Home | Metamath
Proof Explorer Theorem List (p. 347 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nalfal 34601 | Not all sets hold ⊥ as true. (Contributed by Anthony Hart, 13-Sep-2011.) |
⊢ ¬ ∀𝑥⊥ | ||
Theorem | nexntru 34602 | There does not exist a set such that ⊤ is not true. (Contributed by Anthony Hart, 13-Sep-2011.) |
⊢ ¬ ∃𝑥 ¬ ⊤ | ||
Theorem | nexfal 34603 | There does not exist a set such that ⊥ is true. (Contributed by Anthony Hart, 13-Sep-2011.) |
⊢ ¬ ∃𝑥⊥ | ||
Theorem | neufal 34604 | There does not exist exactly one set such that ⊥ is true. (Contributed by Anthony Hart, 13-Sep-2011.) |
⊢ ¬ ∃!𝑥⊥ | ||
Theorem | neutru 34605 | There does not exist exactly one set such that ⊤ is true. (Contributed by Anthony Hart, 13-Sep-2011.) |
⊢ ¬ ∃!𝑥⊤ | ||
Theorem | nmotru 34606 | There does not exist at most one set such that ⊤ is true. (Contributed by Anthony Hart, 13-Sep-2011.) |
⊢ ¬ ∃*𝑥⊤ | ||
Theorem | mofal 34607 | There exist at most one set such that ⊥ is true. (Contributed by Anthony Hart, 13-Sep-2011.) |
⊢ ∃*𝑥⊥ | ||
Theorem | nrmo 34608 | "At most one" restricted existential quantifier for a statement which is never true. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
⊢ (𝑥 ∈ 𝐴 → ¬ 𝜑) ⇒ ⊢ ∃*𝑥 ∈ 𝐴 𝜑 | ||
Theorem | meran1 34609 | A single axiom for propositional calculus discovered by C. A. Meredith. (Contributed by Anthony Hart, 13-Aug-2011.) |
⊢ (¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) ∨ (¬ (¬ 𝜃 ∨ 𝜑) ∨ (𝜒 ∨ (𝜏 ∨ 𝜑)))) | ||
Theorem | meran2 34610 | A single axiom for propositional calculus discovered by C. A. Meredith. (Contributed by Anthony Hart, 13-Aug-2011.) |
⊢ (¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) ∨ (¬ (¬ 𝜏 ∨ 𝜃) ∨ (𝜒 ∨ (𝜑 ∨ 𝜃)))) | ||
Theorem | meran3 34611 | A single axiom for propositional calculus discovered by C. A. Meredith. (Contributed by Anthony Hart, 13-Aug-2011.) |
⊢ (¬ (¬ (¬ 𝜑 ∨ 𝜓) ∨ (𝜒 ∨ (𝜃 ∨ 𝜏))) ∨ (¬ (¬ 𝜒 ∨ 𝜑) ∨ (𝜏 ∨ (𝜃 ∨ 𝜑)))) | ||
Theorem | waj-ax 34612 | A single axiom for propositional calculus discovered by Mordchaj Wajsberg (Logical Works, Polish Academy of Sciences, 1977). See: Fitelson, Some recent results in algebra and logical calculi obtained using automated reasoning, 2003 (axiom W on slide 8). (Contributed by Anthony Hart, 13-Aug-2011.) |
⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ⊼ (((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) ⊼ (𝜑 ⊼ (𝜑 ⊼ 𝜓)))) | ||
Theorem | lukshef-ax2 34613 | A single axiom for propositional calculus discovered by Jan Lukasiewicz. See: Fitelson, Some recent results in algebra and logical calculi obtained using automated reasoning, 2003 (axiom L2 on slide 8). (Contributed by Anthony Hart, 14-Aug-2011.) |
⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ⊼ ((𝜑 ⊼ (𝜒 ⊼ 𝜑)) ⊼ ((𝜃 ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) | ||
Theorem | arg-ax 34614 | A single axiom for propositional calculus discovered by Ken Harris and Branden Fitelson. See: Fitelson, Some recent results in algebra and logical calculi obtained using automated reasoning, 2003 (axiom HF1 on slide 8). (Contributed by Anthony Hart, 14-Aug-2011.) |
⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ⊼ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜒 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) | ||
Theorem | negsym1 34615 |
In the paper "On Variable Functors of Propositional Arguments",
Lukasiewicz introduced a system that can handle variable connectives.
This was done by introducing a variable, marked with a lowercase delta,
which takes a wff as input. In the system, "delta 𝜑 "
means that
"something is true of 𝜑". The expression "delta
𝜑
" can be
substituted with ¬ 𝜑, 𝜓 ∧ 𝜑, ∀𝑥𝜑, etc.
Later on, Meredith discovered a single axiom, in the form of ( delta delta ⊥ → delta 𝜑 ). This represents the shortest theorem in the extended propositional calculus that cannot be derived as an instance of a theorem in propositional calculus. A symmetry with ¬. (Contributed by Anthony Hart, 4-Sep-2011.) |
⊢ (¬ ¬ ⊥ → ¬ 𝜑) | ||
Theorem | imsym1 34616 |
A symmetry with →.
See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) |
⊢ ((𝜓 → (𝜓 → ⊥)) → (𝜓 → 𝜑)) | ||
Theorem | bisym1 34617 |
A symmetry with ↔.
See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) |
⊢ ((𝜓 ↔ (𝜓 ↔ ⊥)) → (𝜓 ↔ 𝜑)) | ||
Theorem | consym1 34618 |
A symmetry with ∧.
See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) |
⊢ ((𝜓 ∧ (𝜓 ∧ ⊥)) → (𝜓 ∧ 𝜑)) | ||
Theorem | dissym1 34619 |
A symmetry with ∨.
See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) |
⊢ ((𝜓 ∨ (𝜓 ∨ ⊥)) → (𝜓 ∨ 𝜑)) | ||
Theorem | nandsym1 34620 |
A symmetry with ⊼.
See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) |
⊢ ((𝜓 ⊼ (𝜓 ⊼ ⊥)) → (𝜓 ⊼ 𝜑)) | ||
Theorem | unisym1 34621 |
A symmetry with ∀.
See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
⊢ (∀𝑥∀𝑥⊥ → ∀𝑥𝜑) | ||
Theorem | exisym1 34622 |
A symmetry with ∃.
See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) |
⊢ (∃𝑥∃𝑥⊥ → ∃𝑥𝜑) | ||
Theorem | unqsym1 34623 |
A symmetry with ∃!.
See negsym1 34615 for more information. (Contributed by Anthony Hart, 6-Sep-2011.) |
⊢ (∃!𝑥∃!𝑥⊥ → ∃!𝑥𝜑) | ||
Theorem | amosym1 34624 |
A symmetry with ∃*.
See negsym1 34615 for more information. (Contributed by Anthony Hart, 13-Sep-2011.) |
⊢ (∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑) | ||
Theorem | subsym1 34625 |
A symmetry with [𝑥 / 𝑦].
See negsym1 34615 for more information. (Contributed by Anthony Hart, 11-Sep-2011.) |
⊢ ([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑) | ||
Theorem | ontopbas 34626 | An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.) |
⊢ (𝐵 ∈ On → 𝐵 ∈ TopBases) | ||
Theorem | onsstopbas 34627 | The class of ordinal numbers is a subclass of the class of topological bases. (Contributed by Chen-Pang He, 8-Oct-2015.) |
⊢ On ⊆ TopBases | ||
Theorem | onpsstopbas 34628 | The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.) |
⊢ On ⊊ TopBases | ||
Theorem | ontgval 34629 | The topology generated from an ordinal number 𝐵 is suc ∪ 𝐵. (Contributed by Chen-Pang He, 10-Oct-2015.) |
⊢ (𝐵 ∈ On → (topGen‘𝐵) = suc ∪ 𝐵) | ||
Theorem | ontgsucval 34630 | The topology generated from a successor ordinal number is itself. (Contributed by Chen-Pang He, 11-Oct-2015.) |
⊢ (𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴) | ||
Theorem | onsuctop 34631 | A successor ordinal number is a topology. (Contributed by Chen-Pang He, 11-Oct-2015.) |
⊢ (𝐴 ∈ On → suc 𝐴 ∈ Top) | ||
Theorem | onsuctopon 34632 | One of the topologies on an ordinal number is its successor. (Contributed by Chen-Pang He, 7-Nov-2015.) |
⊢ (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴)) | ||
Theorem | ordtoplem 34633 | Membership of the class of successor ordinals. (Contributed by Chen-Pang He, 1-Nov-2015.) |
⊢ (∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ 𝑆) ⇒ ⊢ (Ord 𝐴 → (𝐴 ≠ ∪ 𝐴 → 𝐴 ∈ 𝑆)) | ||
Theorem | ordtop 34634 | An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015.) |
⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽)) | ||
Theorem | onsucconni 34635 | A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.) |
⊢ 𝐴 ∈ On ⇒ ⊢ suc 𝐴 ∈ Conn | ||
Theorem | onsucconn 34636 | A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.) |
⊢ (𝐴 ∈ On → suc 𝐴 ∈ Conn) | ||
Theorem | ordtopconn 34637 | An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015.) |
⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn)) | ||
Theorem | onintopssconn 34638 | An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.) |
⊢ (On ∩ Top) ⊆ Conn | ||
Theorem | onsuct0 34639 | A successor ordinal number is a T0 space. (Contributed by Chen-Pang He, 8-Nov-2015.) |
⊢ (𝐴 ∈ On → suc 𝐴 ∈ Kol2) | ||
Theorem | ordtopt0 34640 | An ordinal topology is T0. (Contributed by Chen-Pang He, 8-Nov-2015.) |
⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2)) | ||
Theorem | onsucsuccmpi 34641 | The successor of a successor ordinal number is a compact topology, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 18-Oct-2015.) |
⊢ 𝐴 ∈ On ⇒ ⊢ suc suc 𝐴 ∈ Comp | ||
Theorem | onsucsuccmp 34642 | The successor of a successor ordinal number is a compact topology. (Contributed by Chen-Pang He, 18-Oct-2015.) |
⊢ (𝐴 ∈ On → suc suc 𝐴 ∈ Comp) | ||
Theorem | limsucncmpi 34643 | The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.) |
⊢ Lim 𝐴 ⇒ ⊢ ¬ suc 𝐴 ∈ Comp | ||
Theorem | limsucncmp 34644 | The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.) |
⊢ (Lim 𝐴 → ¬ suc 𝐴 ∈ Comp) | ||
Theorem | ordcmp 34645 | An ordinal topology is compact iff the underlying set is its supremum (union) only when the ordinal is 1o. (Contributed by Chen-Pang He, 1-Nov-2015.) |
⊢ (Ord 𝐴 → (𝐴 ∈ Comp ↔ (∪ 𝐴 = ∪ ∪ 𝐴 → 𝐴 = 1o))) | ||
Theorem | ssoninhaus 34646 | The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.) |
⊢ {1o, 2o} ⊆ (On ∩ Haus) | ||
Theorem | onint1 34647 | The ordinal T1 spaces are 1o and 2o, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 9-Nov-2015.) |
⊢ (On ∩ Fre) = {1o, 2o} | ||
Theorem | oninhaus 34648 | The ordinal Hausdorff spaces are 1o and 2o. (Contributed by Chen-Pang He, 10-Nov-2015.) |
⊢ (On ∩ Haus) = {1o, 2o} | ||
Theorem | fveleq 34649 | Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.) |
⊢ (𝐴 = 𝐵 → ((𝜑 → (𝐹‘𝐴) ∈ 𝑃) ↔ (𝜑 → (𝐹‘𝐵) ∈ 𝑃))) | ||
Theorem | findfvcl 34650* | Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.) |
⊢ (𝜑 → (𝐹‘∅) ∈ 𝑃) & ⊢ (𝑦 ∈ ω → (𝜑 → ((𝐹‘𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃))) ⇒ ⊢ (𝐴 ∈ ω → (𝜑 → (𝐹‘𝐴) ∈ 𝑃)) | ||
Theorem | findreccl 34651* | Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008.) |
⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) ⇒ ⊢ (𝐶 ∈ ω → (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃)) | ||
Theorem | findabrcl 34652* | Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008.) (Revised by Mario Carneiro, 11-Sep-2015.) |
⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) ⇒ ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) ∈ 𝑃) | ||
Theorem | nnssi2 34653 | Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.) |
⊢ ℕ ⊆ 𝐷 & ⊢ (𝐵 ∈ ℕ → 𝜑) & ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝜑) → 𝜓) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝜓) | ||
Theorem | nnssi3 34654 | Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.) |
⊢ ℕ ⊆ 𝐷 & ⊢ (𝐶 ∈ ℕ → 𝜑) & ⊢ (((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ∧ 𝜑) → 𝜓) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝜓) | ||
Theorem | nndivsub 34655 | Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵 − 𝐴) / 𝐶) ∈ ℕ)) | ||
Theorem | nndivlub 34656 | A factor of a positive integer cannot exceed it. (Contributed by Jeff Hoffman, 17-Jun-2008.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵 ≤ 𝐴)) | ||
Syntax | cgcdOLD 34657 | Extend class notation to include the gdc function. (New usage is discouraged.) |
class gcdOLD (𝐴, 𝐵) | ||
Definition | df-gcdOLD 34658* | gcdOLD (𝐴, 𝐵) is the largest positive integer that evenly divides both 𝐴 and 𝐵. (Contributed by Jeff Hoffman, 17-Jun-2008.) (New usage is discouraged.) |
⊢ gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < ) | ||
Theorem | ee7.2aOLD 34659 | Lemma for Euclid's Elements, Book 7, proposition 2. The original mentions the smaller measure being 'continually subtracted' from the larger. Many authors interpret this phrase as 𝐴 mod 𝐵. Here, just one subtraction step is proved to preserve the gcdOLD. The rec function will be used in other proofs for iterated subtraction. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵 − 𝐴)))) | ||
Theorem | dnival 34660* | Value of the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) ⇒ ⊢ (𝐴 ∈ ℝ → (𝑇‘𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) | ||
Theorem | dnicld1 34661 | Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ) | ||
Theorem | dnicld2 34662* | Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑇‘𝐴) ∈ ℝ) | ||
Theorem | dnif 34663 | The "distance to nearest integer" function is a function. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) ⇒ ⊢ 𝑇:ℝ⟶ℝ | ||
Theorem | dnizeq0 34664* | The distance to nearest integer is zero for integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑇‘𝐴) = 0) | ||
Theorem | dnizphlfeqhlf 34665* | The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2)) | ||
Theorem | rddif2 34666 | Variant of rddif 15061. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) | ||
Theorem | dnibndlem1 34667* | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆)) | ||
Theorem | dnibndlem2 34668* | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2)))) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
Theorem | dnibndlem3 34669 | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1)) ⇒ ⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)))) | ||
Theorem | dnibndlem4 34670 | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝐵 ∈ ℝ → 0 ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)))) | ||
Theorem | dnibndlem5 34671 | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) | ||
Theorem | dnibndlem6 34672 | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))) | ||
Theorem | dnibndlem7 34673 | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2)))) | ||
Theorem | dnibndlem8 34674 | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴)) | ||
Theorem | dnibndlem9 34675* | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1)) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
Theorem | dnibndlem10 34676 | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) ⇒ ⊢ (𝜑 → 1 ≤ (𝐵 − 𝐴)) | ||
Theorem | dnibndlem11 34677 | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2)) | ||
Theorem | dnibndlem12 34678* | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
Theorem | dnibndlem13 34679* | Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2)))) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
Theorem | dnibnd 34680* | The "distance to nearest integer" function is 1-Lipschitz continuous, i.e., is a short map. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) | ||
Theorem | dnicn 34681 | The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) ⇒ ⊢ 𝑇 ∈ (ℝ–cn→ℝ) | ||
Theorem | knoppcnlem1 34682* | Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) | ||
Theorem | knoppcnlem2 34683* | Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ) | ||
Theorem | knoppcnlem3 34684* | Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) ∈ ℝ) | ||
Theorem | knoppcnlem4 34685* | Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (abs‘((𝐹‘𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀)) | ||
Theorem | knoppcnlem5 34686* | Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ)) | ||
Theorem | knoppcnlem6 34687* | Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ)) | ||
Theorem | knoppcnlem7 34688* | Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑀))) | ||
Theorem | knoppcnlem8 34689* | Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ)) | ||
Theorem | knoppcnlem9 34690* | Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊) | ||
Theorem | knoppcnlem10 34691* | Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))) | ||
Theorem | knoppcnlem11 34692* | Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ)) | ||
Theorem | knoppcn 34693* | The continuous nowhere differentiable function 𝑊 ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → 𝑊 ∈ (ℝ–cn→ℂ)) | ||
Theorem | knoppcld 34694* | Closure theorem for Knopp's function. (Contributed by Asger C. Ipsen, 26-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → (𝑊‘𝐴) ∈ ℂ) | ||
Theorem | unblimceq0lem 34695* | Lemma for unblimceq0 34696. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → ∀𝑐 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑦 ∈ 𝑆 (𝑦 ≠ 𝐴 ∧ (abs‘(𝑦 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑦)))) | ||
Theorem | unblimceq0 34696* | If 𝐹 is unbounded near 𝐴 it has no limit at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐴) = ∅) | ||
Theorem | unbdqndv1 34697* | If the difference quotient (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) | ||
Theorem | unbdqndv2lem1 34698 | Lemma for unbdqndv2 34700. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ≠ 0) & ⊢ (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴 − 𝐵) / 𝐷))) ⇒ ⊢ (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴 − 𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵 − 𝐶)))) | ||
Theorem | unbdqndv2lem2 34699* | Lemma for unbdqndv2 34700. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) & ⊢ 𝑊 = if((𝐵 · (𝑉 − 𝑈)) ≤ (abs‘((𝐹‘𝑈) − (𝐹‘𝐴))), 𝑈, 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ∈ 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑋) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝑉) & ⊢ (𝜑 → (𝑉 − 𝑈) < 𝐷) & ⊢ (𝜑 → (2 · 𝐵) ≤ ((abs‘((𝐹‘𝑉) − (𝐹‘𝑈))) / (𝑉 − 𝑈))) ⇒ ⊢ (𝜑 → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊 − 𝐴)) < 𝐷 ∧ 𝐵 ≤ (abs‘(𝐺‘𝑊))))) | ||
Theorem | unbdqndv2 34700* | Variant of unbdqndv1 34697 with the hypothesis that (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) is unbounded where 𝑥 ≤ 𝐴 and 𝐴 ≤ 𝑦. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |