Detailed syntax breakdown of Definition df-mgfs
| Step | Hyp | Ref
| Expression |
| 1 | | cmgfs 35532 |
. 2
class
mGFS |
| 2 | | vt |
. . . . . . 7
setvar 𝑡 |
| 3 | 2 | cv 1538 |
. . . . . 6
class 𝑡 |
| 4 | | cmtc 35406 |
. . . . . 6
class
mTC |
| 5 | 3, 4 | cfv 6542 |
. . . . 5
class
(mTC‘𝑡) |
| 6 | | cmvt 35405 |
. . . . . 6
class
mVT |
| 7 | 3, 6 | cfv 6542 |
. . . . 5
class
(mVT‘𝑡) |
| 8 | | cmsy 35530 |
. . . . . 6
class
mSyn |
| 9 | 3, 8 | cfv 6542 |
. . . . 5
class
(mSyn‘𝑡) |
| 10 | 5, 7, 9 | wf 6538 |
. . . 4
wff
(mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) |
| 11 | | vc |
. . . . . . . 8
setvar 𝑐 |
| 12 | 11 | cv 1538 |
. . . . . . 7
class 𝑐 |
| 13 | 12, 9 | cfv 6542 |
. . . . . 6
class
((mSyn‘𝑡)‘𝑐) |
| 14 | 13, 12 | wceq 1539 |
. . . . 5
wff
((mSyn‘𝑡)‘𝑐) = 𝑐 |
| 15 | 14, 11, 7 | wral 3050 |
. . . 4
wff
∀𝑐 ∈
(mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 |
| 16 | | vd |
. . . . . . . . . . 11
setvar 𝑑 |
| 17 | 16 | cv 1538 |
. . . . . . . . . 10
class 𝑑 |
| 18 | | vh |
. . . . . . . . . . 11
setvar ℎ |
| 19 | 18 | cv 1538 |
. . . . . . . . . 10
class ℎ |
| 20 | | va |
. . . . . . . . . . 11
setvar 𝑎 |
| 21 | 20 | cv 1538 |
. . . . . . . . . 10
class 𝑎 |
| 22 | 17, 19, 21 | cotp 4616 |
. . . . . . . . 9
class
〈𝑑, ℎ, 𝑎〉 |
| 23 | | cmax 35407 |
. . . . . . . . . 10
class
mAx |
| 24 | 3, 23 | cfv 6542 |
. . . . . . . . 9
class
(mAx‘𝑡) |
| 25 | 22, 24 | wcel 2107 |
. . . . . . . 8
wff 〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) |
| 26 | | ve |
. . . . . . . . . . . 12
setvar 𝑒 |
| 27 | 26 | cv 1538 |
. . . . . . . . . . 11
class 𝑒 |
| 28 | | cmesy 35531 |
. . . . . . . . . . . 12
class
mESyn |
| 29 | 3, 28 | cfv 6542 |
. . . . . . . . . . 11
class
(mESyn‘𝑡) |
| 30 | 27, 29 | cfv 6542 |
. . . . . . . . . 10
class
((mESyn‘𝑡)‘𝑒) |
| 31 | | cmpps 35420 |
. . . . . . . . . . 11
class
mPPSt |
| 32 | 3, 31 | cfv 6542 |
. . . . . . . . . 10
class
(mPPSt‘𝑡) |
| 33 | 30, 32 | wcel 2107 |
. . . . . . . . 9
wff
((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡) |
| 34 | 21 | csn 4608 |
. . . . . . . . . 10
class {𝑎} |
| 35 | 19, 34 | cun 3931 |
. . . . . . . . 9
class (ℎ ∪ {𝑎}) |
| 36 | 33, 26, 35 | wral 3050 |
. . . . . . . 8
wff
∀𝑒 ∈
(ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡) |
| 37 | 25, 36 | wi 4 |
. . . . . . 7
wff
(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)) |
| 38 | 37, 20 | wal 1537 |
. . . . . 6
wff
∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)) |
| 39 | 38, 18 | wal 1537 |
. . . . 5
wff
∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)) |
| 40 | 39, 16 | wal 1537 |
. . . 4
wff
∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)) |
| 41 | 10, 15, 40 | w3a 1086 |
. . 3
wff
((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡))) |
| 42 | | cmwgfs 35529 |
. . 3
class
mWGFS |
| 43 | 41, 2, 42 | crab 3420 |
. 2
class {𝑡 ∈ mWGFS ∣
((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))} |
| 44 | 1, 43 | wceq 1539 |
1
wff mGFS =
{𝑡 ∈ mWGFS ∣
((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))} |