Detailed syntax breakdown of Definition df-mesyn
Step | Hyp | Ref
| Expression |
1 | | cmesy 33600 |
. 2
class
mESyn |
2 | | vt |
. . 3
setvar 𝑡 |
3 | | cvv 3437 |
. . 3
class
V |
4 | | vc |
. . . 4
setvar 𝑐 |
5 | | ve |
. . . 4
setvar 𝑒 |
6 | 2 | cv 1538 |
. . . . 5
class 𝑡 |
7 | | cmtc 33475 |
. . . . 5
class
mTC |
8 | 6, 7 | cfv 6458 |
. . . 4
class
(mTC‘𝑡) |
9 | | cmrex 33477 |
. . . . 5
class
mREx |
10 | 6, 9 | cfv 6458 |
. . . 4
class
(mREx‘𝑡) |
11 | 4 | cv 1538 |
. . . . . 6
class 𝑐 |
12 | | cmsy 33599 |
. . . . . . 7
class
mSyn |
13 | 6, 12 | cfv 6458 |
. . . . . 6
class
(mSyn‘𝑡) |
14 | 11, 13 | cfv 6458 |
. . . . 5
class
((mSyn‘𝑡)‘𝑐) |
15 | 5 | cv 1538 |
. . . . 5
class 𝑒 |
16 | | cm0s 33596 |
. . . . 5
class
m0St |
17 | 14, 15, 16 | co 7307 |
. . . 4
class
(((mSyn‘𝑡)‘𝑐)m0St𝑒) |
18 | 4, 5, 8, 10, 17 | cmpo 7309 |
. . 3
class (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒)) |
19 | 2, 3, 18 | cmpt 5164 |
. 2
class (𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒))) |
20 | 1, 19 | wceq 1539 |
1
wff mESyn =
(𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒))) |