Home | Metamath
Proof Explorer Theorem List (p. 347 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | knoppcnlem2 34601* | Lemma for knoppcn 34611. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ) | ||
Theorem | knoppcnlem3 34602* | Lemma for knoppcn 34611. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) ∈ ℝ) | ||
Theorem | knoppcnlem4 34603* | Lemma for knoppcn 34611. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (abs‘((𝐹‘𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀)) | ||
Theorem | knoppcnlem5 34604* | Lemma for knoppcn 34611. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ)) | ||
Theorem | knoppcnlem6 34605* | Lemma for knoppcn 34611. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ)) | ||
Theorem | knoppcnlem7 34606* | Lemma for knoppcn 34611. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹‘𝑤))‘𝑀))) | ||
Theorem | knoppcnlem8 34607* | Lemma for knoppcn 34611. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ)) | ||
Theorem | knoppcnlem9 34608* | Lemma for knoppcn 34611. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊) | ||
Theorem | knoppcnlem10 34609* | Lemma for knoppcn 34611. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))) | ||
Theorem | knoppcnlem11 34610* | Lemma for knoppcn 34611. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹‘𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ)) | ||
Theorem | knoppcn 34611* | The continuous nowhere differentiable function 𝑊 ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → 𝑊 ∈ (ℝ–cn→ℂ)) | ||
Theorem | knoppcld 34612* | Closure theorem for Knopp's function. (Contributed by Asger C. Ipsen, 26-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐶) < 1) ⇒ ⊢ (𝜑 → (𝑊‘𝐴) ∈ ℂ) | ||
Theorem | unblimceq0lem 34613* | Lemma for unblimceq0 34614. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → ∀𝑐 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑦 ∈ 𝑆 (𝑦 ≠ 𝐴 ∧ (abs‘(𝑦 − 𝐴)) < 𝑑 ∧ 𝑐 ≤ (abs‘(𝐹‘𝑦)))) | ||
Theorem | unblimceq0 34614* | If 𝐹 is unbounded near 𝐴 it has no limit at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝑆⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑆 ((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐴) = ∅) | ||
Theorem | unbdqndv1 34615* | If the difference quotient (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) & ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥 − 𝐴)) < 𝑑 ∧ 𝑏 ≤ (abs‘(𝐺‘𝑥)))) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹)) | ||
Theorem | unbdqndv2lem1 34616 | Lemma for unbdqndv2 34618. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ≠ 0) & ⊢ (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴 − 𝐵) / 𝐷))) ⇒ ⊢ (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴 − 𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵 − 𝐶)))) | ||
Theorem | unbdqndv2lem2 34617* | Lemma for unbdqndv2 34618. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐴)) / (𝑧 − 𝐴))) & ⊢ 𝑊 = if((𝐵 · (𝑉 − 𝑈)) ≤ (abs‘((𝐹‘𝑈) − (𝐹‘𝐴))), 𝑈, 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ∈ 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑋) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ (𝜑 → 𝑈 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 𝑉) & ⊢ (𝜑 → (𝑉 − 𝑈) < 𝐷) & ⊢ (𝜑 → (2 · 𝐵) ≤ ((abs‘((𝐹‘𝑉) − (𝐹‘𝑈))) / (𝑉 − 𝑈))) ⇒ ⊢ (𝜑 → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊 − 𝐴)) < 𝐷 ∧ 𝐵 ≤ (abs‘(𝐺‘𝑊))))) | ||
Theorem | unbdqndv2 34618* | Variant of unbdqndv1 34615 with the hypothesis that (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) is unbounded where 𝑥 ≤ 𝐴 and 𝐴 ≤ 𝑦. (Contributed by Asger C. Ipsen, 12-May-2021.) |
⊢ (𝜑 → 𝑋 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∀𝑑 ∈ ℝ+ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑥 ≤ 𝐴 ∧ 𝐴 ≤ 𝑦) ∧ ((𝑦 − 𝑥) < 𝑑 ∧ 𝑥 ≠ 𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹‘𝑦) − (𝐹‘𝑥))) / (𝑦 − 𝑥)))) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹)) | ||
Theorem | knoppndvlem1 34619 | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) | ||
Theorem | knoppndvlem2 34620 | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐽 < 𝐼) ⇒ ⊢ (𝜑 → (((2 · 𝑁)↑𝐼) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ) | ||
Theorem | knoppndvlem3 34621 | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) ⇒ ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) | ||
Theorem | knoppndvlem4 34622* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) | ||
Theorem | knoppndvlem5 34623* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖) ∈ ℝ) | ||
Theorem | knoppndvlem6 34624* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑊‘𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖)) | ||
Theorem | knoppndvlem7 34625* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) · (𝑇‘(𝑀 / 2)))) | ||
Theorem | knoppndvlem8 34626* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 2 ∥ 𝑀) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = 0) | ||
Theorem | knoppndvlem9 34627* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴)‘𝐽) = ((𝐶↑𝐽) / 2)) | ||
Theorem | knoppndvlem10 34628* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (abs‘(((𝐹‘𝐵)‘𝐽) − ((𝐹‘𝐴)‘𝐽))) = (((abs‘𝐶)↑𝐽) / 2)) | ||
Theorem | knoppndvlem11 34629* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 28-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐴)‘𝑖))) ≤ ((abs‘(𝐵 − 𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖))) | ||
Theorem | knoppndvlem12 34630 | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) | ||
Theorem | knoppndvlem13 34631 | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → 𝐶 ≠ 0) | ||
Theorem | knoppndvlem14 34632* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 7-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹‘𝐴)‘𝑖))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) | ||
Theorem | knoppndvlem15 34633* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 6-Jul-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊‘𝐵) − (𝑊‘𝐴)))) | ||
Theorem | knoppndvlem16 34634 | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 19-Jul-2021.) |
⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) = (((2 · 𝑁)↑-𝐽) / 2)) | ||
Theorem | knoppndvlem17 34635* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 12-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊‘𝐵) − (𝑊‘𝐴))) / (𝐵 − 𝐴))) | ||
Theorem | knoppndvlem18 34636* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 14-Aug-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐺 ∈ ℝ+) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷 ∧ 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · 𝐺))) | ||
Theorem | knoppndvlem19 34637* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 17-Aug-2021.) |
⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑚) & ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑚 + 1)) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝐻 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ ℤ (𝐴 ≤ 𝐻 ∧ 𝐻 ≤ 𝐵)) | ||
Theorem | knoppndvlem20 34638 | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 18-Aug-2021.) |
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+) | ||
Theorem | knoppndvlem21 34639* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 18-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ 𝐺 = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐻 ∈ ℝ) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) & ⊢ (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) < 𝐷) & ⊢ (𝜑 → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · 𝐺)) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ 𝐻 ∧ 𝐻 ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝐷 ∧ 𝑎 ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) | ||
Theorem | knoppndvlem22 34640* | Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐻 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎 ≤ 𝐻 ∧ 𝐻 ≤ 𝑏) ∧ ((𝑏 − 𝑎) < 𝐷 ∧ 𝑎 ≠ 𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊‘𝑏) − (𝑊‘𝑎))) / (𝑏 − 𝑎)))) | ||
Theorem | knoppndv 34641* | The continuous nowhere differentiable function 𝑊 ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, nowhere differentiable. (Contributed by Asger C. Ipsen, 19-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) ⇒ ⊢ (𝜑 → dom (ℝ D 𝑊) = ∅) | ||
Theorem | knoppf 34642* | Knopp's function is a function. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝑊:ℝ⟶ℝ) | ||
Theorem | knoppcn2 34643* | Variant of knoppcn 34611 with different codomain. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) ⇒ ⊢ (𝜑 → 𝑊 ∈ (ℝ–cn→ℝ)) | ||
Theorem | cnndvlem1 34644* | Lemma for cnndv 34646. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) ⇒ ⊢ (𝑊 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑊) = ∅) | ||
Theorem | cnndvlem2 34645* | Lemma for cnndv 34646. (Contributed by Asger C. Ipsen, 26-Aug-2021.) |
⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) & ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ (((1 / 2)↑𝑛) · (𝑇‘(((2 · 3)↑𝑛) · 𝑦))))) & ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) ⇒ ⊢ ∃𝑓(𝑓 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑓) = ∅) | ||
Theorem | cnndv 34646 | There exists a continuous nowhere differentiable function. The result follows directly from knoppcn 34611 and knoppndv 34641. (Contributed by Asger C. Ipsen, 26-Aug-2021.) |
⊢ ∃𝑓(𝑓 ∈ (ℝ–cn→ℝ) ∧ dom (ℝ D 𝑓) = ∅) | ||
In this mathbox, we try to respect the ordering of the sections of the main part. There are strengthenings of theorems of the main part, as well as work on reducing axiom dependencies. | ||
Miscellaneous utility theorems of propositional calculus. | ||
In this section, we prove a few rules of inference derived from modus ponens ax-mp 5, and which do not depend on any other axioms. | ||
Theorem | bj-mp2c 34647 | A double modus ponens inference. Inference associated with mpd 15. (Contributed by BJ, 24-Sep-2019.) |
⊢ 𝜑 & ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ 𝜒 | ||
Theorem | bj-mp2d 34648 | A double modus ponens inference. Inference associated with mpcom 38. (Contributed by BJ, 24-Sep-2019.) |
⊢ 𝜑 & ⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → (𝜑 → 𝜒)) ⇒ ⊢ 𝜒 | ||
In this section, we prove a syntactic theorem (bj-0 34649) asserting that some formula is well-formed. Then, we use this syntactic theorem to shorten the proof of a "usual" theorem (bj-1 34650) and explain in the comment of that theorem why this phenomenon is unusual. | ||
Theorem | bj-0 34649 | A syntactic theorem. See the section comment and the comment of bj-1 34650. The full proof (that is, with the syntactic, non-essential steps) does not appear on this webpage. It has five steps and reads $= wph wps wi wch wi $. The only other syntactic theorems in the main part of set.mm are wel 2109 and weq 1967. (Contributed by BJ, 24-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
wff ((𝜑 → 𝜓) → 𝜒) | ||
Theorem | bj-1 34650 |
In this proof, the use of the syntactic theorem bj-0 34649
allows to reduce
the total length by one (non-essential) step. See also the section
comment and the comment of bj-0 34649. Since bj-0 34649
is used in a
non-essential step, this use does not appear on this webpage (but the
present theorem appears on the webpage for bj-0 34649
as a theorem referencing
it). The full proof reads $= wph wps wch bj-0 id $. (while, without
using bj-0 34649, it would read $= wph wps wi wch wi id $.).
Now we explain why syntactic theorems are not useful in set.mm. Suppose that the syntactic theorem thm-0 proves that PHI is a well-formed formula, and that thm-0 is used to shorten the proof of thm-1. Assume that PHI does have proper non-atomic subformulas (which is not the case of the formula proved by weq 1967 or wel 2109). Then, the proof of thm-1 does not construct all the proper non-atomic subformulas of PHI (if it did, then using thm-0 would not shorten it). Therefore, thm-1 is a special instance of a more general theorem with essentially the same proof. In the present case, bj-1 34650 is a special instance of id 22. (Contributed by BJ, 24-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜓) → 𝜒)) | ||
Theorem | bj-a1k 34651 | Weakening of ax-1 6. As a consequence, its associated inference is an instance (where we allow extra hypotheses) of ax-1 6. Its commuted form is 2a1 28 (but bj-a1k 34651 does not require ax-2 7). This shortens the proofs of dfwe2 7602 (937>925), ordunisuc2 7666 (789>777), r111 9464 (558>545), smo11 8166 (1176>1164). (Contributed by BJ, 11-Aug-2020.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜓))) | ||
Theorem | bj-poni 34652 | Inference associated with "pon", pm2.27 42. Its associated inference is ax-mp 5. (Contributed by BJ, 30-Jul-2024.) |
⊢ 𝜑 ⇒ ⊢ ((𝜑 → 𝜓) → 𝜓) | ||
Theorem | bj-nnclav 34653 | When ⊥ is substituted for 𝜓, this formula is the Clavius law with a doubly negated consequent, which is therefore a minimalistic tautology. Notice the non-intuitionistic proof from peirce 201 and pm2.27 42 chained using syl 17. (Contributed by BJ, 4-Dec-2023.) |
⊢ (((𝜑 → 𝜓) → 𝜑) → ((𝜑 → 𝜓) → 𝜓)) | ||
Theorem | bj-nnclavi 34654 | Inference associated with bj-nnclav 34653. Its associated inference is an instance of syl 17. Notice the non-intuitionistic proof from bj-peircei 34673 and bj-poni 34652. (Contributed by BJ, 30-Jul-2024.) |
⊢ ((𝜑 → 𝜓) → 𝜑) ⇒ ⊢ ((𝜑 → 𝜓) → 𝜓) | ||
Theorem | bj-nnclavc 34655 | Commuted form of bj-nnclav 34653. Notice the non-intuitionistic proof from bj-peircei 34673 and imim1i 63. (Contributed by BJ, 30-Jul-2024.) A proof which is shorter when compressed uses embantd 59. (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → (((𝜑 → 𝜓) → 𝜑) → 𝜓)) | ||
Theorem | bj-nnclavci 34656 | Inference associated with bj-nnclavc 34655. Its associated inference is an instance of syl 17. Notice the non-intuitionistic proof from peirce 201 and syl 17. (Contributed by BJ, 30-Jul-2024.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜓) | ||
Theorem | bj-jarrii 34657 | Inference associated with jarri 107. Contrary to it , it does not require ax-2 7, but only ax-mp 5 and ax-1 6. (Contributed by BJ, 29-Mar-2020.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → 𝜒) & ⊢ 𝜓 ⇒ ⊢ 𝜒 | ||
Theorem | bj-imim21 34658 | The propositional function (𝜒 → (. → 𝜃)) is decreasing. (Contributed by BJ, 19-Jul-2019.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → (𝜓 → 𝜃)) → (𝜒 → (𝜑 → 𝜃)))) | ||
Theorem | bj-imim21i 34659 | Inference associated with bj-imim21 34658. Its associated inference is syl5 34. (Contributed by BJ, 19-Jul-2019.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜒 → (𝜓 → 𝜃)) → (𝜒 → (𝜑 → 𝜃))) | ||
Theorem | bj-peircestab 34660 | Over minimal implicational calculus, Peirce's law implies the double negation of the stability of any formula (that is the interpretation when ⊥ is substituted for 𝜓 and for 𝜒). Therefore, the double negation of the stability of any formula is provable in classical refutability calculus. It is also provable in intuitionistic calculus (see iset.mm/bj-nnst) but it is not provable in minimal calculus (see bj-stabpeirce 34661). (Contributed by BJ, 30-Nov-2023.) Axiom ax-3 8 is only used through Peirce's law peirce 201. (Proof modification is discouraged.) |
⊢ (((((𝜑 → 𝜓) → 𝜒) → 𝜑) → 𝜒) → 𝜒) | ||
Theorem | bj-stabpeirce 34661 | This minimal implicational calculus tautology is used in the following argument: When 𝜑, 𝜓, 𝜒, 𝜃, 𝜏 are replaced respectively by (𝜑 → ⊥), ⊥, 𝜑, ⊥, ⊥, the antecedent becomes ¬ ¬ (¬ ¬ 𝜑 → 𝜑), that is, the double negation of the stability of 𝜑. If that statement were provable in minimal calculus, then, since ⊥ plays no particular role in minimal calculus, also the statement with 𝜓 in place of ⊥ would be provable. The corresponding consequent is (((𝜓 → 𝜑) → 𝜓) → 𝜓), that is, the non-intuitionistic Peirce law. Therefore, the double negation of the stability of any formula is not provable in minimal calculus. However, it is provable both in intuitionistic calculus (see iset.mm/bj-nnst) and in classical refutability calculus (see bj-peircestab 34660). (Contributed by BJ, 30-Nov-2023.) (Revised by BJ, 30-Jul-2024.) (Proof modification is discouraged.) |
⊢ (((((𝜑 → 𝜓) → 𝜒) → 𝜃) → 𝜏) → (((𝜓 → 𝜒) → 𝜃) → 𝜏)) | ||
Positive calculus is understood to be intuitionistic. | ||
Theorem | bj-syl66ib 34662 | A mixed syllogism inference derived from syl6ib 250. In addition to bj-dvelimdv1 34963, it can also shorten alexsubALTlem4 23109 (4821>4812), supsrlem 10798 (2868>2863). (Contributed by BJ, 20-Oct-2021.) |
⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜃 → 𝜏) & ⊢ (𝜏 ↔ 𝜒) ⇒ ⊢ (𝜑 → (𝜓 → 𝜒)) | ||
Theorem | bj-orim2 34663 | Proof of orim2 964 from the axiomatic definition of disjunction (olc 864, orc 863, jao 957) and minimal implicational calculus. (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓))) | ||
Theorem | bj-currypeirce 34664 | Curry's axiom curryax 890 (a non-intuitionistic positive statement sometimes called a paradox of material implication) implies Peirce's axiom peirce 201 over minimal implicational calculus and the axiomatic definition of disjunction (actually, only the elimination axiom jao 957 via its inference form jaoi 853; the introduction axioms olc 864 and orc 863 are not needed). Note that this theorem shows that actually, the standard instance of curryax 890 implies the standard instance of peirce 201, which is not the case for the converse bj-peircecurry 34665. (Contributed by BJ, 15-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∨ (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) | ||
Theorem | bj-peircecurry 34665 | Peirce's axiom peirce 201 implies Curry's axiom curryax 890 over minimal implicational calculus and the axiomatic definition of disjunction (actually, only the introduction axioms olc 864 and orc 863; the elimination axiom jao 957 is not needed). See bj-currypeirce 34664 for the converse. (Contributed by BJ, 15-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 ∨ (𝜑 → 𝜓)) | ||
Theorem | bj-animbi 34666 | Conjunction in terms of implication and biconditional. Note that the proof is intuitionistic (use of ax-3 8 comes from the unusual definition of the biconditional in set.mm). (Contributed by BJ, 23-Sep-2023.) |
⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ↔ (𝜑 → 𝜓))) | ||
Theorem | bj-currypara 34667 | Curry's paradox. Note that the proof is intuitionistic (use ax-3 8 comes from the unusual definition of the biconditional in set.mm). The paradox comes from the case where 𝜑 is the self-referential sentence "If this sentence is true, then 𝜓", so that one can prove everything. Therefore, a consistent system cannot allow the formation of such self-referential sentences. This has lead to the study of logics rejecting contraction pm2.43 56, such as affine logic and linear logic. (Contributed by BJ, 23-Sep-2023.) |
⊢ ((𝜑 ↔ (𝜑 → 𝜓)) → 𝜓) | ||
Theorem | bj-con2com 34668 | A commuted form of the contrapositive, true in minimal calculus. (Contributed by BJ, 19-Mar-2020.) |
⊢ (𝜑 → ((𝜓 → ¬ 𝜑) → ¬ 𝜓)) | ||
Theorem | bj-con2comi 34669 | Inference associated with bj-con2com 34668. Its associated inference is mt2 199. TODO: when in the main part, add to mt2 199 that it is the inference associated with bj-con2comi 34669. (Contributed by BJ, 19-Mar-2020.) |
⊢ 𝜑 ⇒ ⊢ ((𝜓 → ¬ 𝜑) → ¬ 𝜓) | ||
Theorem | bj-pm2.01i 34670 | Inference associated with the weak Clavius law pm2.01 188. (Contributed by BJ, 30-Mar-2020.) |
⊢ (𝜑 → ¬ 𝜑) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | bj-nimn 34671 | If a formula is true, then it does not imply its negation. (Contributed by BJ, 19-Mar-2020.) A shorter proof is possible using id 22 and jc 161, however, the present proof uses theorems that are more basic than jc 161. (Proof modification is discouraged.) |
⊢ (𝜑 → ¬ (𝜑 → ¬ 𝜑)) | ||
Theorem | bj-nimni 34672 | Inference associated with bj-nimn 34671. (Contributed by BJ, 19-Mar-2020.) |
⊢ 𝜑 ⇒ ⊢ ¬ (𝜑 → ¬ 𝜑) | ||
Theorem | bj-peircei 34673 | Inference associated with peirce 201. (Contributed by BJ, 30-Mar-2020.) |
⊢ ((𝜑 → 𝜓) → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | bj-looinvi 34674 | Inference associated with looinv 202. Its associated inference is bj-looinvii 34675. (Contributed by BJ, 30-Mar-2020.) |
⊢ ((𝜑 → 𝜓) → 𝜓) ⇒ ⊢ ((𝜓 → 𝜑) → 𝜑) | ||
Theorem | bj-looinvii 34675 | Inference associated with bj-looinvi 34674. (Contributed by BJ, 30-Mar-2020.) |
⊢ ((𝜑 → 𝜓) → 𝜓) & ⊢ (𝜓 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | bj-mt2bi 34676 | Version of mt2 199 where the major premise is a biconditional. Another proof is also possible via con2bii 357 and mpbi 229. The current mt2bi 363 should be relabeled, maybe to imfal. (Contributed by BJ, 5-Oct-2024.) |
⊢ 𝜑 & ⊢ (𝜓 ↔ ¬ 𝜑) ⇒ ⊢ ¬ 𝜓 | ||
Theorem | bj-ntrufal 34677 | The negation of a theorem is equivalent to false. This can shorten dfnul2 4256. (Contributed by BJ, 5-Oct-2024.) |
⊢ 𝜑 ⇒ ⊢ (¬ 𝜑 ↔ ⊥) | ||
Theorem | bj-fal 34678 | Shortening of fal 1553 using bj-mt2bi 34676. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Mel L. O'Cat, 11-Mar-2012.) (Proof modification is discouraged.) |
⊢ ¬ ⊥ | ||
A few lemmas about disjunction. The fundamental theorems in this family are the dual statements pm4.71 557 and pm4.72 946. See also biort 932 and biorf 933. | ||
Theorem | bj-jaoi1 34679 | Shortens orfa2 36171 (58>53), pm1.2 900 (20>18), pm1.2 900 (20>18), pm2.4 903 (31>25), pm2.41 904 (31>25), pm2.42 939 (38>32), pm3.2ni 877 (43>39), pm4.44 993 (55>51). (Contributed by BJ, 30-Sep-2019.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜓) → 𝜓) | ||
Theorem | bj-jaoi2 34680 | Shortens consensus 1049 (110>106), elnn0z 12262 (336>329), pm1.2 900 (20>19), pm3.2ni 877 (43>39), pm4.44 993 (55>51). (Contributed by BJ, 30-Sep-2019.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜓 ∨ 𝜑) → 𝜓) | ||
A few other characterizations of the bicondional. The inter-definability of logical connectives offers many ways to express a given statement. Some useful theorems in this regard are df-or 844, df-an 396, pm4.64 845, imor 849, pm4.62 852 through pm4.67 398, and, for the De Morgan laws, ianor 978 through pm4.57 987. | ||
Theorem | bj-dfbi4 34681 | Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) | ||
Theorem | bj-dfbi5 34682 | Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓))) | ||
Theorem | bj-dfbi6 34683 | Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∧ 𝜓))) | ||
Theorem | bj-bijust0ALT 34684 | Alternate proof of bijust0 203; shorter but using additional intermediate results. (Contributed by NM, 11-May-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.) (Revised by BJ, 19-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ ((𝜑 → 𝜑) → ¬ (𝜑 → 𝜑)) | ||
Theorem | bj-bijust00 34685 | A self-implication does not imply the negation of a self-implication. Most general theorem of which bijust 204 is an instance (bijust0 203 and bj-bijust0ALT 34684 are therefore also instances of it). (Contributed by BJ, 7-Sep-2022.) |
⊢ ¬ ((𝜑 → 𝜑) → ¬ (𝜓 → 𝜓)) | ||
Theorem | bj-consensus 34686 | Version of consensus 1049 expressed using the conditional operator. (Remark: it may be better to express it as consensus 1049, using only binary connectives, and hinting at the fact that it is a Boolean algebra identity, like the absorption identities.) (Contributed by BJ, 30-Sep-2019.) |
⊢ ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ if-(𝜑, 𝜓, 𝜒)) | ||
Theorem | bj-consensusALT 34687 | Alternate proof of bj-consensus 34686. (Contributed by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ if-(𝜑, 𝜓, 𝜒)) | ||
Theorem | bj-df-ifc 34688* | Candidate definition for the conditional operator for classes. This is in line with the definition of a class as the extension of a predicate in df-clab 2716. We reprove the current df-if 4457 from it in bj-dfif 34689. (Contributed by BJ, 20-Sep-2019.) (Proof modification is discouraged.) |
⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} | ||
Theorem | bj-dfif 34689* | Alternate definition of the conditional operator for classes, which used to be the main definition. (Contributed by BJ, 26-Dec-2023.) (Proof modification is discouraged.) |
⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 ∈ 𝐵))} | ||
Theorem | bj-ififc 34690 | A biconditional connecting the conditional operator for propositions and the conditional operator for classes. Note that there is no sethood hypothesis on 𝑋: it is implied by either side. (Contributed by BJ, 24-Sep-2019.) Generalize statement from setvar 𝑥 to class 𝑋. (Revised by BJ, 26-Dec-2023.) |
⊢ (𝑋 ∈ if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝑋 ∈ 𝐴, 𝑋 ∈ 𝐵)) | ||
Miscellaneous theorems of propositional calculus. | ||
Theorem | bj-imbi12 34691 | Uncurried (imported) form of imbi12 346. (Contributed by BJ, 6-May-2019.) |
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))) | ||
Theorem | bj-biorfi 34692 | This should be labeled "biorfi" while the current biorfi 935 should be labeled "biorfri". The dual of biorf 933 is not biantr 802 but iba 527 (and ibar 528). So there should also be a "biorfr". (Note that these four statements can actually be strengthened to biconditionals.) (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
⊢ ¬ 𝜑 ⇒ ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) | ||
Theorem | bj-falor 34693 | Dual of truan 1550 (which has biconditional reversed). (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 ↔ (⊥ ∨ 𝜑)) | ||
Theorem | bj-falor2 34694 | Dual of truan 1550. (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
⊢ ((⊥ ∨ 𝜑) ↔ 𝜑) | ||
Theorem | bj-bibibi 34695 | A property of the biconditional. (Contributed by BJ, 26-Oct-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 ↔ (𝜓 ↔ (𝜑 ↔ 𝜓))) | ||
Theorem | bj-imn3ani 34696 | Duplication of bnj1224 32681. Three-fold version of imnani 400. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by BJ, 22-Oct-2019.) (Proof modification is discouraged.) |
⊢ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) | ||
Theorem | bj-andnotim 34697 | Two ways of expressing a certain ternary connective. Note the respective positions of the three formulas on each side of the biconditional. (Contributed by BJ, 6-Oct-2018.) |
⊢ (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) ∨ 𝜒)) | ||
Theorem | bj-bi3ant 34698 | This used to be in the main part. (Contributed by Wolf Lammen, 14-May-2013.) (Revised by BJ, 14-Jun-2019.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (((𝜃 → 𝜏) → 𝜑) → (((𝜏 → 𝜃) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜒))) | ||
Theorem | bj-bisym 34699 | This used to be in the main part. (Contributed by Wolf Lammen, 14-May-2013.) (Revised by BJ, 14-Jun-2019.) |
⊢ (((𝜑 → 𝜓) → (𝜒 → 𝜃)) → (((𝜓 → 𝜑) → (𝜃 → 𝜒)) → ((𝜑 ↔ 𝜓) → (𝜒 ↔ 𝜃)))) | ||
Theorem | bj-bixor 34700 | Equivalence of two ternary operations. Note the identical order and parenthesizing of the three arguments in both expressions. (Contributed by BJ, 31-Dec-2023.) |
⊢ ((𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ⊻ (𝜓 ↔ 𝜒))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |