Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmnc Structured version   Visualization version   GIF version

Theorem elmnc 39172
Description: Property of a monic polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
elmnc (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))

Proof of Theorem elmnc
Dummy variables 𝑠 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mnc 39169 . . . . 5 Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
21dmmptss 5962 . . . 4 dom Monic ⊆ 𝒫 ℂ
3 elfvdm 6562 . . . 4 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ∈ dom Monic )
42, 3sseldi 3882 . . 3 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ∈ 𝒫 ℂ)
54elpwid 4459 . 2 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ⊆ ℂ)
6 plybss 24455 . . 3 (𝑃 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
76adantr 481 . 2 ((𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1) → 𝑆 ⊆ ℂ)
8 cnex 10453 . . . . . 6 ℂ ∈ V
98elpw2 5132 . . . . 5 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
10 fveq2 6530 . . . . . . 7 (𝑠 = 𝑆 → (Poly‘𝑠) = (Poly‘𝑆))
11 rabeq 3423 . . . . . . 7 ((Poly‘𝑠) = (Poly‘𝑆) → {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
1210, 11syl 17 . . . . . 6 (𝑠 = 𝑆 → {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
13 fvex 6543 . . . . . . 7 (Poly‘𝑆) ∈ V
1413rabex 5119 . . . . . 6 {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} ∈ V
1512, 1, 14fvmpt 6626 . . . . 5 (𝑆 ∈ 𝒫 ℂ → ( Monic ‘𝑆) = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
169, 15sylbir 236 . . . 4 (𝑆 ⊆ ℂ → ( Monic ‘𝑆) = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
1716eleq2d 2866 . . 3 (𝑆 ⊆ ℂ → (𝑃 ∈ ( Monic ‘𝑆) ↔ 𝑃 ∈ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}))
18 fveq2 6530 . . . . . 6 (𝑝 = 𝑃 → (coeff‘𝑝) = (coeff‘𝑃))
19 fveq2 6530 . . . . . 6 (𝑝 = 𝑃 → (deg‘𝑝) = (deg‘𝑃))
2018, 19fveq12d 6537 . . . . 5 (𝑝 = 𝑃 → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑃)‘(deg‘𝑃)))
2120eqeq1d 2795 . . . 4 (𝑝 = 𝑃 → (((coeff‘𝑝)‘(deg‘𝑝)) = 1 ↔ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
2221elrab 3613 . . 3 (𝑃 ∈ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
2317, 22syl6bb 288 . 2 (𝑆 ⊆ ℂ → (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1)))
245, 7, 23pm5.21nii 380 1 (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1520  wcel 2079  {crab 3107  wss 3854  𝒫 cpw 4447  dom cdm 5435  cfv 6217  cc 10370  1c1 10373  Polycply 24445  coeffccoe 24447  degcdgr 24448   Monic cmnc 39167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-cnex 10428
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fv 6225  df-ply 24449  df-mnc 39169
This theorem is referenced by:  mncply  39173  mnccoe  39174
  Copyright terms: Public domain W3C validator