Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mgfs Structured version   Visualization version   GIF version

Definition df-mgfs 33562
Description: Define the set of grammatical formal systems. (Contributed by Mario Carneiro, 12-Jun-2023.)
Assertion
Ref Expression
df-mgfs mGFS = {𝑡 ∈ mWGFS ∣ ((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ∀𝑒 ∈ ( ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))}
Distinct variable group:   𝑎,𝑐,𝑑,𝑒,,𝑡

Detailed syntax breakdown of Definition df-mgfs
StepHypRef Expression
1 cmgfs 33552 . 2 class mGFS
2 vt . . . . . . 7 setvar 𝑡
32cv 1538 . . . . . 6 class 𝑡
4 cmtc 33426 . . . . . 6 class mTC
53, 4cfv 6433 . . . . 5 class (mTC‘𝑡)
6 cmvt 33425 . . . . . 6 class mVT
73, 6cfv 6433 . . . . 5 class (mVT‘𝑡)
8 cmsy 33550 . . . . . 6 class mSyn
93, 8cfv 6433 . . . . 5 class (mSyn‘𝑡)
105, 7, 9wf 6429 . . . 4 wff (mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡)
11 vc . . . . . . . 8 setvar 𝑐
1211cv 1538 . . . . . . 7 class 𝑐
1312, 9cfv 6433 . . . . . 6 class ((mSyn‘𝑡)‘𝑐)
1413, 12wceq 1539 . . . . 5 wff ((mSyn‘𝑡)‘𝑐) = 𝑐
1514, 11, 7wral 3064 . . . 4 wff 𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐
16 vd . . . . . . . . . . 11 setvar 𝑑
1716cv 1538 . . . . . . . . . 10 class 𝑑
18 vh . . . . . . . . . . 11 setvar
1918cv 1538 . . . . . . . . . 10 class
20 va . . . . . . . . . . 11 setvar 𝑎
2120cv 1538 . . . . . . . . . 10 class 𝑎
2217, 19, 21cotp 4569 . . . . . . . . 9 class 𝑑, , 𝑎
23 cmax 33427 . . . . . . . . . 10 class mAx
243, 23cfv 6433 . . . . . . . . 9 class (mAx‘𝑡)
2522, 24wcel 2106 . . . . . . . 8 wff 𝑑, , 𝑎⟩ ∈ (mAx‘𝑡)
26 ve . . . . . . . . . . . 12 setvar 𝑒
2726cv 1538 . . . . . . . . . . 11 class 𝑒
28 cmesy 33551 . . . . . . . . . . . 12 class mESyn
293, 28cfv 6433 . . . . . . . . . . 11 class (mESyn‘𝑡)
3027, 29cfv 6433 . . . . . . . . . 10 class ((mESyn‘𝑡)‘𝑒)
31 cmpps 33440 . . . . . . . . . . 11 class mPPSt
323, 31cfv 6433 . . . . . . . . . 10 class (mPPSt‘𝑡)
3330, 32wcel 2106 . . . . . . . . 9 wff ((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)
3421csn 4561 . . . . . . . . . 10 class {𝑎}
3519, 34cun 3885 . . . . . . . . 9 class ( ∪ {𝑎})
3633, 26, 35wral 3064 . . . . . . . 8 wff 𝑒 ∈ ( ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)
3725, 36wi 4 . . . . . . 7 wff (⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ∀𝑒 ∈ ( ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡))
3837, 20wal 1537 . . . . . 6 wff 𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ∀𝑒 ∈ ( ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡))
3938, 18wal 1537 . . . . 5 wff 𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ∀𝑒 ∈ ( ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡))
4039, 16wal 1537 . . . 4 wff 𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ∀𝑒 ∈ ( ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡))
4110, 15, 40w3a 1086 . . 3 wff ((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ∀𝑒 ∈ ( ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))
42 cmwgfs 33549 . . 3 class mWGFS
4341, 2, 42crab 3068 . 2 class {𝑡 ∈ mWGFS ∣ ((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ∀𝑒 ∈ ( ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))}
441, 43wceq 1539 1 wff mGFS = {𝑡 ∈ mWGFS ∣ ((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ∀𝑒 ∈ ( ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))}
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator