Detailed syntax breakdown of Definition df-mesyn
| Step | Hyp | Ref
| Expression |
| 1 | | cmesy 35531 |
. 2
class
mESyn |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vc |
. . . 4
setvar 𝑐 |
| 5 | | ve |
. . . 4
setvar 𝑒 |
| 6 | 2 | cv 1538 |
. . . . 5
class 𝑡 |
| 7 | | cmtc 35406 |
. . . . 5
class
mTC |
| 8 | 6, 7 | cfv 6542 |
. . . 4
class
(mTC‘𝑡) |
| 9 | | cmrex 35408 |
. . . . 5
class
mREx |
| 10 | 6, 9 | cfv 6542 |
. . . 4
class
(mREx‘𝑡) |
| 11 | 4 | cv 1538 |
. . . . . 6
class 𝑐 |
| 12 | | cmsy 35530 |
. . . . . . 7
class
mSyn |
| 13 | 6, 12 | cfv 6542 |
. . . . . 6
class
(mSyn‘𝑡) |
| 14 | 11, 13 | cfv 6542 |
. . . . 5
class
((mSyn‘𝑡)‘𝑐) |
| 15 | 5 | cv 1538 |
. . . . 5
class 𝑒 |
| 16 | | cm0s 35527 |
. . . . 5
class
m0St |
| 17 | 14, 15, 16 | co 7414 |
. . . 4
class
(((mSyn‘𝑡)‘𝑐)m0St𝑒) |
| 18 | 4, 5, 8, 10, 17 | cmpo 7416 |
. . 3
class (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒)) |
| 19 | 2, 3, 18 | cmpt 5207 |
. 2
class (𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒))) |
| 20 | 1, 19 | wceq 1539 |
1
wff mESyn =
(𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒))) |