Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mesyn Structured version   Visualization version   GIF version

Definition df-mesyn 33610
Description: Define the syntax typecode function for expressions. (Contributed by Mario Carneiro, 12-Jun-2023.)
Assertion
Ref Expression
df-mesyn mESyn = (𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒)))
Distinct variable group:   𝑒,𝑐,𝑡

Detailed syntax breakdown of Definition df-mesyn
StepHypRef Expression
1 cmesy 33600 . 2 class mESyn
2 vt . . 3 setvar 𝑡
3 cvv 3437 . . 3 class V
4 vc . . . 4 setvar 𝑐
5 ve . . . 4 setvar 𝑒
62cv 1538 . . . . 5 class 𝑡
7 cmtc 33475 . . . . 5 class mTC
86, 7cfv 6458 . . . 4 class (mTC‘𝑡)
9 cmrex 33477 . . . . 5 class mREx
106, 9cfv 6458 . . . 4 class (mREx‘𝑡)
114cv 1538 . . . . . 6 class 𝑐
12 cmsy 33599 . . . . . . 7 class mSyn
136, 12cfv 6458 . . . . . 6 class (mSyn‘𝑡)
1411, 13cfv 6458 . . . . 5 class ((mSyn‘𝑡)‘𝑐)
155cv 1538 . . . . 5 class 𝑒
16 cm0s 33596 . . . . 5 class m0St
1714, 15, 16co 7307 . . . 4 class (((mSyn‘𝑡)‘𝑐)m0St𝑒)
184, 5, 8, 10, 17cmpo 7309 . . 3 class (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒))
192, 3, 18cmpt 5164 . 2 class (𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒)))
201, 19wceq 1539 1 wff mESyn = (𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒)))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator