Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmnc Structured version   Visualization version   GIF version

Theorem elmnc 43113
Description: Property of a monic polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
elmnc (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))

Proof of Theorem elmnc
Dummy variables 𝑠 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mnc 43110 . . . . 5 Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
21dmmptss 6190 . . . 4 dom Monic ⊆ 𝒫 ℂ
3 elfvdm 6857 . . . 4 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ∈ dom Monic )
42, 3sselid 3933 . . 3 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ∈ 𝒫 ℂ)
54elpwid 4560 . 2 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ⊆ ℂ)
6 plybss 26097 . . 3 (𝑃 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
76adantr 480 . 2 ((𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1) → 𝑆 ⊆ ℂ)
8 cnex 11090 . . . . . 6 ℂ ∈ V
98elpw2 5273 . . . . 5 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
10 fveq2 6822 . . . . . . 7 (𝑠 = 𝑆 → (Poly‘𝑠) = (Poly‘𝑆))
11 rabeq 3409 . . . . . . 7 ((Poly‘𝑠) = (Poly‘𝑆) → {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
1210, 11syl 17 . . . . . 6 (𝑠 = 𝑆 → {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
13 fvex 6835 . . . . . . 7 (Poly‘𝑆) ∈ V
1413rabex 5278 . . . . . 6 {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} ∈ V
1512, 1, 14fvmpt 6930 . . . . 5 (𝑆 ∈ 𝒫 ℂ → ( Monic ‘𝑆) = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
169, 15sylbir 235 . . . 4 (𝑆 ⊆ ℂ → ( Monic ‘𝑆) = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
1716eleq2d 2814 . . 3 (𝑆 ⊆ ℂ → (𝑃 ∈ ( Monic ‘𝑆) ↔ 𝑃 ∈ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}))
18 fveq2 6822 . . . . . 6 (𝑝 = 𝑃 → (coeff‘𝑝) = (coeff‘𝑃))
19 fveq2 6822 . . . . . 6 (𝑝 = 𝑃 → (deg‘𝑝) = (deg‘𝑃))
2018, 19fveq12d 6829 . . . . 5 (𝑝 = 𝑃 → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑃)‘(deg‘𝑃)))
2120eqeq1d 2731 . . . 4 (𝑝 = 𝑃 → (((coeff‘𝑝)‘(deg‘𝑝)) = 1 ↔ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
2221elrab 3648 . . 3 (𝑃 ∈ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
2317, 22bitrdi 287 . 2 (𝑆 ⊆ ℂ → (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1)))
245, 7, 23pm5.21nii 378 1 (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3394  wss 3903  𝒫 cpw 4551  dom cdm 5619  cfv 6482  cc 11007  1c1 11010  Polycply 26087  coeffccoe 26089  degcdgr 26090   Monic cmnc 43108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-cnex 11065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-ply 26091  df-mnc 43110
This theorem is referenced by:  mncply  43114  mnccoe  43115
  Copyright terms: Public domain W3C validator