Detailed syntax breakdown of Definition df-mnc
| Step | Hyp | Ref
| Expression |
| 1 | | cmnc 43143 |
. 2
class
Monic |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | cc 11153 |
. . . 4
class
ℂ |
| 4 | 3 | cpw 4600 |
. . 3
class 𝒫
ℂ |
| 5 | | vp |
. . . . . . . 8
setvar 𝑝 |
| 6 | 5 | cv 1539 |
. . . . . . 7
class 𝑝 |
| 7 | | cdgr 26226 |
. . . . . . 7
class
deg |
| 8 | 6, 7 | cfv 6561 |
. . . . . 6
class
(deg‘𝑝) |
| 9 | | ccoe 26225 |
. . . . . . 7
class
coeff |
| 10 | 6, 9 | cfv 6561 |
. . . . . 6
class
(coeff‘𝑝) |
| 11 | 8, 10 | cfv 6561 |
. . . . 5
class
((coeff‘𝑝)‘(deg‘𝑝)) |
| 12 | | c1 11156 |
. . . . 5
class
1 |
| 13 | 11, 12 | wceq 1540 |
. . . 4
wff
((coeff‘𝑝)‘(deg‘𝑝)) = 1 |
| 14 | 2 | cv 1539 |
. . . . 5
class 𝑠 |
| 15 | | cply 26223 |
. . . . 5
class
Poly |
| 16 | 14, 15 | cfv 6561 |
. . . 4
class
(Poly‘𝑠) |
| 17 | 13, 5, 16 | crab 3436 |
. . 3
class {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} |
| 18 | 2, 4, 17 | cmpt 5225 |
. 2
class (𝑠 ∈ 𝒫 ℂ
↦ {𝑝 ∈
(Poly‘𝑠) ∣
((coeff‘𝑝)‘(deg‘𝑝)) = 1}) |
| 19 | 1, 18 | wceq 1540 |
1
wff Monic =
(𝑠 ∈ 𝒫 ℂ
↦ {𝑝 ∈
(Poly‘𝑠) ∣
((coeff‘𝑝)‘(deg‘𝑝)) = 1}) |