 ∘ 𝑋) ∘f + 𝑋) = (𝐼 × { 0 })) | ||
| Theorem | grpvrinv 22286 | Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝑁 ∘ 𝑋)) = (𝐼 × { 0 })) | ||
| Theorem | ringvcl 22287 | Tuple-wise multiplication closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f · 𝑌) ∈ (𝐵 ↑m 𝐼)) | ||
| Theorem | mamucl 22288 | Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) ⇒ ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑃))) | ||
| Theorem | mamuass 22289 | Matrix multiplication is associative, see also statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂))) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑂 × 𝑃))) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ 𝐺 = (𝑅 maMul 〈𝑀, 𝑂, 𝑃〉) & ⊢ 𝐻 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) & ⊢ 𝐼 = (𝑅 maMul 〈𝑁, 𝑂, 𝑃〉) ⇒ ⊢ (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍))) | ||
| Theorem | mamudi 22290 | Matrix multiplication distributes over addition on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂))) ⇒ ⊢ (𝜑 → ((𝑋 ∘f + 𝑌)𝐹𝑍) = ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))) | ||
| Theorem | mamudir 22291 | Matrix multiplication distributes over addition on the right. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ + = (+g‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂))) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂))) ⇒ ⊢ (𝜑 → (𝑋𝐹(𝑌 ∘f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))) | ||
| Theorem | mamuvs1 22292 | Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂))) ⇒ ⊢ (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))) | ||
| Theorem | mamuvs2 22293 | Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.) |
| ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) & ⊢ (𝜑 → 𝑀 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → 𝑂 ∈ Fin) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂))) ⇒ ⊢ (𝜑 → (𝑋𝐹(((𝑁 × 𝑂) × {𝑌}) ∘f · 𝑍)) = (((𝑀 × 𝑂) × {𝑌}) ∘f · (𝑋𝐹𝑍))) | ||
In the following, the square matrix algebra is defined as extensible structure Mat. In this subsection, however, only square matrices and their basic properties are regarded. This includes showing that (𝑁 Mat 𝑅) is a left module, see matlmod 22316. That (𝑁 Mat 𝑅) is a ring and an associative algebra is shown in the next subsection, after theorems about the identity matrix are available. Nevertheless, (𝑁 Mat 𝑅) is called "matrix ring" or "matrix algebra" already in this subsection. | ||
| Syntax | cmat 22294 | Syntax for the square matrix algebra. |
| class Mat | ||
| Definition | df-mat 22295* | Define the algebra of n x n matrices over a ring r. (Contributed by Stefan O'Rear, 31-Aug-2015.) |
| ⊢ Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx), (𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) | ||
| Theorem | matbas0pc 22296 | There is no matrix with a proper class either as dimension or as underlying ring. (Contributed by AV, 28-Dec-2018.) |
| ⊢ (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) | ||
| Theorem | matbas0 22297 | There is no matrix for a not finite dimension or a proper class as the underlying ring. (Contributed by AV, 28-Dec-2018.) |
| ⊢ (¬ (𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅) | ||
| Theorem | matval 22298 | Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) & ⊢ · = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐴 = (𝐺 sSet 〈(.r‘ndx), · 〉)) | ||
| Theorem | matrcl 22299 | Reverse closure for the matrix algebra. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) | ||
| Theorem | matbas 22300 | The matrix ring has the same base set as its underlying group. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐺 = (𝑅 freeLMod (𝑁 × 𝑁)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (Base‘𝐺) = (Base‘𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |