| Metamath
Proof Explorer Theorem List (p. 347 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | breprexpnat 34601* | Express the 𝑆 th power of the finite series in terms of the number of representations of integers 𝑚 as sums of 𝑆 terms of elements of 𝐴, bounded by 𝑁. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝑍 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ 𝑃 = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍↑𝑏) & ⊢ 𝑅 = (♯‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) ⇒ ⊢ (𝜑 → (𝑃↑𝑆) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(𝑅 · (𝑍↑𝑚))) | ||
| Syntax | cvts 34602 | The Vinogradov trigonometric sums. |
| class vts | ||
| Definition | df-vts 34603* | Define the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
| ⊢ vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥)))))) | ||
| Theorem | vtsval 34604* | Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) = Σ𝑎 ∈ (1...𝑁)((𝐿‘𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑋))))) | ||
| Theorem | vtscl 34605 | Closure of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐿:ℕ⟶ℂ) ⇒ ⊢ (𝜑 → ((𝐿vts𝑁)‘𝑋) ∈ ℂ) | ||
| Theorem | vtsprod 34606* | Express the Vinogradov trigonometric sums to the power of 𝑆 (Contributed by Thierry Arnoux, 12-Dec-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ∈ ℕ0) & ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) ⇒ ⊢ (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋))))) | ||
| Theorem | circlemeth 34607* | The Hardy, Littlewood and Ramanujan Circle Method, in a generic form, with different weighting / smoothing functions. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) ⇒ ⊢ (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑁)∏𝑎 ∈ (0..^𝑆)((𝐿‘𝑎)‘(𝑐‘𝑎)) = ∫(0(,)1)(∏𝑎 ∈ (0..^𝑆)(((𝐿‘𝑎)vts𝑁)‘𝑥) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | ||
| Theorem | circlemethnat 34608* | The Hardy, Littlewood and Ramanujan Circle Method, Chapter 5.1 of [Nathanson] p. 123. This expresses 𝑅, the number of different ways a nonnegative integer 𝑁 can be represented as the sum of at most 𝑆 integers in the set 𝐴 as an integral of Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
| ⊢ 𝑅 = (♯‘(𝐴(repr‘𝑆)𝑁)) & ⊢ 𝐹 = ((((𝟭‘ℕ)‘𝐴)vts𝑁)‘𝑥) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐴 ⊆ ℕ & ⊢ 𝑆 ∈ ℕ ⇒ ⊢ 𝑅 = ∫(0(,)1)((𝐹↑𝑆) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥 | ||
| Theorem | circlevma 34609* | The Circle Method, where the Vinogradov sums are weighted using the von Mangoldt function, as it appears as proposition 1.1 of [Helfgott] p. 5. (Contributed by Thierry Arnoux, 13-Dec-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) = ∫(0(,)1)((((Λvts𝑁)‘𝑥)↑3) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | ||
| Theorem | circlemethhgt 34610* | The circle method, where the Vinogradov sums are weighted using the Von Mangoldt function and smoothed using functions 𝐻 and 𝐾. Statement 7.49 of [Helfgott] p. 69. At this point there is no further constraint on the smoothing functions. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
| ⊢ (𝜑 → 𝐻:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐾:ℕ⟶ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ (ℕ(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) = ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) | ||
| Axiom | ax-hgt749 34611* | Statement 7.49 of [Helfgott] p. 70. For a sufficiently big odd 𝑁, this postulates the existence of smoothing functions ℎ (eta star) and 𝑘 (eta plus) such that the lower bound for the circle integral is big enough. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
| ⊢ ∀𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((;10↑;27) ≤ 𝑛 → ∃ℎ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55) ∧ ∀𝑚 ∈ ℕ (ℎ‘𝑚) ≤ (1._4_14) ∧ ((0._0_0_0_4_2_2_48) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥)) | ||
| Axiom | ax-ros335 34612 | Theorem 12. of [RosserSchoenfeld] p. 71. Theorem chpo1ubb 27408 states that the ψ function is bounded by a linear term; this axiom postulates an upper bound for that linear term. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
| ⊢ ∀𝑥 ∈ ℝ+ (ψ‘𝑥) < ((1._0_3_8_83) · 𝑥) | ||
| Axiom | ax-ros336 34613 | Theorem 13. of [RosserSchoenfeld] p. 71. Theorem chpchtlim 27406 states that the ψ and θ function are asymtotic to each other; this axiom postulates an upper bound for their difference. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
| ⊢ ∀𝑥 ∈ ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1._4_2_62) · (√‘𝑥)) | ||
| Theorem | hgt750lemc 34614* | An upper bound to the summatory function of the von Mangoldt function. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) < ((1._0_3_8_83) · 𝑁)) | ||
| Theorem | hgt750lemd 34615* | An upper bound to the summatory function of the von Mangoldt function on non-primes. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) < ((1._4_2_63) · (√‘𝑁))) | ||
| Theorem | hgt749d 34616* | A deduction version of ax-hgt749 34611. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) ⇒ ⊢ (𝜑 → ∃ℎ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55) ∧ ∀𝑚 ∈ ℕ (ℎ‘𝑚) ≤ (1._4_14) ∧ ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)) | ||
| Theorem | logdivsqrle 34617 | Conditions for ((log x ) / ( sqrt 𝑥)) to be decreasing. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → (exp‘2) ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((log‘𝐵) / (√‘𝐵)) ≤ ((log‘𝐴) / (√‘𝐴))) | ||
| Theorem | hgt750lem 34618 | Lemma for tgoldbachgtd 34629. (Contributed by Thierry Arnoux, 17-Dec-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (;10↑;27) ≤ 𝑁) → ((7._3_48) · ((log‘𝑁) / (√‘𝑁))) < (0._0_0_0_4_2_2_48)) | ||
| Theorem | hgt750lem2 34619 | Decimal multiplication galore! (Contributed by Thierry Arnoux, 26-Dec-2021.) |
| ⊢ (3 · ((((1._0_7_9_9_55)↑2) · (1._4_14)) · ((1._4_2_63) · (1._0_3_8_83)))) < (7._3_48) | ||
| Theorem | hgt750lemf 34620* | Lemma for the statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑃 ∈ ℝ) & ⊢ (𝜑 → 𝑄 ∈ ℝ) & ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘0) ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘1) ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ 𝑃) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ 𝑄) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ 𝐴 (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((𝑃↑2) · 𝑄) · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) | ||
| Theorem | hgt750lemg 34621* | Lemma for the statement 7.50 of [Helfgott] p. 69. Applying a permutation 𝑇 to the three factors of a product does not change the result. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
| ⊢ 𝐹 = (𝑐 ∈ 𝑅 ↦ (𝑐 ∘ 𝑇)) & ⊢ (𝜑 → 𝑇:(0..^3)–1-1-onto→(0..^3)) & ⊢ (𝜑 → 𝑁:(0..^3)⟶ℕ) & ⊢ (𝜑 → 𝐿:ℕ⟶ℝ) & ⊢ (𝜑 → 𝑁 ∈ 𝑅) ⇒ ⊢ (𝜑 → ((𝐿‘((𝐹‘𝑁)‘0)) · ((𝐿‘((𝐹‘𝑁)‘1)) · (𝐿‘((𝐹‘𝑁)‘2)))) = ((𝐿‘(𝑁‘0)) · ((𝐿‘(𝑁‘1)) · (𝐿‘(𝑁‘2))))) | ||
| Theorem | oddprm2 34622* | Two ways to write the set of odd primes. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ⇒ ⊢ (ℙ ∖ {2}) = (𝑂 ∩ ℙ) | ||
| Theorem | hgt750lemb 34623* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 28-Dec-2021.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 2 ≤ 𝑁) & ⊢ 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} ⇒ ⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) | ||
| Theorem | hgt750lema 34624* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 2 ≤ 𝑁) & ⊢ 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)} & ⊢ 𝐹 = (𝑑 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑑 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})))) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) | ||
| Theorem | hgt750leme 34625* | An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 29-Dec-2021.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) & ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) ⇒ ⊢ (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7._3_48) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2))) | ||
| Theorem | tgoldbachgnn 34626* | Lemma for tgoldbachgtd 34629. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ) | ||
| Theorem | tgoldbachgtde 34627* | Lemma for tgoldbachgtd 34629. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) & ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) & ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) ⇒ ⊢ (𝜑 → 0 < Σ𝑛 ∈ ((𝑂 ∩ ℙ)(repr‘3)𝑁)(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))))) | ||
| Theorem | tgoldbachgtda 34628* | Lemma for tgoldbachgtd 34629. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) & ⊢ (𝜑 → 𝐻:ℕ⟶(0[,)+∞)) & ⊢ (𝜑 → 𝐾:ℕ⟶(0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐾‘𝑚) ≤ (1._0_7_9_9_55)) & ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ≤ (1._4_14)) & ⊢ (𝜑 → ((0._0_0_0_4_2_2_48) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · 𝐻)vts𝑁)‘𝑥) · ((((Λ ∘f · 𝐾)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥) ⇒ ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) | ||
| Theorem | tgoldbachgtd 34629* | Odd integers greater than (;10↑;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70. (Contributed by Thierry Arnoux, 15-Dec-2021.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ (𝜑 → 𝑁 ∈ 𝑂) & ⊢ (𝜑 → (;10↑;27) ≤ 𝑁) ⇒ ⊢ (𝜑 → 0 < (♯‘((𝑂 ∩ ℙ)(repr‘3)𝑁))) | ||
| Theorem | tgoldbachgt 34630* | Odd integers greater than (;10↑;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐺 = {𝑧 ∈ 𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ⇒ ⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺)) | ||
This definition has been superseded by DimTarskiG≥ and is no longer needed in the main part of set.mm. It is only kept here for reference. | ||
| Syntax | cstrkg2d 34631 | Extends class notation with the class of geometries fulfilling the planarity axioms. |
| class TarskiG2D | ||
| Definition | df-trkg2d 34632* | Define the class of geometries fulfilling the lower dimension axiom, Axiom A8 of [Schwabhauser] p. 12, and the upper dimension axiom, Axiom A9 of [Schwabhauser] p. 13, for dimension 2. (Contributed by Thierry Arnoux, 14-Mar-2019.) (New usage is discouraged.) |
| ⊢ TarskiG2D = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} | ||
| Theorem | istrkg2d 34633* | Property of fulfilling dimension 2 axiom. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) ⇒ ⊢ (𝐺 ∈ TarskiG2D ↔ (𝐺 ∈ V ∧ (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))) | ||
| Theorem | axtglowdim2ALTV 34634* | Alternate version of axtglowdim2 28433. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG2D) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) | ||
| Theorem | axtgupdim2ALTV 34635 | Alternate version of axtgupdim2 28434. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ∈ 𝑃) & ⊢ (𝜑 → 𝑉 ∈ 𝑃) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → (𝑋 − 𝑈) = (𝑋 − 𝑉)) & ⊢ (𝜑 → (𝑌 − 𝑈) = (𝑌 − 𝑉)) & ⊢ (𝜑 → (𝑍 − 𝑈) = (𝑍 − 𝑉)) & ⊢ (𝜑 → 𝐺 ∈ TarskiG2D) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) | ||
| Syntax | cafs 34636 | Declare the syntax for the outer five segment configuration. |
| class AFS | ||
| Definition | df-afs 34637* | The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom (axtg5seg 28428). See df-ofs 35956. Definition 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) (Revised by Thierry Arnoux, 15-Mar-2019.) |
| ⊢ AFS = (𝑔 ∈ TarskiG ↦ {〈𝑒, 𝑓〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / ℎ][(Itv‘𝑔) / 𝑖]∃𝑎 ∈ 𝑝 ∃𝑏 ∈ 𝑝 ∃𝑐 ∈ 𝑝 ∃𝑑 ∈ 𝑝 ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ∃𝑤 ∈ 𝑝 (𝑒 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑓 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 ∈ (𝑎𝑖𝑐) ∧ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ((𝑎ℎ𝑏) = (𝑥ℎ𝑦) ∧ (𝑏ℎ𝑐) = (𝑦ℎ𝑧)) ∧ ((𝑎ℎ𝑑) = (𝑥ℎ𝑤) ∧ (𝑏ℎ𝑑) = (𝑦ℎ𝑤))))}) | ||
| Theorem | afsval 34638* | Value of the AFS relation for a given geometry structure. (Contributed by Thierry Arnoux, 20-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) ⇒ ⊢ (𝜑 → (AFS‘𝐺) = {〈𝑒, 𝑓〉 ∣ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∃𝑑 ∈ 𝑃 ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ∃𝑤 ∈ 𝑃 (𝑒 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑓 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 ∈ (𝑎𝐼𝑐) ∧ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ((𝑎 − 𝑏) = (𝑥 − 𝑦) ∧ (𝑏 − 𝑐) = (𝑦 − 𝑧)) ∧ ((𝑎 − 𝑑) = (𝑥 − 𝑤) ∧ (𝑏 − 𝑑) = (𝑦 − 𝑤))))}) | ||
| Theorem | brafs 34639 | Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ 𝑂 = (AFS‘𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝑃) & ⊢ (𝜑 → 𝑍 ∈ 𝑃) & ⊢ (𝜑 → 𝑊 ∈ 𝑃) ⇒ ⊢ (𝜑 → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑂〈〈𝑋, 𝑌〉, 〈𝑍, 𝑊〉〉 ↔ ((𝐵 ∈ (𝐴𝐼𝐶) ∧ 𝑌 ∈ (𝑋𝐼𝑍)) ∧ ((𝐴 − 𝐵) = (𝑋 − 𝑌) ∧ (𝐵 − 𝐶) = (𝑌 − 𝑍)) ∧ ((𝐴 − 𝐷) = (𝑋 − 𝑊) ∧ (𝐵 − 𝐷) = (𝑌 − 𝑊))))) | ||
| Theorem | tg5segofs 34640 | Rephrase axtg5seg 28428 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| ⊢ 𝑃 = (Base‘𝐺) & ⊢ − = (dist‘𝐺) & ⊢ 𝐼 = (Itv‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ TarskiG) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝑃) & ⊢ (𝜑 → 𝐶 ∈ 𝑃) & ⊢ (𝜑 → 𝐷 ∈ 𝑃) & ⊢ (𝜑 → 𝐸 ∈ 𝑃) & ⊢ (𝜑 → 𝐹 ∈ 𝑃) & ⊢ 𝑂 = (AFS‘𝐺) & ⊢ (𝜑 → 𝐻 ∈ 𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑃) & ⊢ (𝜑 → 〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉𝑂〈〈𝐸, 𝐹〉, 〈𝐻, 𝐼〉〉) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐻 − 𝐼)) | ||
| Syntax | clpad 34641 | Extend class notation with the leftpad function. |
| class leftpad | ||
| Definition | df-lpad 34642* | Define the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| ⊢ leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤))) | ||
| Theorem | lpadval 34643 | Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| ⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) | ||
| Theorem | lpadlem1 34644 | Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆) | ||
| Theorem | lpadlem3 34645 | Lemma for lpadlen1 34646. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| ⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐿 ≤ (♯‘𝑊)) ⇒ ⊢ (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) = ∅) | ||
| Theorem | lpadlen1 34646 | Length of a left-padded word, in the case the length of the given word 𝑊 is at least the desired length. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| ⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐿 ≤ (♯‘𝑊)) ⇒ ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = (♯‘𝑊)) | ||
| Theorem | lpadlem2 34647 | Lemma for the leftpad theorems. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| ⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) ⇒ ⊢ (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊))) | ||
| Theorem | lpadlen2 34648 | Length of a left-padded word, in the case the given word 𝑊 is shorter than the desired length. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| ⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) ⇒ ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = 𝐿) | ||
| Theorem | lpadmax 34649 | Length of a left-padded word, in the general case, expressed with an if statement. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| ⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) ⇒ ⊢ (𝜑 → (♯‘((𝐶 leftpad 𝑊)‘𝐿)) = if(𝐿 ≤ (♯‘𝑊), (♯‘𝑊), 𝐿)) | ||
| Theorem | lpadleft 34650 | The contents of prefix of a left-padded word is always the letter 𝐶. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| ⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) ⇒ ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) | ||
| Theorem | lpadright 34651 | The suffix of a left-padded word the original word 𝑊. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| ⊢ (𝜑 → 𝐿 ∈ ℕ0) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝑊))) ⇒ ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊‘𝑁)) | ||
Note: On 4-Sep-2016 and after, 745 unused theorems were deleted from this mathbox, and 359 theorems used only once or twice were merged into their referencing theorems. The originals can be recovered from set.mm versions prior to this date. | ||
| Syntax | w-bnj17 34652 | Extend wff notation with the 4-way conjunction. (New usage is discouraged.) |
| wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) | ||
| Definition | df-bnj17 34653 | Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) | ||
| Syntax | c-bnj14 34654 | Extend class notation with the function giving: the class of all elements of 𝐴 that are "smaller" than 𝑋 according to 𝑅. (New usage is discouraged.) |
| class pred(𝑋, 𝐴, 𝑅) | ||
| Definition | df-bnj14 34655* | Define the function giving: the class of all elements of 𝐴 that are "smaller" than 𝑋 according to 𝑅. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | ||
| Syntax | w-bnj13 34656 | Extend wff notation with the following predicate: 𝑅 is set-like on 𝐴. (New usage is discouraged.) |
| wff 𝑅 Se 𝐴 | ||
| Definition | df-bnj13 34657* | Define the following predicate: 𝑅 is set-like on 𝐴. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V) | ||
| Syntax | w-bnj15 34658 | Extend wff notation with the following predicate: 𝑅 is both well-founded and set-like on 𝐴. (New usage is discouraged.) |
| wff 𝑅 FrSe 𝐴 | ||
| Definition | df-bnj15 34659 | Define the following predicate: 𝑅 is both well-founded and set-like on 𝐴. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) | ||
| Syntax | c-bnj18 34660 | Extend class notation with the function giving: the transitive closure of 𝑋 in 𝐴 by 𝑅. (New usage is discouraged.) |
| class trCl(𝑋, 𝐴, 𝑅) | ||
| Definition | df-bnj18 34661* | Define the function giving: the transitive closure of 𝑋 in 𝐴 by 𝑅. This definition has been designed for facilitating verification that it is eliminable and that the $d restrictions are sound and complete. For a more readable definition see bnj882 34892. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ trCl(𝑋, 𝐴, 𝑅) = ∪ 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) | ||
| Syntax | w-bnj19 34662 | Extend wff notation with the following predicate: 𝐵 is transitive for 𝐴 and 𝑅. (New usage is discouraged.) |
| wff TrFo(𝐵, 𝐴, 𝑅) | ||
| Definition | df-bnj19 34663* | Define the following predicate: 𝐵 is transitive for 𝐴 and 𝑅. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑥 ∈ 𝐵 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐵) | ||
| Theorem | bnj170 34664 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜑)) | ||
| Theorem | bnj240 34665 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜓 → 𝜓′) & ⊢ (𝜒 → 𝜒′) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓′ ∧ 𝜒′)) | ||
| Theorem | bnj248 34666 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃)) | ||
| Theorem | bnj250 34667 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃))) | ||
| Theorem | bnj251 34668 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | ||
| Theorem | bnj252 34669 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃))) | ||
| Theorem | bnj253 34670 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) | ||
| Theorem | bnj255 34671 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃))) | ||
| Theorem | bnj256 34672 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | ||
| Theorem | bnj257 34673 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜓 ∧ 𝜃 ∧ 𝜒)) | ||
| Theorem | bnj258 34674 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒)) | ||
| Theorem | bnj268 34675 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓 ∧ 𝜃)) | ||
| Theorem | bnj290 34676 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜒 ∧ 𝜃 ∧ 𝜓)) | ||
| Theorem | bnj291 34677 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜓)) | ||
| Theorem | bnj312 34678 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒 ∧ 𝜃)) | ||
| Theorem | bnj334 34679 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜒 ∧ 𝜑 ∧ 𝜓 ∧ 𝜃)) | ||
| Theorem | bnj345 34680 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜃 ∧ 𝜑 ∧ 𝜓 ∧ 𝜒)) | ||
| Theorem | bnj422 34681 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜒 ∧ 𝜃 ∧ 𝜑 ∧ 𝜓)) | ||
| Theorem | bnj432 34682 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜒 ∧ 𝜃) ∧ (𝜑 ∧ 𝜓))) | ||
| Theorem | bnj446 34683 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜑)) | ||
| Theorem | bnj23 34684* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
| ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ⇒ ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑦 → [𝑤 / 𝑥]𝜑)) | ||
| Theorem | bnj31 34685 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) | ||
| Theorem | bnj62 34686* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ([𝑧 / 𝑥]𝑥 Fn 𝐴 ↔ 𝑧 Fn 𝐴) | ||
| Theorem | bnj89 34687* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝑍 ∈ V ⇒ ⊢ ([𝑍 / 𝑦]∃!𝑥𝜑 ↔ ∃!𝑥[𝑍 / 𝑦]𝜑) | ||
| Theorem | bnj90 34688* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
| ⊢ 𝑌 ∈ V ⇒ ⊢ ([𝑌 / 𝑥]𝑧 Fn 𝑥 ↔ 𝑧 Fn 𝑌) | ||
| Theorem | bnj101 34689 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ ∃𝑥𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ ∃𝑥𝜓 | ||
| Theorem | bnj105 34690 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 1o ∈ V | ||
| Theorem | bnj115 34691 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜂 ↔ ∀𝑛 ∈ 𝐷 (𝜏 → 𝜃)) ⇒ ⊢ (𝜂 ↔ ∀𝑛((𝑛 ∈ 𝐷 ∧ 𝜏) → 𝜃)) | ||
| Theorem | bnj132 34692* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ ∃𝑥(𝜓 → 𝜒)) ⇒ ⊢ (𝜑 ↔ (𝜓 → ∃𝑥𝜒)) | ||
| Theorem | bnj133 34693 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ ∃𝑥𝜓) & ⊢ (𝜒 ↔ 𝜓) ⇒ ⊢ (𝜑 ↔ ∃𝑥𝜒) | ||
| Theorem | bnj156 34694 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜁0 ↔ (𝑓 Fn 1o ∧ 𝜑′ ∧ 𝜓′)) & ⊢ (𝜁1 ↔ [𝑔 / 𝑓]𝜁0) & ⊢ (𝜑1 ↔ [𝑔 / 𝑓]𝜑′) & ⊢ (𝜓1 ↔ [𝑔 / 𝑓]𝜓′) ⇒ ⊢ (𝜁1 ↔ (𝑔 Fn 1o ∧ 𝜑1 ∧ 𝜓1)) | ||
| Theorem | bnj158 34695* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐷 = (ω ∖ {∅}) ⇒ ⊢ (𝑚 ∈ 𝐷 → ∃𝑝 ∈ ω 𝑚 = suc 𝑝) | ||
| Theorem | bnj168 34696* | First-order logic and set theory. Revised to remove dependence on ax-reg 9503. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by NM, 21-Dec-2016.) (New usage is discouraged.) |
| ⊢ 𝐷 = (ω ∖ {∅}) ⇒ ⊢ ((𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷) → ∃𝑚 ∈ 𝐷 𝑛 = suc 𝑚) | ||
| Theorem | bnj206 34697 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝜑′ ↔ [𝑀 / 𝑛]𝜑) & ⊢ (𝜓′ ↔ [𝑀 / 𝑛]𝜓) & ⊢ (𝜒′ ↔ [𝑀 / 𝑛]𝜒) & ⊢ 𝑀 ∈ V ⇒ ⊢ ([𝑀 / 𝑛](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝜒′)) | ||
| Theorem | bnj216 34698 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 = suc 𝐵 → 𝐵 ∈ 𝐴) | ||
| Theorem | bnj219 34699 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) | ||
| Theorem | bnj226 34700* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |