Detailed syntax breakdown of Definition df-mgfs
Step | Hyp | Ref
| Expression |
1 | | cmgfs 33452 |
. 2
class
mGFS |
2 | | vt |
. . . . . . 7
setvar 𝑡 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑡 |
4 | | cmtc 33326 |
. . . . . 6
class
mTC |
5 | 3, 4 | cfv 6418 |
. . . . 5
class
(mTC‘𝑡) |
6 | | cmvt 33325 |
. . . . . 6
class
mVT |
7 | 3, 6 | cfv 6418 |
. . . . 5
class
(mVT‘𝑡) |
8 | | cmsy 33450 |
. . . . . 6
class
mSyn |
9 | 3, 8 | cfv 6418 |
. . . . 5
class
(mSyn‘𝑡) |
10 | 5, 7, 9 | wf 6414 |
. . . 4
wff
(mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) |
11 | | vc |
. . . . . . . 8
setvar 𝑐 |
12 | 11 | cv 1538 |
. . . . . . 7
class 𝑐 |
13 | 12, 9 | cfv 6418 |
. . . . . 6
class
((mSyn‘𝑡)‘𝑐) |
14 | 13, 12 | wceq 1539 |
. . . . 5
wff
((mSyn‘𝑡)‘𝑐) = 𝑐 |
15 | 14, 11, 7 | wral 3063 |
. . . 4
wff
∀𝑐 ∈
(mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 |
16 | | vd |
. . . . . . . . . . 11
setvar 𝑑 |
17 | 16 | cv 1538 |
. . . . . . . . . 10
class 𝑑 |
18 | | vh |
. . . . . . . . . . 11
setvar ℎ |
19 | 18 | cv 1538 |
. . . . . . . . . 10
class ℎ |
20 | | va |
. . . . . . . . . . 11
setvar 𝑎 |
21 | 20 | cv 1538 |
. . . . . . . . . 10
class 𝑎 |
22 | 17, 19, 21 | cotp 4566 |
. . . . . . . . 9
class
〈𝑑, ℎ, 𝑎〉 |
23 | | cmax 33327 |
. . . . . . . . . 10
class
mAx |
24 | 3, 23 | cfv 6418 |
. . . . . . . . 9
class
(mAx‘𝑡) |
25 | 22, 24 | wcel 2108 |
. . . . . . . 8
wff 〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) |
26 | | ve |
. . . . . . . . . . . 12
setvar 𝑒 |
27 | 26 | cv 1538 |
. . . . . . . . . . 11
class 𝑒 |
28 | | cmesy 33451 |
. . . . . . . . . . . 12
class
mESyn |
29 | 3, 28 | cfv 6418 |
. . . . . . . . . . 11
class
(mESyn‘𝑡) |
30 | 27, 29 | cfv 6418 |
. . . . . . . . . 10
class
((mESyn‘𝑡)‘𝑒) |
31 | | cmpps 33340 |
. . . . . . . . . . 11
class
mPPSt |
32 | 3, 31 | cfv 6418 |
. . . . . . . . . 10
class
(mPPSt‘𝑡) |
33 | 30, 32 | wcel 2108 |
. . . . . . . . 9
wff
((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡) |
34 | 21 | csn 4558 |
. . . . . . . . . 10
class {𝑎} |
35 | 19, 34 | cun 3881 |
. . . . . . . . 9
class (ℎ ∪ {𝑎}) |
36 | 33, 26, 35 | wral 3063 |
. . . . . . . 8
wff
∀𝑒 ∈
(ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡) |
37 | 25, 36 | wi 4 |
. . . . . . 7
wff
(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)) |
38 | 37, 20 | wal 1537 |
. . . . . 6
wff
∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)) |
39 | 38, 18 | wal 1537 |
. . . . 5
wff
∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)) |
40 | 39, 16 | wal 1537 |
. . . 4
wff
∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)) |
41 | 10, 15, 40 | w3a 1085 |
. . 3
wff
((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡))) |
42 | | cmwgfs 33449 |
. . 3
class
mWGFS |
43 | 41, 2, 42 | crab 3067 |
. 2
class {𝑡 ∈ mWGFS ∣
((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))} |
44 | 1, 43 | wceq 1539 |
1
wff mGFS =
{𝑡 ∈ mWGFS ∣
((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))} |