Detailed syntax breakdown of Definition df-mnc
Step | Hyp | Ref
| Expression |
1 | | cmnc 40872 |
. 2
class
Monic |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | cc 10800 |
. . . 4
class
ℂ |
4 | 3 | cpw 4530 |
. . 3
class 𝒫
ℂ |
5 | | vp |
. . . . . . . 8
setvar 𝑝 |
6 | 5 | cv 1538 |
. . . . . . 7
class 𝑝 |
7 | | cdgr 25253 |
. . . . . . 7
class
deg |
8 | 6, 7 | cfv 6418 |
. . . . . 6
class
(deg‘𝑝) |
9 | | ccoe 25252 |
. . . . . . 7
class
coeff |
10 | 6, 9 | cfv 6418 |
. . . . . 6
class
(coeff‘𝑝) |
11 | 8, 10 | cfv 6418 |
. . . . 5
class
((coeff‘𝑝)‘(deg‘𝑝)) |
12 | | c1 10803 |
. . . . 5
class
1 |
13 | 11, 12 | wceq 1539 |
. . . 4
wff
((coeff‘𝑝)‘(deg‘𝑝)) = 1 |
14 | 2 | cv 1538 |
. . . . 5
class 𝑠 |
15 | | cply 25250 |
. . . . 5
class
Poly |
16 | 14, 15 | cfv 6418 |
. . . 4
class
(Poly‘𝑠) |
17 | 13, 5, 16 | crab 3067 |
. . 3
class {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} |
18 | 2, 4, 17 | cmpt 5153 |
. 2
class (𝑠 ∈ 𝒫 ℂ
↦ {𝑝 ∈
(Poly‘𝑠) ∣
((coeff‘𝑝)‘(deg‘𝑝)) = 1}) |
19 | 1, 18 | wceq 1539 |
1
wff Monic =
(𝑠 ∈ 𝒫 ℂ
↦ {𝑝 ∈
(Poly‘𝑠) ∣
((coeff‘𝑝)‘(deg‘𝑝)) = 1}) |