Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmnc Structured version   Visualization version   GIF version

Theorem elmnc 42180
Description: Property of a monic polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
elmnc (𝑃 ∈ ( Monic β€˜π‘†) ↔ (𝑃 ∈ (Polyβ€˜π‘†) ∧ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1))

Proof of Theorem elmnc
Dummy variables 𝑠 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mnc 42177 . . . . 5 Monic = (𝑠 ∈ 𝒫 β„‚ ↦ {𝑝 ∈ (Polyβ€˜π‘ ) ∣ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1})
21dmmptss 6240 . . . 4 dom Monic βŠ† 𝒫 β„‚
3 elfvdm 6928 . . . 4 (𝑃 ∈ ( Monic β€˜π‘†) β†’ 𝑆 ∈ dom Monic )
42, 3sselid 3980 . . 3 (𝑃 ∈ ( Monic β€˜π‘†) β†’ 𝑆 ∈ 𝒫 β„‚)
54elpwid 4611 . 2 (𝑃 ∈ ( Monic β€˜π‘†) β†’ 𝑆 βŠ† β„‚)
6 plybss 25932 . . 3 (𝑃 ∈ (Polyβ€˜π‘†) β†’ 𝑆 βŠ† β„‚)
76adantr 481 . 2 ((𝑃 ∈ (Polyβ€˜π‘†) ∧ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1) β†’ 𝑆 βŠ† β„‚)
8 cnex 11193 . . . . . 6 β„‚ ∈ V
98elpw2 5345 . . . . 5 (𝑆 ∈ 𝒫 β„‚ ↔ 𝑆 βŠ† β„‚)
10 fveq2 6891 . . . . . . 7 (𝑠 = 𝑆 β†’ (Polyβ€˜π‘ ) = (Polyβ€˜π‘†))
11 rabeq 3446 . . . . . . 7 ((Polyβ€˜π‘ ) = (Polyβ€˜π‘†) β†’ {𝑝 ∈ (Polyβ€˜π‘ ) ∣ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1} = {𝑝 ∈ (Polyβ€˜π‘†) ∣ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1})
1210, 11syl 17 . . . . . 6 (𝑠 = 𝑆 β†’ {𝑝 ∈ (Polyβ€˜π‘ ) ∣ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1} = {𝑝 ∈ (Polyβ€˜π‘†) ∣ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1})
13 fvex 6904 . . . . . . 7 (Polyβ€˜π‘†) ∈ V
1413rabex 5332 . . . . . 6 {𝑝 ∈ (Polyβ€˜π‘†) ∣ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1} ∈ V
1512, 1, 14fvmpt 6998 . . . . 5 (𝑆 ∈ 𝒫 β„‚ β†’ ( Monic β€˜π‘†) = {𝑝 ∈ (Polyβ€˜π‘†) ∣ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1})
169, 15sylbir 234 . . . 4 (𝑆 βŠ† β„‚ β†’ ( Monic β€˜π‘†) = {𝑝 ∈ (Polyβ€˜π‘†) ∣ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1})
1716eleq2d 2819 . . 3 (𝑆 βŠ† β„‚ β†’ (𝑃 ∈ ( Monic β€˜π‘†) ↔ 𝑃 ∈ {𝑝 ∈ (Polyβ€˜π‘†) ∣ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1}))
18 fveq2 6891 . . . . . 6 (𝑝 = 𝑃 β†’ (coeffβ€˜π‘) = (coeffβ€˜π‘ƒ))
19 fveq2 6891 . . . . . 6 (𝑝 = 𝑃 β†’ (degβ€˜π‘) = (degβ€˜π‘ƒ))
2018, 19fveq12d 6898 . . . . 5 (𝑝 = 𝑃 β†’ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)))
2120eqeq1d 2734 . . . 4 (𝑝 = 𝑃 β†’ (((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1 ↔ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1))
2221elrab 3683 . . 3 (𝑃 ∈ {𝑝 ∈ (Polyβ€˜π‘†) ∣ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1} ↔ (𝑃 ∈ (Polyβ€˜π‘†) ∧ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1))
2317, 22bitrdi 286 . 2 (𝑆 βŠ† β„‚ β†’ (𝑃 ∈ ( Monic β€˜π‘†) ↔ (𝑃 ∈ (Polyβ€˜π‘†) ∧ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1)))
245, 7, 23pm5.21nii 379 1 (𝑃 ∈ ( Monic β€˜π‘†) ↔ (𝑃 ∈ (Polyβ€˜π‘†) ∧ ((coeffβ€˜π‘ƒ)β€˜(degβ€˜π‘ƒ)) = 1))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432   βŠ† wss 3948  π’« cpw 4602  dom cdm 5676  β€˜cfv 6543  β„‚cc 11110  1c1 11113  Polycply 25922  coeffccoe 25924  degcdgr 25925   Monic cmnc 42175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-cnex 11168
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ply 25926  df-mnc 42177
This theorem is referenced by:  mncply  42181  mnccoe  42182
  Copyright terms: Public domain W3C validator