HomeHome Metamath Proof Explorer
Theorem List (p. 347 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 34601-34700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
20.11.2  Predicate Calculus
 
Theoremnalfal 34601 Not all sets hold as true. (Contributed by Anthony Hart, 13-Sep-2011.)
¬ ∀𝑥
 
Theoremnexntru 34602 There does not exist a set such that is not true. (Contributed by Anthony Hart, 13-Sep-2011.)
¬ ∃𝑥 ¬ ⊤
 
Theoremnexfal 34603 There does not exist a set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
¬ ∃𝑥
 
Theoremneufal 34604 There does not exist exactly one set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
¬ ∃!𝑥
 
Theoremneutru 34605 There does not exist exactly one set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
¬ ∃!𝑥
 
Theoremnmotru 34606 There does not exist at most one set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
¬ ∃*𝑥
 
Theoremmofal 34607 There exist at most one set such that is true. (Contributed by Anthony Hart, 13-Sep-2011.)
∃*𝑥
 
Theoremnrmo 34608 "At most one" restricted existential quantifier for a statement which is never true. (Contributed by Thierry Arnoux, 27-Nov-2023.)
(𝑥𝐴 → ¬ 𝜑)       ∃*𝑥𝐴 𝜑
 
20.11.3  Miscellaneous single axioms
 
Theoremmeran1 34609 A single axiom for propositional calculus discovered by C. A. Meredith. (Contributed by Anthony Hart, 13-Aug-2011.)
(¬ (¬ (¬ 𝜑𝜓) ∨ (𝜒 ∨ (𝜃𝜏))) ∨ (¬ (¬ 𝜃𝜑) ∨ (𝜒 ∨ (𝜏𝜑))))
 
Theoremmeran2 34610 A single axiom for propositional calculus discovered by C. A. Meredith. (Contributed by Anthony Hart, 13-Aug-2011.)
(¬ (¬ (¬ 𝜑𝜓) ∨ (𝜒 ∨ (𝜃𝜏))) ∨ (¬ (¬ 𝜏𝜃) ∨ (𝜒 ∨ (𝜑𝜃))))
 
Theoremmeran3 34611 A single axiom for propositional calculus discovered by C. A. Meredith. (Contributed by Anthony Hart, 13-Aug-2011.)
(¬ (¬ (¬ 𝜑𝜓) ∨ (𝜒 ∨ (𝜃𝜏))) ∨ (¬ (¬ 𝜒𝜑) ∨ (𝜏 ∨ (𝜃𝜑))))
 
Theoremwaj-ax 34612 A single axiom for propositional calculus discovered by Mordchaj Wajsberg (Logical Works, Polish Academy of Sciences, 1977). See: Fitelson, Some recent results in algebra and logical calculi obtained using automated reasoning, 2003 (axiom W on slide 8). (Contributed by Anthony Hart, 13-Aug-2011.)
((𝜑 ⊼ (𝜓𝜒)) ⊼ (((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃))) ⊼ (𝜑 ⊼ (𝜑𝜓))))
 
Theoremlukshef-ax2 34613 A single axiom for propositional calculus discovered by Jan Lukasiewicz. See: Fitelson, Some recent results in algebra and logical calculi obtained using automated reasoning, 2003 (axiom L2 on slide 8). (Contributed by Anthony Hart, 14-Aug-2011.)
((𝜑 ⊼ (𝜓𝜒)) ⊼ ((𝜑 ⊼ (𝜒𝜑)) ⊼ ((𝜃𝜓) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))))
 
Theoremarg-ax 34614 A single axiom for propositional calculus discovered by Ken Harris and Branden Fitelson. See: Fitelson, Some recent results in algebra and logical calculi obtained using automated reasoning, 2003 (axiom HF1 on slide 8). (Contributed by Anthony Hart, 14-Aug-2011.)
((𝜑 ⊼ (𝜓𝜒)) ⊼ ((𝜑 ⊼ (𝜓𝜒)) ⊼ ((𝜃𝜒) ⊼ ((𝜒𝜃) ⊼ (𝜑𝜃)))))
 
20.11.4  Connective Symmetry
 
Theoremnegsym1 34615 In the paper "On Variable Functors of Propositional Arguments", Lukasiewicz introduced a system that can handle variable connectives. This was done by introducing a variable, marked with a lowercase delta, which takes a wff as input. In the system, "delta 𝜑 " means that "something is true of 𝜑". The expression "delta 𝜑 " can be substituted with ¬ 𝜑, 𝜓𝜑, 𝑥𝜑, etc.

Later on, Meredith discovered a single axiom, in the form of ( delta delta ⊥ → delta 𝜑 ). This represents the shortest theorem in the extended propositional calculus that cannot be derived as an instance of a theorem in propositional calculus.

A symmetry with ¬. (Contributed by Anthony Hart, 4-Sep-2011.)

(¬ ¬ ⊥ → ¬ 𝜑)
 
Theoremimsym1 34616 A symmetry with .

See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

((𝜓 → (𝜓 → ⊥)) → (𝜓𝜑))
 
Theorembisym1 34617 A symmetry with .

See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

((𝜓 ↔ (𝜓 ↔ ⊥)) → (𝜓𝜑))
 
Theoremconsym1 34618 A symmetry with .

See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

((𝜓 ∧ (𝜓 ∧ ⊥)) → (𝜓𝜑))
 
Theoremdissym1 34619 A symmetry with .

See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

((𝜓 ∨ (𝜓 ∨ ⊥)) → (𝜓𝜑))
 
Theoremnandsym1 34620 A symmetry with .

See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

((𝜓 ⊼ (𝜓 ⊼ ⊥)) → (𝜓𝜑))
 
Theoremunisym1 34621 A symmetry with .

See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)

(∀𝑥𝑥⊥ → ∀𝑥𝜑)
 
Theoremexisym1 34622 A symmetry with .

See negsym1 34615 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

(∃𝑥𝑥⊥ → ∃𝑥𝜑)
 
Theoremunqsym1 34623 A symmetry with ∃!.

See negsym1 34615 for more information. (Contributed by Anthony Hart, 6-Sep-2011.)

(∃!𝑥∃!𝑥⊥ → ∃!𝑥𝜑)
 
Theoremamosym1 34624 A symmetry with ∃*.

See negsym1 34615 for more information. (Contributed by Anthony Hart, 13-Sep-2011.)

(∃*𝑥∃*𝑥⊥ → ∃*𝑥𝜑)
 
Theoremsubsym1 34625 A symmetry with [𝑥 / 𝑦].

See negsym1 34615 for more information. (Contributed by Anthony Hart, 11-Sep-2011.)

([𝑦 / 𝑥][𝑦 / 𝑥]⊥ → [𝑦 / 𝑥]𝜑)
 
20.12  Mathbox for Chen-Pang He
 
20.12.1  Ordinal topology
 
Theoremontopbas 34626 An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.)
(𝐵 ∈ On → 𝐵 ∈ TopBases)
 
Theoremonsstopbas 34627 The class of ordinal numbers is a subclass of the class of topological bases. (Contributed by Chen-Pang He, 8-Oct-2015.)
On ⊆ TopBases
 
Theoremonpsstopbas 34628 The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.)
On ⊊ TopBases
 
Theoremontgval 34629 The topology generated from an ordinal number 𝐵 is suc 𝐵. (Contributed by Chen-Pang He, 10-Oct-2015.)
(𝐵 ∈ On → (topGen‘𝐵) = suc 𝐵)
 
Theoremontgsucval 34630 The topology generated from a successor ordinal number is itself. (Contributed by Chen-Pang He, 11-Oct-2015.)
(𝐴 ∈ On → (topGen‘suc 𝐴) = suc 𝐴)
 
Theoremonsuctop 34631 A successor ordinal number is a topology. (Contributed by Chen-Pang He, 11-Oct-2015.)
(𝐴 ∈ On → suc 𝐴 ∈ Top)
 
Theoremonsuctopon 34632 One of the topologies on an ordinal number is its successor. (Contributed by Chen-Pang He, 7-Nov-2015.)
(𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴))
 
Theoremordtoplem 34633 Membership of the class of successor ordinals. (Contributed by Chen-Pang He, 1-Nov-2015.)
( 𝐴 ∈ On → suc 𝐴𝑆)       (Ord 𝐴 → (𝐴 𝐴𝐴𝑆))
 
Theoremordtop 34634 An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015.)
(Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 𝐽))
 
Theoremonsucconni 34635 A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
𝐴 ∈ On       suc 𝐴 ∈ Conn
 
Theoremonsucconn 34636 A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
(𝐴 ∈ On → suc 𝐴 ∈ Conn)
 
Theoremordtopconn 34637 An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015.)
(Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Conn))
 
Theoremonintopssconn 34638 An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.)
(On ∩ Top) ⊆ Conn
 
Theoremonsuct0 34639 A successor ordinal number is a T0 space. (Contributed by Chen-Pang He, 8-Nov-2015.)
(𝐴 ∈ On → suc 𝐴 ∈ Kol2)
 
Theoremordtopt0 34640 An ordinal topology is T0. (Contributed by Chen-Pang He, 8-Nov-2015.)
(Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2))
 
Theoremonsucsuccmpi 34641 The successor of a successor ordinal number is a compact topology, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 18-Oct-2015.)
𝐴 ∈ On       suc suc 𝐴 ∈ Comp
 
Theoremonsucsuccmp 34642 The successor of a successor ordinal number is a compact topology. (Contributed by Chen-Pang He, 18-Oct-2015.)
(𝐴 ∈ On → suc suc 𝐴 ∈ Comp)
 
Theoremlimsucncmpi 34643 The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.)
Lim 𝐴        ¬ suc 𝐴 ∈ Comp
 
Theoremlimsucncmp 34644 The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.)
(Lim 𝐴 → ¬ suc 𝐴 ∈ Comp)
 
Theoremordcmp 34645 An ordinal topology is compact iff the underlying set is its supremum (union) only when the ordinal is 1o. (Contributed by Chen-Pang He, 1-Nov-2015.)
(Ord 𝐴 → (𝐴 ∈ Comp ↔ ( 𝐴 = 𝐴𝐴 = 1o)))
 
Theoremssoninhaus 34646 The ordinal topologies 1o and 2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.)
{1o, 2o} ⊆ (On ∩ Haus)
 
Theoremonint1 34647 The ordinal T1 spaces are 1o and 2o, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 9-Nov-2015.)
(On ∩ Fre) = {1o, 2o}
 
Theoremoninhaus 34648 The ordinal Hausdorff spaces are 1o and 2o. (Contributed by Chen-Pang He, 10-Nov-2015.)
(On ∩ Haus) = {1o, 2o}
 
20.13  Mathbox for Jeff Hoffman
 
20.13.1  Inferences for finite induction on generic function values
 
Theoremfveleq 34649 Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
(𝐴 = 𝐵 → ((𝜑 → (𝐹𝐴) ∈ 𝑃) ↔ (𝜑 → (𝐹𝐵) ∈ 𝑃)))
 
Theoremfindfvcl 34650* Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
(𝜑 → (𝐹‘∅) ∈ 𝑃)    &   (𝑦 ∈ ω → (𝜑 → ((𝐹𝑦) ∈ 𝑃 → (𝐹‘suc 𝑦) ∈ 𝑃)))       (𝐴 ∈ ω → (𝜑 → (𝐹𝐴) ∈ 𝑃))
 
Theoremfindreccl 34651* Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008.)
(𝑧𝑃 → (𝐺𝑧) ∈ 𝑃)       (𝐶 ∈ ω → (𝐴𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃))
 
Theoremfindabrcl 34652* Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008.) (Revised by Mario Carneiro, 11-Sep-2015.)
(𝑧𝑃 → (𝐺𝑧) ∈ 𝑃)       ((𝐶 ∈ ω ∧ 𝐴𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) ∈ 𝑃)
 
20.13.2  gdc.mm
 
Theoremnnssi2 34653 Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.)
ℕ ⊆ 𝐷    &   (𝐵 ∈ ℕ → 𝜑)    &   ((𝐴𝐷𝐵𝐷𝜑) → 𝜓)       ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝜓)
 
Theoremnnssi3 34654 Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.)
ℕ ⊆ 𝐷    &   (𝐶 ∈ ℕ → 𝜑)    &   (((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ 𝜑) → 𝜓)       ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝜓)
 
Theoremnndivsub 34655 Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴 / 𝐶) ∈ ℕ ∧ 𝐴 < 𝐵)) → ((𝐵 / 𝐶) ∈ ℕ ↔ ((𝐵𝐴) / 𝐶) ∈ ℕ))
 
Theoremnndivlub 34656 A factor of a positive integer cannot exceed it. (Contributed by Jeff Hoffman, 17-Jun-2008.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵𝐴))
 
SyntaxcgcdOLD 34657 Extend class notation to include the gdc function. (New usage is discouraged.)
class gcdOLD (𝐴, 𝐵)
 
Definitiondf-gcdOLD 34658* gcdOLD (𝐴, 𝐵) is the largest positive integer that evenly divides both 𝐴 and 𝐵. (Contributed by Jeff Hoffman, 17-Jun-2008.) (New usage is discouraged.)
gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < )
 
Theoremee7.2aOLD 34659 Lemma for Euclid's Elements, Book 7, proposition 2. The original mentions the smaller measure being 'continually subtracted' from the larger. Many authors interpret this phrase as 𝐴 mod 𝐵. Here, just one subtraction step is proved to preserve the gcdOLD. The rec function will be used in other proofs for iterated subtraction. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → gcdOLD (𝐴, 𝐵) = gcdOLD (𝐴, (𝐵𝐴))))
 
20.14  Mathbox for Asger C. Ipsen
 
20.14.1  Continuous nowhere differentiable functions
 
Theoremdnival 34660* Value of the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))       (𝐴 ∈ ℝ → (𝑇𝐴) = (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
 
Theoremdnicld1 34661 Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
 
Theoremdnicld2 34662* Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   (𝜑𝐴 ∈ ℝ)       (𝜑 → (𝑇𝐴) ∈ ℝ)
 
Theoremdnif 34663 The "distance to nearest integer" function is a function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))       𝑇:ℝ⟶ℝ
 
Theoremdnizeq0 34664* The distance to nearest integer is zero for integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   (𝜑𝐴 ∈ ℤ)       (𝜑 → (𝑇𝐴) = 0)
 
Theoremdnizphlfeqhlf 34665* The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   (𝜑𝐴 ∈ ℤ)       (𝜑 → (𝑇‘(𝐴 + (1 / 2))) = (1 / 2))
 
Theoremrddif2 34666 Variant of rddif 15061. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
(𝐴 ∈ ℝ → 0 ≤ ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))))
 
Theoremdnibndlem1 34667* Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ 𝑆 ↔ (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ 𝑆))
 
Theoremdnibndlem2 34668* Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))       (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
 
Theoremdnibndlem3 34669 Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))       (𝜑 → (abs‘(𝐵𝐴)) = (abs‘((𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))) + (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))))
 
Theoremdnibndlem4 34670 Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
(𝐵 ∈ ℝ → 0 ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
 
Theoremdnibndlem5 34671 Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
(𝐴 ∈ ℝ → 0 < (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
 
Theoremdnibndlem6 34672 Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) + ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))))
 
Theoremdnibndlem7 34673 Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
(𝜑𝐵 ∈ ℝ)       (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵))) ≤ (𝐵 − ((⌊‘(𝐵 + (1 / 2))) − (1 / 2))))
 
Theoremdnibndlem8 34674 Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → ((1 / 2) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴))) ≤ (((⌊‘(𝐴 + (1 / 2))) + (1 / 2)) − 𝐴))
 
Theoremdnibndlem9 34675* Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))       (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
 
Theoremdnibndlem10 34676 Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))       (𝜑 → 1 ≤ (𝐵𝐴))
 
Theoremdnibndlem11 34677 Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (abs‘((abs‘((⌊‘(𝐵 + (1 / 2))) − 𝐵)) − (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))) ≤ (1 / 2))
 
Theoremdnibndlem12 34678* Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))       (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
 
Theoremdnibndlem13 34679* Lemma for dnibnd 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))       (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
 
Theoremdnibnd 34680* The "distance to nearest integer" function is 1-Lipschitz continuous, i.e., is a short map. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
 
Theoremdnicn 34681 The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))       𝑇 ∈ (ℝ–cn→ℝ)
 
Theoremknoppcnlem1 34682* Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝑀 ∈ ℕ0)       (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
 
Theoremknoppcnlem2 34683* Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝑀 ∈ ℕ0)       (𝜑 → ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ)
 
Theoremknoppcnlem3 34684* Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝑀 ∈ ℕ0)       (𝜑 → ((𝐹𝐴)‘𝑀) ∈ ℝ)
 
Theoremknoppcnlem4 34685* Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝑀 ∈ ℕ0)       (𝜑 → (abs‘((𝐹𝐴)‘𝑀)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑀))
 
Theoremknoppcnlem5 34686* Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ))
 
Theoremknoppcnlem6 34687* Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → (abs‘𝐶) < 1)       (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
 
Theoremknoppcnlem7 34688* Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝑀 ∈ ℕ0)       (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑀) = (𝑤 ∈ ℝ ↦ (seq0( + , (𝐹𝑤))‘𝑀)))
 
Theoremknoppcnlem8 34689* Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ))
 
Theoremknoppcnlem9 34690* Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))    &   𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → (abs‘𝐶) < 1)       (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
 
Theoremknoppcnlem10 34691* Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝑀 ∈ ℕ0)       (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
 
Theoremknoppcnlem11 34692* Lemma for knoppcn 34693. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℝ–cn→ℂ))
 
Theoremknoppcn 34693* The continuous nowhere differentiable function 𝑊 ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))    &   𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → (abs‘𝐶) < 1)       (𝜑𝑊 ∈ (ℝ–cn→ℂ))
 
Theoremknoppcld 34694* Closure theorem for Knopp's function. (Contributed by Asger C. Ipsen, 26-Jul-2021.)
𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))    &   𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))    &   𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑 → (abs‘𝐶) < 1)       (𝜑 → (𝑊𝐴) ∈ ℂ)
 
Theoremunblimceq0lem 34695* Lemma for unblimceq0 34696. (Contributed by Asger C. Ipsen, 12-May-2021.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝑆⟶ℂ)    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))       (𝜑 → ∀𝑐 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑆 (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑𝑐 ≤ (abs‘(𝐹𝑦))))
 
Theoremunblimceq0 34696* If 𝐹 is unbounded near 𝐴 it has no limit at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝑆⟶ℂ)    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑆 ((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐹𝑥))))       (𝜑 → (𝐹 lim 𝐴) = ∅)
 
Theoremunbdqndv1 34697* If the difference quotient (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) is unbounded near 𝐴 then 𝐹 is not differentiable at 𝐴. (Contributed by Asger C. Ipsen, 12-May-2021.)
𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐹:𝑋⟶ℂ)    &   (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥 ∈ (𝑋 ∖ {𝐴})((abs‘(𝑥𝐴)) < 𝑑𝑏 ≤ (abs‘(𝐺𝑥))))       (𝜑 → ¬ 𝐴 ∈ dom (𝑆 D 𝐹))
 
Theoremunbdqndv2lem1 34698 Lemma for unbdqndv2 34700. (Contributed by Asger C. Ipsen, 12-May-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐷 ≠ 0)    &   (𝜑 → (2 · 𝐸) ≤ (abs‘((𝐴𝐵) / 𝐷)))       (𝜑 → ((𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐴𝐶)) ∨ (𝐸 · (abs‘𝐷)) ≤ (abs‘(𝐵𝐶))))
 
Theoremunbdqndv2lem2 34699* Lemma for unbdqndv2 34700. (Contributed by Asger C. Ipsen, 12-May-2021.)
𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))    &   𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉)    &   (𝜑𝑋 ⊆ ℝ)    &   (𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝐴𝑋)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑𝑈𝑋)    &   (𝜑𝑉𝑋)    &   (𝜑𝑈𝑉)    &   (𝜑𝑈𝐴)    &   (𝜑𝐴𝑉)    &   (𝜑 → (𝑉𝑈) < 𝐷)    &   (𝜑 → (2 · 𝐵) ≤ ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))       (𝜑 → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
 
Theoremunbdqndv2 34700* Variant of unbdqndv1 34697 with the hypothesis that (((𝐹𝑦) − (𝐹𝑥)) / (𝑦𝑥)) is unbounded where 𝑥𝐴 and 𝐴𝑦. (Contributed by Asger C. Ipsen, 12-May-2021.)
(𝜑𝑋 ⊆ ℝ)    &   (𝜑𝐹:𝑋⟶ℂ)    &   (𝜑 → ∀𝑏 ∈ ℝ+𝑑 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐴𝐴𝑦) ∧ ((𝑦𝑥) < 𝑑𝑥𝑦) ∧ 𝑏 ≤ ((abs‘((𝐹𝑦) − (𝐹𝑥))) / (𝑦𝑥))))       (𝜑 → ¬ 𝐴 ∈ dom (ℝ D 𝐹))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >