MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamufval Structured version   Visualization version   GIF version

Theorem mamufval 20992
Description: Functional value of the matrix multiplication operator. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mamufval.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamufval.b 𝐵 = (Base‘𝑅)
mamufval.t · = (.r𝑅)
mamufval.r (𝜑𝑅𝑉)
mamufval.m (𝜑𝑀 ∈ Fin)
mamufval.n (𝜑𝑁 ∈ Fin)
mamufval.p (𝜑𝑃 ∈ Fin)
Assertion
Ref Expression
mamufval (𝜑𝐹 = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))))))
Distinct variable groups:   𝑖,𝑗,𝑘,𝑥,𝑦,𝑀   𝑖,𝑁,𝑗,𝑘,𝑥,𝑦   𝑃,𝑖,𝑗,𝑘,𝑥,𝑦   𝑅,𝑖,𝑗,𝑘,𝑥,𝑦   𝜑,𝑖,𝑗,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥, · ,𝑦,𝑖,𝑘
Allowed substitution hints:   𝐵(𝑖,𝑗,𝑘)   · (𝑗)   𝐹(𝑥,𝑦,𝑖,𝑗,𝑘)   𝑉(𝑥,𝑦,𝑖,𝑗,𝑘)

Proof of Theorem mamufval
Dummy variables 𝑚 𝑛 𝑜 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamufval.f . 2 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
2 df-mamu 20991 . . . 4 maMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ (1st ‘(1st𝑜)) / 𝑚(2nd ‘(1st𝑜)) / 𝑛(2nd𝑜) / 𝑝(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖𝑚, 𝑘𝑝 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))))
32a1i 11 . . 3 (𝜑 → maMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ (1st ‘(1st𝑜)) / 𝑚(2nd ‘(1st𝑜)) / 𝑛(2nd𝑜) / 𝑝(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖𝑚, 𝑘𝑝 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘))))))))
4 fvex 6658 . . . . 5 (1st ‘(1st𝑜)) ∈ V
5 fvex 6658 . . . . 5 (2nd ‘(1st𝑜)) ∈ V
6 fvex 6658 . . . . . . 7 (2nd𝑜) ∈ V
7 eqidd 2799 . . . . . . . 8 (𝑝 = (2nd𝑜) → ((Base‘𝑟) ↑m (𝑚 × 𝑛)) = ((Base‘𝑟) ↑m (𝑚 × 𝑛)))
8 xpeq2 5540 . . . . . . . . 9 (𝑝 = (2nd𝑜) → (𝑛 × 𝑝) = (𝑛 × (2nd𝑜)))
98oveq2d 7151 . . . . . . . 8 (𝑝 = (2nd𝑜) → ((Base‘𝑟) ↑m (𝑛 × 𝑝)) = ((Base‘𝑟) ↑m (𝑛 × (2nd𝑜))))
10 eqidd 2799 . . . . . . . . 9 (𝑝 = (2nd𝑜) → 𝑚 = 𝑚)
11 id 22 . . . . . . . . 9 (𝑝 = (2nd𝑜) → 𝑝 = (2nd𝑜))
12 eqidd 2799 . . . . . . . . 9 (𝑝 = (2nd𝑜) → (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))) = (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))
1310, 11, 12mpoeq123dv 7208 . . . . . . . 8 (𝑝 = (2nd𝑜) → (𝑖𝑚, 𝑘𝑝 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘))))) = (𝑖𝑚, 𝑘 ∈ (2nd𝑜) ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘))))))
147, 9, 13mpoeq123dv 7208 . . . . . . 7 (𝑝 = (2nd𝑜) → (𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖𝑚, 𝑘𝑝 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))) = (𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × (2nd𝑜))) ↦ (𝑖𝑚, 𝑘 ∈ (2nd𝑜) ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))))
156, 14csbie 3863 . . . . . 6 (2nd𝑜) / 𝑝(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖𝑚, 𝑘𝑝 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))) = (𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × (2nd𝑜))) ↦ (𝑖𝑚, 𝑘 ∈ (2nd𝑜) ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘))))))
16 xpeq12 5544 . . . . . . . 8 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → (𝑚 × 𝑛) = ((1st ‘(1st𝑜)) × (2nd ‘(1st𝑜))))
1716oveq2d 7151 . . . . . . 7 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → ((Base‘𝑟) ↑m (𝑚 × 𝑛)) = ((Base‘𝑟) ↑m ((1st ‘(1st𝑜)) × (2nd ‘(1st𝑜)))))
18 simpr 488 . . . . . . . . 9 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → 𝑛 = (2nd ‘(1st𝑜)))
1918xpeq1d 5548 . . . . . . . 8 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → (𝑛 × (2nd𝑜)) = ((2nd ‘(1st𝑜)) × (2nd𝑜)))
2019oveq2d 7151 . . . . . . 7 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → ((Base‘𝑟) ↑m (𝑛 × (2nd𝑜))) = ((Base‘𝑟) ↑m ((2nd ‘(1st𝑜)) × (2nd𝑜))))
21 id 22 . . . . . . . . 9 (𝑚 = (1st ‘(1st𝑜)) → 𝑚 = (1st ‘(1st𝑜)))
2221adantr 484 . . . . . . . 8 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → 𝑚 = (1st ‘(1st𝑜)))
23 eqidd 2799 . . . . . . . 8 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → (2nd𝑜) = (2nd𝑜))
24 eqidd 2799 . . . . . . . . . 10 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)) = ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))
2518, 24mpteq12dv 5115 . . . . . . . . 9 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘))) = (𝑗 ∈ (2nd ‘(1st𝑜)) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘))))
2625oveq2d 7151 . . . . . . . 8 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))) = (𝑟 Σg (𝑗 ∈ (2nd ‘(1st𝑜)) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))
2722, 23, 26mpoeq123dv 7208 . . . . . . 7 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → (𝑖𝑚, 𝑘 ∈ (2nd𝑜) ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘))))) = (𝑖 ∈ (1st ‘(1st𝑜)), 𝑘 ∈ (2nd𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd ‘(1st𝑜)) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘))))))
2817, 20, 27mpoeq123dv 7208 . . . . . 6 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → (𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × (2nd𝑜))) ↦ (𝑖𝑚, 𝑘 ∈ (2nd𝑜) ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))) = (𝑥 ∈ ((Base‘𝑟) ↑m ((1st ‘(1st𝑜)) × (2nd ‘(1st𝑜)))), 𝑦 ∈ ((Base‘𝑟) ↑m ((2nd ‘(1st𝑜)) × (2nd𝑜))) ↦ (𝑖 ∈ (1st ‘(1st𝑜)), 𝑘 ∈ (2nd𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd ‘(1st𝑜)) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))))
2915, 28syl5eq 2845 . . . . 5 ((𝑚 = (1st ‘(1st𝑜)) ∧ 𝑛 = (2nd ‘(1st𝑜))) → (2nd𝑜) / 𝑝(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖𝑚, 𝑘𝑝 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))) = (𝑥 ∈ ((Base‘𝑟) ↑m ((1st ‘(1st𝑜)) × (2nd ‘(1st𝑜)))), 𝑦 ∈ ((Base‘𝑟) ↑m ((2nd ‘(1st𝑜)) × (2nd𝑜))) ↦ (𝑖 ∈ (1st ‘(1st𝑜)), 𝑘 ∈ (2nd𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd ‘(1st𝑜)) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))))
304, 5, 29csbie2 3867 . . . 4 (1st ‘(1st𝑜)) / 𝑚(2nd ‘(1st𝑜)) / 𝑛(2nd𝑜) / 𝑝(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖𝑚, 𝑘𝑝 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))) = (𝑥 ∈ ((Base‘𝑟) ↑m ((1st ‘(1st𝑜)) × (2nd ‘(1st𝑜)))), 𝑦 ∈ ((Base‘𝑟) ↑m ((2nd ‘(1st𝑜)) × (2nd𝑜))) ↦ (𝑖 ∈ (1st ‘(1st𝑜)), 𝑘 ∈ (2nd𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd ‘(1st𝑜)) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘))))))
31 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → 𝑟 = 𝑅)
3231fveq2d 6649 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (Base‘𝑟) = (Base‘𝑅))
33 mamufval.b . . . . . . 7 𝐵 = (Base‘𝑅)
3432, 33eqtr4di 2851 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (Base‘𝑟) = 𝐵)
35 fveq2 6645 . . . . . . . . . 10 (𝑜 = ⟨𝑀, 𝑁, 𝑃⟩ → (1st𝑜) = (1st ‘⟨𝑀, 𝑁, 𝑃⟩))
3635fveq2d 6649 . . . . . . . . 9 (𝑜 = ⟨𝑀, 𝑁, 𝑃⟩ → (1st ‘(1st𝑜)) = (1st ‘(1st ‘⟨𝑀, 𝑁, 𝑃⟩)))
3736ad2antll 728 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (1st ‘(1st𝑜)) = (1st ‘(1st ‘⟨𝑀, 𝑁, 𝑃⟩)))
38 mamufval.m . . . . . . . . . 10 (𝜑𝑀 ∈ Fin)
39 mamufval.n . . . . . . . . . 10 (𝜑𝑁 ∈ Fin)
40 mamufval.p . . . . . . . . . 10 (𝜑𝑃 ∈ Fin)
41 ot1stg 7685 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (1st ‘(1st ‘⟨𝑀, 𝑁, 𝑃⟩)) = 𝑀)
4238, 39, 40, 41syl3anc 1368 . . . . . . . . 9 (𝜑 → (1st ‘(1st ‘⟨𝑀, 𝑁, 𝑃⟩)) = 𝑀)
4342adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (1st ‘(1st ‘⟨𝑀, 𝑁, 𝑃⟩)) = 𝑀)
4437, 43eqtrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (1st ‘(1st𝑜)) = 𝑀)
4535fveq2d 6649 . . . . . . . . 9 (𝑜 = ⟨𝑀, 𝑁, 𝑃⟩ → (2nd ‘(1st𝑜)) = (2nd ‘(1st ‘⟨𝑀, 𝑁, 𝑃⟩)))
4645ad2antll 728 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (2nd ‘(1st𝑜)) = (2nd ‘(1st ‘⟨𝑀, 𝑁, 𝑃⟩)))
47 ot2ndg 7686 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (2nd ‘(1st ‘⟨𝑀, 𝑁, 𝑃⟩)) = 𝑁)
4838, 39, 40, 47syl3anc 1368 . . . . . . . . 9 (𝜑 → (2nd ‘(1st ‘⟨𝑀, 𝑁, 𝑃⟩)) = 𝑁)
4948adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (2nd ‘(1st ‘⟨𝑀, 𝑁, 𝑃⟩)) = 𝑁)
5046, 49eqtrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (2nd ‘(1st𝑜)) = 𝑁)
5144, 50xpeq12d 5550 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → ((1st ‘(1st𝑜)) × (2nd ‘(1st𝑜))) = (𝑀 × 𝑁))
5234, 51oveq12d 7153 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → ((Base‘𝑟) ↑m ((1st ‘(1st𝑜)) × (2nd ‘(1st𝑜)))) = (𝐵m (𝑀 × 𝑁)))
53 fveq2 6645 . . . . . . . . 9 (𝑜 = ⟨𝑀, 𝑁, 𝑃⟩ → (2nd𝑜) = (2nd ‘⟨𝑀, 𝑁, 𝑃⟩))
5453ad2antll 728 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (2nd𝑜) = (2nd ‘⟨𝑀, 𝑁, 𝑃⟩))
55 ot3rdg 7687 . . . . . . . . . 10 (𝑃 ∈ Fin → (2nd ‘⟨𝑀, 𝑁, 𝑃⟩) = 𝑃)
5640, 55syl 17 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝑀, 𝑁, 𝑃⟩) = 𝑃)
5756adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (2nd ‘⟨𝑀, 𝑁, 𝑃⟩) = 𝑃)
5854, 57eqtrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (2nd𝑜) = 𝑃)
5950, 58xpeq12d 5550 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → ((2nd ‘(1st𝑜)) × (2nd𝑜)) = (𝑁 × 𝑃))
6034, 59oveq12d 7153 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → ((Base‘𝑟) ↑m ((2nd ‘(1st𝑜)) × (2nd𝑜))) = (𝐵m (𝑁 × 𝑃)))
6131fveq2d 6649 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (.r𝑟) = (.r𝑅))
62 mamufval.t . . . . . . . . . 10 · = (.r𝑅)
6361, 62eqtr4di 2851 . . . . . . . . 9 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (.r𝑟) = · )
6463oveqd 7152 . . . . . . . 8 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)) = ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))
6550, 64mpteq12dv 5115 . . . . . . 7 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (𝑗 ∈ (2nd ‘(1st𝑜)) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))
6631, 65oveq12d 7153 . . . . . 6 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (𝑟 Σg (𝑗 ∈ (2nd ‘(1st𝑜)) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))))
6744, 58, 66mpoeq123dv 7208 . . . . 5 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (𝑖 ∈ (1st ‘(1st𝑜)), 𝑘 ∈ (2nd𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd ‘(1st𝑜)) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘))))) = (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))))
6852, 60, 67mpoeq123dv 7208 . . . 4 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (𝑥 ∈ ((Base‘𝑟) ↑m ((1st ‘(1st𝑜)) × (2nd ‘(1st𝑜)))), 𝑦 ∈ ((Base‘𝑟) ↑m ((2nd ‘(1st𝑜)) × (2nd𝑜))) ↦ (𝑖 ∈ (1st ‘(1st𝑜)), 𝑘 ∈ (2nd𝑜) ↦ (𝑟 Σg (𝑗 ∈ (2nd ‘(1st𝑜)) ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))) = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))))))
6930, 68syl5eq 2845 . . 3 ((𝜑 ∧ (𝑟 = 𝑅𝑜 = ⟨𝑀, 𝑁, 𝑃⟩)) → (1st ‘(1st𝑜)) / 𝑚(2nd ‘(1st𝑜)) / 𝑛(2nd𝑜) / 𝑝(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖𝑚, 𝑘𝑝 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))) = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))))))
70 mamufval.r . . . 4 (𝜑𝑅𝑉)
7170elexd 3461 . . 3 (𝜑𝑅 ∈ V)
72 otex 5322 . . . 4 𝑀, 𝑁, 𝑃⟩ ∈ V
7372a1i 11 . . 3 (𝜑 → ⟨𝑀, 𝑁, 𝑃⟩ ∈ V)
74 ovex 7168 . . . . 5 (𝐵m (𝑀 × 𝑁)) ∈ V
75 ovex 7168 . . . . 5 (𝐵m (𝑁 × 𝑃)) ∈ V
7674, 75mpoex 7760 . . . 4 (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))))) ∈ V
7776a1i 11 . . 3 (𝜑 → (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))))) ∈ V)
783, 69, 71, 73, 77ovmpod 7281 . 2 (𝜑 → (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩) = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))))))
791, 78syl5eq 2845 1 (𝜑𝐹 = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  csb 3828  cotp 4533  cmpt 5110   × cxp 5517  cfv 6324  (class class class)co 7135  cmpo 7137  1st c1st 7669  2nd c2nd 7670  m cmap 8389  Fincfn 8492  Basecbs 16475  .rcmulr 16558   Σg cgsu 16706   maMul cmmul 20990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-ot 4534  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-mamu 20991
This theorem is referenced by:  mamuval  20993  mamudm  20995
  Copyright terms: Public domain W3C validator