![]() |
Metamath
Proof Explorer Theorem List (p. 347 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | reprfz1 34601 | Corollary of reprinfz1 34599. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) ⇒ ⊢ (𝜑 → (ℕ(repr‘𝑆)𝑁) = ((1...𝑁)(repr‘𝑆)𝑁)) | ||
Theorem | hashrepr 34602* | Develop the number of representations of an integer 𝑀 as a sum of nonnegative integers in set 𝐴. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) ⇒ ⊢ (𝜑 → (♯‘(𝐴(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) | ||
Theorem | reprpmtf1o 34603* | Transposing 0 and 𝑋 maps representations with a condition on the first index to transpositions with the same condition on the index 𝑋. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) & ⊢ 𝑂 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘0) ∈ 𝐵} & ⊢ 𝑃 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑋) ∈ 𝐵} & ⊢ 𝑇 = if(𝑋 = 0, ( I ↾ (0..^𝑆)), ((pmTrsp‘(0..^𝑆))‘{𝑋, 0})) & ⊢ 𝐹 = (𝑐 ∈ 𝑃 ↦ (𝑐 ∘ 𝑇)) ⇒ ⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑂) | ||
Theorem | reprdifc 34604* | Express the representations as a sum of integers in a difference of sets using conditions on each of the indices. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝐵 ⊆ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ∪ 𝑥 ∈ (0..^𝑆)𝐶) | ||
Theorem | chpvalz 34605* | Value of the second Chebyshev function, or summatory of the von Mangoldt function. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
⊢ (𝑁 ∈ ℤ → (ψ‘𝑁) = Σ𝑛 ∈ (1...𝑁)(Λ‘𝑛)) | ||
Theorem | chtvalz 34606* | Value of the Chebyshev function for integers. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
⊢ (𝑁 ∈ ℤ → (θ‘𝑁) = Σ𝑛 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑛)) | ||
Theorem | breprexplema 34607* | Lemma for breprexp 34610 (induction step for weighted sums over representations). (Contributed by Thierry Arnoux, 7-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ≤ ((𝑆 + 1) · 𝑁)) & ⊢ (((𝜑 ∧ 𝑥 ∈ (0..^(𝑆 + 1))) ∧ 𝑦 ∈ ℕ) → ((𝐿‘𝑥)‘𝑦) ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑑 ∈ ((1...𝑁)(repr‘(𝑆 + 1))𝑀)∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿‘𝑎)‘(𝑑‘𝑎)) = Σ𝑏 ∈ (1...𝑁)Σ𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀 − 𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑑‘𝑎)) · ((𝐿‘𝑆)‘𝑏))) | ||
Theorem | breprexplemb 34608 | Lemma for breprexp 34610 (closure). (Contributed by Thierry Arnoux, 7-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑍 ∈ ℂ) & ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) & ⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) & ⊢ (𝜑 → 𝑌 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐿‘𝑋)‘𝑌) ∈ ℂ) | ||
Theorem | breprexplemc 34609* | Lemma for breprexp 34610 (induction step). (Contributed by Thierry Arnoux, 6-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑍 ∈ ℂ) & ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) & ⊢ (𝜑 → 𝑇 ∈ ℕ0) & ⊢ (𝜑 → (𝑇 + 1) ≤ 𝑆) & ⊢ (𝜑 → ∏𝑎 ∈ (0..^𝑇)Σ𝑏 ∈ (1...𝑁)(((𝐿‘𝑎)‘𝑏) · (𝑍↑𝑏)) = Σ𝑚 ∈ (0...(𝑇 · 𝑁))Σ𝑑 ∈ ((1...𝑁)(repr‘𝑇)𝑚)(∏𝑎 ∈ (0..^𝑇)((𝐿‘𝑎)‘(𝑑‘𝑎)) · (𝑍↑𝑚))) ⇒ ⊢ (𝜑 → ∏𝑎 ∈ (0..^(𝑇 + 1))Σ𝑏 ∈ (1...𝑁)(((𝐿‘𝑎)‘𝑏) · (𝑍↑𝑏)) = Σ𝑚 ∈ (0...((𝑇 + 1) · 𝑁))Σ𝑑 ∈ ((1...𝑁)(repr‘(𝑇 + 1))𝑚)(∏𝑎 ∈ (0..^(𝑇 + 1))((𝐿‘𝑎)‘(𝑑‘𝑎)) · (𝑍↑𝑚))) | ||
Theorem | breprexp 34610* | Express the 𝑆 th power of the finite series in terms of the number of representations of integers 𝑚 as sums of 𝑆 terms. This is a general formulation which allows logarithmic weighting of the sums (see https://mathoverflow.net/questions/253246) and a mix of different smoothing functions taken into account in 𝐿. See breprexpnat 34611 for the simple case presented in the proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 6-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑍 ∈ ℂ) & ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) ⇒ ⊢ (𝜑 → ∏𝑎 ∈ (0..^𝑆)Σ𝑏 ∈ (1...𝑁)(((𝐿‘𝑎)‘𝑏) · (𝑍↑𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (𝑍↑𝑚))) | ||
Theorem | breprexpnat 34611* | Express the 𝑆 th power of the finite series in terms of the number of representations of integers 𝑚 as sums of 𝑆 terms of elements of 𝐴, bounded by 𝑁. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑍 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ 𝑃 = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍↑𝑏) & ⊢ 𝑅 = (♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) ⇒ ⊢ (𝜑 → (𝑃↑𝑆) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(𝑅 · (𝑍↑𝑚))) | ||
Syntax | cvts 34612 | The Vinogradov trigonometric sums. |
class vts | ||
Definition | df-vts 34613* | Define the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
⊢ vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) | ||
Theorem | vtsval 34614* | Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) | ||
Theorem | vtscl 34615 | Closure of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) ∈ ℂ) | ||
Theorem | vtsprod 34616* | Express the Vinogradov trigonometric sums to the power of 𝑆 (Contributed by Thierry Arnoux, 12-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) ⇒ ⊢ (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋))))) | ||
Theorem | circlemeth 34617* | The Hardy, Littlewood and Ramanujan Circle Method, in a generic form, with different weighting / smoothing functions. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) ⇒ ⊢ (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | ||
Theorem | circlemethnat 34618* | The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses 𝑅, the number of different ways a nonnegative integer 𝑁 can be represented as the sum of at most 𝑆 integers in the set 𝐴 as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁)) & ⊢ 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐴 ⊆ ℕ & ⊢ 𝑆 ∈ ℕ ⇒ ⊢ 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 | ||
Theorem | circlevma 34619* | The Circle Method, where the Vinogradov sums are weighted using the von Mangoldt function, as it appears as proposition 1.1 of [Helfgott] p. 5. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | ||
Theorem | circlemethhgt 34620* | The circle method, where the Vinogradov sums are weighted using the Von Mangoldt function and smoothed using functions 𝐻 and 𝐾. Statement 7.49 of [Helfgott] p. 69. At this point there is no further constraint on the smoothing functions. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
⊢ (𝜑 → 𝐻:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐾:ℕ⟶ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | ||
Axiom | ax-hgt749 34621* | Statement 7.49 of [Helfgott] p. 70. For a sufficiently big odd 𝑁, this postulates the existence of smoothing functions ℎ (eta star) and 𝑘 (eta plus) such that the lower bound for the circle integral is big enough. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ ∀𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((;10↑;27) ≤ 𝑛 → ∃ℎ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55) ∧ ∀𝑚 ∈ ℕ (ℎ‘𝑚) ≤ (1._4_14) ∧ ((0._0_0_0_4_2_2_48) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥)) | ||
Axiom | ax-ros335 34622 | Theorem 12. of [RosserSchoenfeld] p. 71. Theorem chpo1ubb 27543 states that the ψ function is bounded by a linear term; this axiom postulates an upper bound for that linear term. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
⊢ ∀𝑥 ∈ ℝ+ (ψ‘𝑥) < ((1._0_3_8_83) · 𝑥) | ||
Axiom | ax-ros336 34623 | Theorem 13. of [RosserSchoenfeld] p. 71. Theorem chpchtlim 27541 states that the ψ and θ function are asymtotic to each other; this axiom postulates an upper bound for their difference. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
⊢ ∀𝑥 ∈ ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1._4_2_62) · (√‘𝑥)) | ||
Theorem | hgt750lemc 34624* | An upper bound to the summatory function of the von Mangoldt function. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) < ((1._0_3_8_83) · 𝑁)) | ||
Theorem | hgt750lemd 34625* | An upper bound to the summatory function of the von Mangoldt function on non-primes. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) < ((1._4_2_63) · (√‘𝑁))) | ||
Theorem | hgt749d 34626* | A deduction version of ax-hgt749 34621. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) ⇒ ⊢ (𝜑 → ∃ℎ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55) ∧ ∀𝑚 ∈ ℕ (ℎ‘𝑚) ≤ (1._4_14) ∧ ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) | ||
Theorem | logdivsqrle 34627 | Conditions for ((log x ) / ( sqrt 𝑥)) to be decreasing. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → (exp‘2) ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴))) | ||
Theorem | hgt750lem 34628 | Lemma for tgoldbachgtd 34639. (Contributed by Thierry Arnoux, 17-Dec-2021.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (;10↑;27) ≤ 𝑁) → ((7._3_48) · ((log‘𝑁) / (√‘𝑁))) < (0._0_0_0_4_2_2_48)) | ||
Theorem | hgt750lem2 34629 | Decimal multiplication galore! (Contributed by Thierry Arnoux, 26-Dec-2021.) |
⊢ (3 · ((((1._0_7_9_9_55)↑2) · (1._4_14)) · ((1._4_2_63) · (1._0_3_8_83)))) < (7._3_48) | ||
Theorem | hgt750lemf 34630* | Lemma for the statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℝ) & ⊢ (𝜑 → 𝑄 ∈ ℝ) & ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘0) ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘1) ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ 𝑃) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ 𝑄) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ 𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) | ||
Theorem | hgt750lemg 34631* | Lemma for the statement 7.50 of [Helfgott] p. 69. Applying a permutation 𝑇 to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
⊢ 𝐹 = (𝑐 ∈ 𝑅 ↦ (𝑐 ∘ 𝑇)) & ⊢ (𝜑 → 𝑇:(0..^3)–1-1-onto→(0..^3)) & ⊢ (𝜑 → 𝑁:(0..^3)⟶ℕ) & ⊢ (𝜑 → 𝐿:ℕ⟶ℝ) & ⊢ (𝜑 → 𝑁 ∈ 𝑅) ⇒ ⊢ (𝜑 → ((𝐿‘((𝐹‘𝑁)‘0)) · ((𝐿‘((𝐹‘𝑁)‘1)) · (𝐿‘((𝐹‘𝑁)‘2)))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2))))) | ||
Theorem | oddprm2 34632* | Two ways to write the set of odd primes. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ⇒ ⊢ (ℙ ∖ {2}) = (𝑂 ∩ ℙ) | ||
Theorem | hgt750lemb 34633* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 2 ≤ 𝑁) & ⊢ 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⇒ ⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) | ||
Theorem | hgt750lema 34634* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 2 ≤ 𝑁) & ⊢ 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} & ⊢ 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})))) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) | ||
Theorem | hgt750leme 34635* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) & ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7._3_48) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2))) | ||
Theorem | tgoldbachgnn 34636* | Lemma for tgoldbachgtd 34639. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ) | ||
Theorem | tgoldbachgtde 34637* | Lemma for tgoldbachgtd 34639. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) & ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) & ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) ⇒ ⊢ (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) | ||
Theorem | tgoldbachgtda 34638* | Lemma for tgoldbachgtd 34639. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) & ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) & ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) ⇒ ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) | ||
Theorem | tgoldbachgtd 34639* | Odd integers greater than (;10↑;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) ⇒ ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) | ||
Theorem | tgoldbachgt 34640* | Odd integers greater than (;10↑;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐺 = {𝑧 ∈ 𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ⇒ ⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺)) | ||
This definition has been superseded by DimTarskiG≥ and is no longer needed in the main part of set.mm. It is only kept here for reference. | ||
Syntax | cstrkg2d 34641 | Extends class notation with the class of geometries fulfilling the planarity axioms. |
class TarskiG2D | ||
Definition | df-trkg2d 34642* | Define the class of geometries fulfilling the lower dimension axiom, Axiom A8 of [Schwabhauser] p. 12, and the upper dimension axiom, Axiom A9 of [Schwabhauser] p. 13, for dimension 2. (Contributed by Thierry Arnoux, 14-Mar-2019.) (New usage is discouraged.) |
⊢ TarskiG2D = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} | ||
Theorem | istrkg2d 34643* | Property of fulfilling dimension 2 axiom. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiG2D ↔ (𝐺 ∈ V ∧ (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))) | ||
Theorem | axtglowdim2ALTV 34644* | Alternate version of axtglowdim2 28496. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG2D) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) | ||
Theorem | axtgupdim2ALTV 34645 | Alternate version of axtgupdim2 28497. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑋 − 𝑈) = (𝑋 − 𝑉)) & ⊢ (𝜑 → (𝑌 − 𝑈) = (𝑌 − 𝑉)) & ⊢ (𝜑 → (𝑍 − 𝑈) = (𝑍 − 𝑉)) & ⊢ (𝜑 → 𝐺 ∈ TarskiG2D) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) | ||
Syntax | cafs 34646 | Declare the syntax for the outer five segment configuration. |
class AFS | ||
Definition | df-afs 34647* | The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom (axtg5seg 28491). See df-ofs 35947. Definition 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) (Revised by Thierry Arnoux, 15-Mar-2019.) |
⊢ AFS = (𝑔 ∈ TarskiG ↦ {〈𝑒, 𝑓〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / ℎ][(Itv‘𝑔) / 𝑖]∃𝑎 ∈ 𝑝 ∃𝑏 ∈ 𝑝 ∃𝑐 ∈ 𝑝 ∃𝑑 ∈ 𝑝 ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ∃𝑤 ∈ 𝑝 (𝑒 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑓 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 ∈ (𝑎𝑖𝑐) ∧ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ((𝑎ℎ𝑏) = (𝑥ℎ𝑦) ∧ (𝑏ℎ𝑐) = (𝑦ℎ𝑧)) ∧ ((𝑎ℎ𝑑) = (𝑥ℎ𝑤) ∧ (𝑏ℎ𝑑) = (𝑦ℎ𝑤))))}) | ||
Theorem | afsval 34648* | Value of the AFS relation for a given geometry structure. (Contributed by Thierry Arnoux, 20-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) ⇒ ⊢ (𝜑 → (AFS‘𝐺) = {〈𝑒, 𝑓〉 ∣ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ∃𝑤 ∈ 𝑃 (𝑒 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑓 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 ∈ (𝑎𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝑎 − 𝑏) = (𝑥 − 𝑦) ∧ (𝑏 − 𝑐) = (𝑦 − 𝑧)) ∧ ((𝑎 − 𝑑) = (𝑥 − 𝑤) ∧ (𝑏 − 𝑑) = (𝑦 − 𝑤))))}) | ||
Theorem | brafs 34649 | Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑂 = (AFS‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑊 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑂〈〈𝑋, 𝑌〉, 〈𝑍, 𝑊〉〉 ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑍)) ∧ ((𝐴 − 𝐵) = (𝑋 − 𝑌) ∧ (𝐵 − 𝐶) = (𝑌 − 𝑍)) ∧ ((𝐴 − 𝐷) = (𝑋 − 𝑊) ∧ (𝐵 − 𝐷) = (𝑌 − 𝑊))))) | ||
Theorem | tg5segofs 34650 | Rephrase axtg5seg 28491 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ 𝑂 = (AFS‘𝐺) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑃) & ⊢ (𝜑 → 〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑂〈〈𝐸, 𝐹〉, 〈𝐻, 𝐼〉〉) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐻 − 𝐼)) | ||
Syntax | clpad 34651 | Extend class notation with the leftpad function. |
class leftpad | ||
Definition | df-lpad 34652* | Define the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤))) | ||
Theorem | lpadval 34653 | Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) | ||
Theorem | lpadlem1 34654 | Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆) | ||
Theorem | lpadlem3 34655 | Lemma for lpadlen1 34656. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐿 ≤ (♯‘𝑊)) ⇒ ⊢ (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) = ∅) | ||
Theorem | lpadlen1 34656 | Length of a left-padded word, in the case the length of the given word 𝑊 is at least the desired length. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐿 ≤ (♯‘𝑊)) ⇒ ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = (♯‘𝑊)) | ||
Theorem | lpadlem2 34657 | Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) ⇒ ⊢ (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊))) | ||
Theorem | lpadlen2 34658 | Length of a left-padded word, in the case the given word 𝑊 is shorter than the desired length. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) ⇒ ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = 𝐿) | ||
Theorem | lpadmax 34659 | Length of a left-padded word, in the general case, expressed with an if statement. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿)) | ||
Theorem | lpadleft 34660 | The contents of prefix of a left-padded word is always the letter 𝐶. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) ⇒ ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) | ||
Theorem | lpadright 34661 | The suffix of a left-padded word the original word 𝑊. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑊))) ⇒ ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊‘𝑁)) | ||
Note: On 4-Sep-2016 and after, 745 unused theorems were deleted from this mathbox, and 359 theorems used only once or twice were merged into their referencing theorems. The originals can be recovered from set.mm versions prior to this date. | ||
Syntax | w-bnj17 34662 | Extend wff notation with the 4-way conjunction. (New usage is discouraged.) |
wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) | ||
Definition | df-bnj17 34663 | Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) | ||
Syntax | c-bnj14 34664 | Extend class notation with the function giving: the class of all elements of 𝐴 that are "smaller" than 𝑋 according to 𝑅. (New usage is discouraged.) |
class pred(𝑋, 𝐴, 𝑅) | ||
Definition | df-bnj14 34665* | Define the function giving: the class of all elements of 𝐴 that are "smaller" than 𝑋 according to 𝑅. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | ||
Syntax | w-bnj13 34666 | Extend wff notation with the following predicate: 𝑅 is set-like on 𝐴. (New usage is discouraged.) |
wff 𝑅 Se 𝐴 | ||
Definition | df-bnj13 34667* | Define the following predicate: 𝑅 is set-like on 𝐴. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V) | ||
Syntax | w-bnj15 34668 | Extend wff notation with the following predicate: 𝑅 is both well-founded and set-like on 𝐴. (New usage is discouraged.) |
wff 𝑅 FrSe 𝐴 | ||
Definition | df-bnj15 34669 | Define the following predicate: 𝑅 is both well-founded and set-like on 𝐴. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) | ||
Syntax | c-bnj18 34670 | Extend class notation with the function giving: the transitive closure of 𝑋 in 𝐴 by 𝑅. (New usage is discouraged.) |
class trCl(𝑋, 𝐴, 𝑅) | ||
Definition | df-bnj18 34671* | Define the function giving: the transitive closure of 𝑋 in 𝐴 by 𝑅. This definition has been designed for facilitating verification that it is eliminable and that the $d restrictions are sound and complete. For a more readable definition see bnj882 34902. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ trCl(𝑋, 𝐴, 𝑅) = ∪ 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) | ||
Syntax | w-bnj19 34672 | Extend wff notation with the following predicate: 𝐵 is transitive for 𝐴 and 𝑅. (New usage is discouraged.) |
wff TrFo(𝐵, 𝐴, 𝑅) | ||
Definition | df-bnj19 34673* | Define the following predicate: 𝐵 is transitive for 𝐴 and 𝑅. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑥 ∈ 𝐵 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐵) | ||
Theorem | bnj170 34674 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜑)) | ||
Theorem | bnj240 34675 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜓 → 𝜓′) & ⊢ (𝜒 → 𝜒′) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓′ ∧ 𝜒′)) | ||
Theorem | bnj248 34676 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃)) | ||
Theorem | bnj250 34677 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃))) | ||
Theorem | bnj251 34678 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | ||
Theorem | bnj252 34679 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃))) | ||
Theorem | bnj253 34680 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | bnj255 34681 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃))) | ||
Theorem | bnj256 34682 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | ||
Theorem | bnj257 34683 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜓 ∧ 𝜃 ∧ 𝜒)) | ||
Theorem | bnj258 34684 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒)) | ||
Theorem | bnj268 34685 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓 ∧ 𝜃)) | ||
Theorem | bnj290 34686 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜒 ∧ 𝜃 ∧ 𝜓)) | ||
Theorem | bnj291 34687 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓)) | ||
Theorem | bnj312 34688 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | bnj334 34689 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜒 ∧ 𝜑 ∧ 𝜓 ∧ 𝜃)) | ||
Theorem | bnj345 34690 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜃 ∧ 𝜑 ∧ 𝜓 ∧ 𝜒)) | ||
Theorem | bnj422 34691 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜒 ∧ 𝜃 ∧ 𝜑 ∧ 𝜓)) | ||
Theorem | bnj432 34692 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜒 ∧ 𝜃) ∧ (𝜑 ∧ 𝜓))) | ||
Theorem | bnj446 34693 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜑)) | ||
Theorem | bnj23 34694* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ⇒ ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑦 → [𝑤 / 𝑥]𝜑)) | ||
Theorem | bnj31 34695 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) | ||
Theorem | bnj62 34696* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ([𝑧 / 𝑥]𝑥 Fn 𝐴 ↔ 𝑧 Fn 𝐴) | ||
Theorem | bnj89 34697* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝑍 ∈ V ⇒ ⊢ ([𝑍 / 𝑦]∃!𝑥𝜑 ↔ ∃!𝑥[𝑍 / 𝑦]𝜑) | ||
Theorem | bnj90 34698* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
⊢ 𝑌 ∈ V ⇒ ⊢ ([𝑌 / 𝑥]𝑧 Fn 𝑥 ↔ 𝑧 Fn 𝑌) | ||
Theorem | bnj101 34699 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ∃𝑥𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ ∃𝑥𝜓 | ||
Theorem | bnj105 34700 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 1o ∈ V |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |