Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmnc Structured version   Visualization version   GIF version

Theorem elmnc 40961
Description: Property of a monic polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.)
Assertion
Ref Expression
elmnc (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))

Proof of Theorem elmnc
Dummy variables 𝑠 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mnc 40958 . . . . 5 Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
21dmmptss 6144 . . . 4 dom Monic ⊆ 𝒫 ℂ
3 elfvdm 6806 . . . 4 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ∈ dom Monic )
42, 3sselid 3919 . . 3 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ∈ 𝒫 ℂ)
54elpwid 4544 . 2 (𝑃 ∈ ( Monic ‘𝑆) → 𝑆 ⊆ ℂ)
6 plybss 25355 . . 3 (𝑃 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
76adantr 481 . 2 ((𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1) → 𝑆 ⊆ ℂ)
8 cnex 10952 . . . . . 6 ℂ ∈ V
98elpw2 5269 . . . . 5 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
10 fveq2 6774 . . . . . . 7 (𝑠 = 𝑆 → (Poly‘𝑠) = (Poly‘𝑆))
11 rabeq 3418 . . . . . . 7 ((Poly‘𝑠) = (Poly‘𝑆) → {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
1210, 11syl 17 . . . . . 6 (𝑠 = 𝑆 → {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
13 fvex 6787 . . . . . . 7 (Poly‘𝑆) ∈ V
1413rabex 5256 . . . . . 6 {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} ∈ V
1512, 1, 14fvmpt 6875 . . . . 5 (𝑆 ∈ 𝒫 ℂ → ( Monic ‘𝑆) = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
169, 15sylbir 234 . . . 4 (𝑆 ⊆ ℂ → ( Monic ‘𝑆) = {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
1716eleq2d 2824 . . 3 (𝑆 ⊆ ℂ → (𝑃 ∈ ( Monic ‘𝑆) ↔ 𝑃 ∈ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}))
18 fveq2 6774 . . . . . 6 (𝑝 = 𝑃 → (coeff‘𝑝) = (coeff‘𝑃))
19 fveq2 6774 . . . . . 6 (𝑝 = 𝑃 → (deg‘𝑝) = (deg‘𝑃))
2018, 19fveq12d 6781 . . . . 5 (𝑝 = 𝑃 → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑃)‘(deg‘𝑃)))
2120eqeq1d 2740 . . . 4 (𝑝 = 𝑃 → (((coeff‘𝑝)‘(deg‘𝑝)) = 1 ↔ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
2221elrab 3624 . . 3 (𝑃 ∈ {𝑝 ∈ (Poly‘𝑆) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1} ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
2317, 22bitrdi 287 . 2 (𝑆 ⊆ ℂ → (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1)))
245, 7, 23pm5.21nii 380 1 (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  wss 3887  𝒫 cpw 4533  dom cdm 5589  cfv 6433  cc 10869  1c1 10872  Polycply 25345  coeffccoe 25347  degcdgr 25348   Monic cmnc 40956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-cnex 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ply 25349  df-mnc 40958
This theorem is referenced by:  mncply  40962  mnccoe  40963
  Copyright terms: Public domain W3C validator