![]() |
Metamath
Proof Explorer Theorem List (p. 347 of 444) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28489) |
![]() (28490-30014) |
![]() (30015-44307) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cexid 34601 | Extend class notation with the class of all the internal operations with an identity element. |
class ExId | ||
Definition | df-exid 34602* | A device to add an identity element to various sorts of internal operations. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)} | ||
Theorem | isass 34603* | The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Ass ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) | ||
Theorem | isexid 34604* | The predicate 𝐺 has a left and right identity element. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) | ||
Syntax | cmagm 34605 | Extend class notation with the class of all magmas. |
class Magma | ||
Definition | df-mgmOLD 34606* | Obsolete version of df-mgm 17722 as of 3-Feb-2020. A magma is a binary internal operation. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ Magma = {𝑔 ∣ ∃𝑡 𝑔:(𝑡 × 𝑡)⟶𝑡} | ||
Theorem | ismgmOLD 34607 | Obsolete version of ismgm 17723 as of 3-Feb-2020. The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋)) | ||
Theorem | clmgmOLD 34608 | Obsolete version of mgmcl 17725 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
Theorem | opidonOLD 34609 | Obsolete version of mndpfo 17794 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) | ||
Theorem | rngopidOLD 34610 | Obsolete version of mndpfo 17794 as of 23-Jan-2020. Range of an operation with a left and right identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺) | ||
Theorem | opidon2OLD 34611 | Obsolete version of mndpfo 17794 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) | ||
Theorem | isexid2 34612* | If 𝐺 ∈ (Magma ∩ ExId ), then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | ||
Theorem | exidu1 34613* | Uniqueness of the left and right identity element of a magma when it exists. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | ||
Theorem | idrval 34614* | The value of the identity element. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝐴 → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) | ||
Theorem | iorlid 34615 | A magma right and left identity belongs to the underlying set of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 ∈ 𝑋) | ||
Theorem | cmpidelt 34616 | A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) | ||
Syntax | csem 34617 | Extend class notation with the class of all semigroups. |
class SemiGrp | ||
Definition | df-sgrOLD 34618 | Obsolete version of df-sgrp 17764 as of 3-Feb-2020. A semigroup is an associative magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ SemiGrp = (Magma ∩ Ass) | ||
Theorem | smgrpismgmOLD 34619 | Obsolete version of sgrpmgm 17769 as of 3-Feb-2020. A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ SemiGrp → 𝐺 ∈ Magma) | ||
Theorem | issmgrpOLD 34620* | Obsolete version of issgrp 17765 as of 3-Feb-2020. The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) | ||
Theorem | smgrpmgm 34621 | A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋) | ||
Theorem | smgrpassOLD 34622* | Obsolete version of sgrpass 17770 as of 3-Feb-2020. A semigroup is associative. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ SemiGrp → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) | ||
Syntax | cmndo 34623 | Extend class notation with the class of all monoids. |
class MndOp | ||
Definition | df-mndo 34624 | A monoid is a semigroup with an identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ MndOp = (SemiGrp ∩ ExId ) | ||
Theorem | mndoissmgrpOLD 34625 | Obsolete version of mndsgrp 17779 as of 3-Feb-2020. A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp) | ||
Theorem | mndoisexid 34626 | A monoid has an identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ (𝐺 ∈ MndOp → 𝐺 ∈ ExId ) | ||
Theorem | mndoismgmOLD 34627 | Obsolete version of mndmgm 17780 as of 3-Feb-2020. A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ MndOp → 𝐺 ∈ Magma) | ||
Theorem | mndomgmid 34628 | A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) | ||
Theorem | ismndo 34629* | The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) | ||
Theorem | ismndo1 34630* | The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) | ||
Theorem | ismndo2 34631* | The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) | ||
Theorem | grpomndo 34632 | A group is a monoid. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp) | ||
Theorem | exidcl 34633 | Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
Theorem | exidreslem 34634* | Lemma for exidres 34635 and exidresid 34636. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))) | ||
Theorem | exidres 34635 | The restriction of a binary operation with identity to a subset containing the identity has an identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → 𝐻 ∈ ExId ) | ||
Theorem | exidresid 34636 | The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) ⇒ ⊢ (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈) | ||
Theorem | ablo4pnp 34637 | A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹))) | ||
Theorem | grpoeqdivid 34638 | Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈)) | ||
Theorem | grposnOLD 34639 | The group operation for the singleton group. Obsolete, use grp1 18005. instead (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {〈〈𝐴, 𝐴〉, 𝐴〉} ∈ GrpOp | ||
Syntax | cghomOLD 34640 | Obsolete version of cghm 18138 as of 15-Mar-2020. Extend class notation to include the class of group homomorphisms. (New usage is discouraged.) |
class GrpOpHom | ||
Definition | df-ghomOLD 34641* | Obsolete version of df-ghm 18139 as of 15-Mar-2020. Define the set of group homomorphisms from 𝑔 to ℎ. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
⊢ GrpOpHom = (𝑔 ∈ GrpOp, ℎ ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)))}) | ||
Theorem | elghomlem1OLD 34642* | Obsolete as of 15-Mar-2020. Lemma for elghomOLD 34644. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆) | ||
Theorem | elghomlem2OLD 34643* | Obsolete as of 15-Mar-2020. Lemma for elghomOLD 34644. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) | ||
Theorem | elghomOLD 34644* | Obsolete version of isghm 18141 as of 15-Mar-2020. Membership in the set of group homomorphisms from 𝐺 to 𝐻. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑊 = ran 𝐻 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:𝑋⟶𝑊 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) | ||
Theorem | ghomlinOLD 34645 | Obsolete version of ghmlin 18146 as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘𝐴)𝐻(𝐹‘𝐵)) = (𝐹‘(𝐴𝐺𝐵))) | ||
Theorem | ghomidOLD 34646 | Obsolete version of ghmid 18147 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑇 = (GId‘𝐻) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) = 𝑇) | ||
Theorem | ghomf 34647 | Mapping property of a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑊 = ran 𝐻 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:𝑋⟶𝑊) | ||
Theorem | ghomco 34648 | The composition of two group homomorphisms is a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 27-Dec-2014.) |
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) ∧ (𝑆 ∈ (𝐺 GrpOpHom 𝐻) ∧ 𝑇 ∈ (𝐻 GrpOpHom 𝐾))) → (𝑇 ∘ 𝑆) ∈ (𝐺 GrpOpHom 𝐾)) | ||
Theorem | ghomdiv 34649 | Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) & ⊢ 𝐶 = ( /𝑔 ‘𝐻) ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐷𝐵)) = ((𝐹‘𝐴)𝐶(𝐹‘𝐵))) | ||
Theorem | grpokerinj 34650 | A group homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑊 = (GId‘𝐺) & ⊢ 𝑌 = ran 𝐻 & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑈}) = {𝑊})) | ||
Syntax | crngo 34651 | Extend class notation with the class of all unital rings. |
class RingOps | ||
Definition | df-rngo 34652* | Define the class of all unital rings. (Contributed by Jeff Hankins, 21-Nov-2006.) (New usage is discouraged.) |
⊢ RingOps = {〈𝑔, ℎ〉 ∣ ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)))} | ||
Theorem | relrngo 34653 | The class of all unital rings is a relation. (Contributed by FL, 31-Aug-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ Rel RingOps | ||
Theorem | isrngo 34654* | The predicate "is a (unital) ring." Definition of ring with unit in [Schechter] p. 187. (Contributed by Jeff Hankins, 21-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐻 ∈ 𝐴 → (〈𝐺, 𝐻〉 ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))) | ||
Theorem | isrngod 34655* | Conditions that determine a ring. (Changed label from isringd 19070 to isrngod 34655-NM 2-Aug-2013.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐺 ∈ AbelOp) & ⊢ (𝜑 → 𝑋 = ran 𝐺) & ⊢ (𝜑 → 𝐻:(𝑋 × 𝑋)⟶𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) & ⊢ (𝜑 → 𝑈 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑈𝐻𝑦) = 𝑦) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑦𝐻𝑈) = 𝑦) ⇒ ⊢ (𝜑 → 〈𝐺, 𝐻〉 ∈ RingOps) | ||
Theorem | rngoi 34656* | The properties of a unital ring. (Contributed by Steve Rodriguez, 8-Sep-2007.) (Proof shortened by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))) | ||
Theorem | rngosm 34657 | Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋) | ||
Theorem | rngocl 34658 | Closure of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) | ||
Theorem | rngoid 34659* | The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴)) | ||
Theorem | rngoideu 34660* | The unit element of a ring is unique. (Contributed by NM, 4-Apr-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) | ||
Theorem | rngodi 34661 | Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻(𝐵𝐺𝐶)) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻𝐶))) | ||
Theorem | rngodir 34662 | Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶))) | ||
Theorem | rngoass 34663 | Associative law for the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))) | ||
Theorem | rngo2 34664* | A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)) | ||
Theorem | rngoablo 34665 | A ring's addition operation is an Abelian group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) | ||
Theorem | rngoablo2 34666 | In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
⊢ (〈𝐺, 𝐻〉 ∈ RingOps → 𝐺 ∈ AbelOp) | ||
Theorem | rngogrpo 34667 | A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) | ||
Theorem | rngone0 34668 | The base set of a ring is not empty. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → 𝑋 ≠ ∅) | ||
Theorem | rngogcl 34669 | Closure law for the addition (group) operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
Theorem | rngocom 34670 | The addition operation of a ring is commutative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) | ||
Theorem | rngoaass 34671 | The addition operation of a ring is associative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) | ||
Theorem | rngoa32 34672 | The addition operation of a ring is commutative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵)) | ||
Theorem | rngoa4 34673 | Rearrangement of 4 terms in a sum of ring elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) | ||
Theorem | rngorcan 34674 | Right cancellation law for the addition operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | rngolcan 34675 | Left cancellation law for the addition operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | rngo0cl 34676 | A ring has an additive identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) | ||
Theorem | rngo0rid 34677 | The additive identity of a ring is a right identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) | ||
Theorem | rngo0lid 34678 | The additive identity of a ring is a left identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) | ||
Theorem | rngolz 34679 | The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐻𝐴) = 𝑍) | ||
Theorem | rngorz 34680 | The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑍) = 𝑍) | ||
Theorem | rngosn3 34681 | Obsolete as of 25-Jan-2020. Use ring1zr 19781 or srg1zr 19014 instead. The only unital ring with a base set consisting in one element is the zero ring. (Contributed by FL, 13-Feb-2010.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝑋 = {𝐴} ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) | ||
Theorem | rngosn4 34682 | Obsolete as of 25-Jan-2020. Use rngen1zr 19782 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) | ||
Theorem | rngosn6 34683 | Obsolete as of 25-Jan-2020. Use ringen1zr 19783 or srgen1zr 19015 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) | ||
Theorem | rngonegcl 34684 | A ring is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) | ||
Theorem | rngoaddneg1 34685 | Adding the negative in a ring gives zero. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑍) | ||
Theorem | rngoaddneg2 34686 | Adding the negative in a ring gives zero. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑍) | ||
Theorem | rngosub 34687 | Subtraction in a ring, in terms of addition and negation. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) | ||
Theorem | rngmgmbs4 34688* | The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋) | ||
Theorem | rngodm1dm2 34689 | In a unital ring the domain of the first variable of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) | ||
Theorem | rngorn1 34690 | In a unital ring the range of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻) | ||
Theorem | rngorn1eq 34691 | In a unital ring the range of the addition equals the range of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (𝑅 ∈ RingOps → ran 𝐺 = ran 𝐻) | ||
Theorem | rngomndo 34692 | In a unital ring the multiplication is a monoid. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (2nd ‘𝑅) ⇒ ⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) | ||
Theorem | rngoidmlem 34693 | The unit of a ring is an identity element for the multiplication. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran (1st ‘𝑅) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) | ||
Theorem | rngolidm 34694 | The unit of a ring is an identity element for the multiplication. (Contributed by FL, 18-Apr-2010.) (New usage is discouraged.) |
⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran (1st ‘𝑅) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑈𝐻𝐴) = 𝐴) | ||
Theorem | rngoridm 34695 | The unit of a ring is an identity element for the multiplication. (Contributed by FL, 18-Apr-2010.) (New usage is discouraged.) |
⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran (1st ‘𝑅) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑈) = 𝐴) | ||
Theorem | rngo1cl 34696 | The unit of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.) |
⊢ 𝑋 = ran (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) | ||
Theorem | rngoueqz 34697 | Obsolete as of 23-Jan-2020. Use 0ring01eqbi 19779 instead. In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑈 = 𝑍)) | ||
Theorem | rngonegmn1l 34698 | Negation in a ring is the same as left multiplication by -1. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = ((𝑁‘𝑈)𝐻𝐴)) | ||
Theorem | rngonegmn1r 34699 | Negation in a ring is the same as right multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐻(𝑁‘𝑈))) | ||
Theorem | rngoneglmul 34700 | Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝑁‘𝐴)𝐻𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |