HomeHome Metamath Proof Explorer
Theorem List (p. 422 of 489)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30950)
  Hilbert Space Explorer  Hilbert Space Explorer
(30951-32473)
  Users' Mathboxes  Users' Mathboxes
(32474-48899)
 

Theorem List for Metamath Proof Explorer - 42101-42200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem2np3bcnp1 42101 Part of induction step for 2ap1caineq 42102. (Contributed by metakunt, 8-Jun-2024.)
(𝜑𝑁 ∈ ℕ0)       (𝜑 → (((2 · (𝑁 + 1)) + 1)C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2)))))
 
Theorem2ap1caineq 42102 Inequality for Theorem 6.6 for AKS. (Contributed by metakunt, 8-Jun-2024.)
(𝜑𝑁 ∈ ℤ)    &   (𝜑 → 2 ≤ 𝑁)       (𝜑 → (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁))
 
21.29.7  Sticks and stones
 
Theoremsticksstones1 42103* Different strictly monotone functions have different ranges. (Contributed by metakunt, 27-Sep-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   (𝜑𝑋𝑌)    &   𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋𝑧) ≠ (𝑌𝑧)}, ℝ, < )       (𝜑 → ran 𝑋 ≠ ran 𝑌)
 
Theoremsticksstones2 42104* The range function on strictly monotone functions with finite domain and codomain is an injective mapping onto 𝐾-elemental sets. (Contributed by metakunt, 27-Sep-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾}    &   𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}    &   𝐹 = (𝑧𝐴 ↦ ran 𝑧)       (𝜑𝐹:𝐴1-1𝐵)
 
Theoremsticksstones3 42105* The range function on strictly monotone functions with finite domain and codomain is an surjective mapping onto 𝐾-elemental sets. (Contributed by metakunt, 28-Sep-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾}    &   𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}    &   𝐹 = (𝑧𝐴 ↦ ran 𝑧)       (𝜑𝐹:𝐴onto𝐵)
 
Theoremsticksstones4 42106* Equinumerosity lemma for sticks and stones. (Contributed by metakunt, 28-Sep-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾}    &   𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}       (𝜑𝐴𝐵)
 
Theoremsticksstones5 42107* Count the number of strictly monotonely increasing functions on finite domains and codomains. (Contributed by metakunt, 28-Sep-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}       (𝜑 → (♯‘𝐴) = (𝑁C𝐾))
 
Theoremsticksstones6 42108* Function induces an order isomorphism for sticks and stones theorem. (Contributed by metakunt, 1-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)    &   (𝜑𝑋 ∈ (1...𝐾))    &   (𝜑𝑌 ∈ (1...𝐾))    &   (𝜑𝑋 < 𝑌)    &   𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))       (𝜑 → (𝐹𝑋) < (𝐹𝑌))
 
Theoremsticksstones7 42109* Closure property of sticks and stones function. (Contributed by metakunt, 1-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)    &   (𝜑𝑋 ∈ (1...𝐾))    &   𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))    &   (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺𝑖) = 𝑁)       (𝜑 → (𝐹𝑋) ∈ (1...(𝑁 + 𝐾)))
 
Theoremsticksstones8 42110* Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 1-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))    &   𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}    &   𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}       (𝜑𝐹:𝐴𝐵)
 
Theoremsticksstones9 42111* Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 = 0)    &   𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))    &   𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}    &   𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}       (𝜑𝐺:𝐵𝐴)
 
Theoremsticksstones10 42112* Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ)    &   𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))    &   𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}    &   𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}       (𝜑𝐺:𝐵𝐴)
 
Theoremsticksstones11 42113* Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 = 0)    &   𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))    &   𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))    &   𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}    &   𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}       (𝜑𝐹:𝐴1-1-onto𝐵)
 
Theoremsticksstones12a 42114* Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 11-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ)    &   𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))    &   𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))    &   𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}    &   𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}       (𝜑 → ∀𝑑𝐵 (𝐹‘(𝐺𝑑)) = 𝑑)
 
Theoremsticksstones12 42115* Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ)    &   𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))    &   𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))    &   𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}    &   𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}       (𝜑𝐹:𝐴1-1-onto𝐵)
 
Theoremsticksstones13 42116* Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))    &   𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))    &   𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}    &   𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}       (𝜑𝐹:𝐴1-1-onto𝐵)
 
Theoremsticksstones14 42117* Sticks and stones with definitions as hypotheses. (Contributed by metakunt, 7-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))    &   𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))    &   𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}    &   𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}       (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾))
 
Theoremsticksstones15 42118* Sticks and stones with almost collapsed definitions for positive integers. (Contributed by metakunt, 7-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}       (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾))
 
Theoremsticksstones16 42119* Sticks and stones with collapsed definitions for positive integers. (Contributed by metakunt, 20-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ)    &   𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}       (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
 
Theoremsticksstones17 42120* Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}    &   𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}    &   (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)    &   𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))       (𝜑𝐺:𝐵𝐴)
 
Theoremsticksstones18 42121* Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}    &   𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}    &   (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)    &   𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))       (𝜑𝐹:𝐴𝐵)
 
Theoremsticksstones19 42122* Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐾 ∈ ℕ0)    &   𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}    &   𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}    &   (𝜑𝑍:(1...𝐾)–1-1-onto𝑆)    &   𝐹 = (𝑎𝐴 ↦ (𝑥𝑆 ↦ (𝑎‘(𝑍𝑥))))    &   𝐺 = (𝑏𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍𝑦))))       (𝜑𝐹:𝐴1-1-onto𝐵)
 
Theoremsticksstones20 42123* Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakung, 24-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑆 ∈ Fin)    &   (𝜑𝐾 ∈ ℕ)    &   𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔𝑖) = 𝑁)}    &   𝐵 = { ∣ (:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑖) = 𝑁)}    &   (𝜑 → (♯‘𝑆) = 𝐾)       (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1)))
 
Theoremsticksstones21 42124* Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakunt, 24-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑆 ∈ Fin)    &   (𝜑𝑆 ≠ ∅)    &   𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) = 𝑁)}       (𝜑 → (♯‘𝐴) = ((𝑁 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1)))
 
Theoremsticksstones22 42125* Non-exhaustive sticks and stones. (Contributed by metakunt, 26-Oct-2024.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑆 ∈ Fin)    &   (𝜑𝑆 ≠ ∅)    &   𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)}       (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆)))
 
Theoremsticksstones23 42126* Non-exhaustive sticks and stones. (Contributed by metakunt, 7-May-2025.)
(𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑆 ∈ Fin)    &   (𝜑𝑆 ≠ ∅)    &   𝐴 = {𝑓 ∈ (ℕ0m 𝑆) ∣ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁}       (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆)))
 
21.29.8  Continuation AKS
 
Theoremaks6d1c6lem1 42127* Lemma for claim 6, deduce exact degree of the polynomial. (Contributed by metakunt, 7-May-2025.)
= {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑃 = (chr‘𝐾)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   (𝜑𝐴 < 𝑃)    &   𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))    &   (𝜑𝐴 ∈ ℕ0)    &   𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))    &   𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))    &   (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))    &   𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))    &   𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}    &   (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))       (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
 
Theoremaks6d1c6lem2 42128* Every primitive root is root of G(u)-G(v). (Contributed by metakunt, 8-May-2025.)
= {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑃 = (chr‘𝐾)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   (𝜑𝐴 < 𝑃)    &   𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))    &   (𝜑𝐴 ∈ ℕ0)    &   𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))    &   𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))    &   (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))    &   𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))    &   𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}    &   (𝜑𝑈𝑆)    &   (𝜑𝑉𝑆)    &   (𝜑 → ((𝐻𝑆)‘𝑈) = ((𝐻𝑆)‘𝑉))    &   (𝜑𝑈𝑉)    &   𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))    &   (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))       (𝜑𝐷 ≤ (♯‘(((eval1𝐾)‘((𝐺𝑈)(-g‘(Poly1𝐾))(𝐺𝑉))) “ {(0g𝐾)})))
 
Theoremaks6d1c6lem3 42129* Claim 6 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf TODO, eliminate hypothesis. (Contributed by metakunt, 8-May-2025.)
= {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑃 = (chr‘𝐾)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   (𝜑𝐴 < 𝑃)    &   𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))    &   (𝜑𝐴 ∈ ℕ0)    &   𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))    &   𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))    &   (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))    &   𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))    &   𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}    &   𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸𝑗)(.g‘(mulGrp‘𝐾))𝑀))    &   (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0))))       (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
 
Theoremaks6d1c6lem4 42130* Claim 6 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf Add hypothesis on coprimality, lift function to the integers so that group operations may be applied. Inline definition. (Contributed by metakunt, 14-May-2025.)
= {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑃 = (chr‘𝐾)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)    &   𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))    &   𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))    &   𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))    &   𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))    &   (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))    &   𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))    &   𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}    &   𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))    &   (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0)))))    &   𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}       (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
 
Theoremaks6d1c6isolem1 42131* Lemma to construct the map out of the quotient for AKS. (Contributed by metakunt, 14-May-2025.)
(𝜑𝑅 ∈ CMnd)    &   (𝜑𝐾 ∈ ℕ)    &   𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}    &   𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))    &   (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))       (𝜑 → ((𝑅s 𝑈) ↾s ran 𝐹) ∈ Grp)
 
Theoremaks6d1c6isolem2 42132* Lemma to construct the group homomorphism for the AKS Theorem. (Contributed by metakunt, 14-May-2025.)
(𝜑𝑅 ∈ CMnd)    &   (𝜑𝐾 ∈ ℕ)    &   𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}    &   𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))    &   (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))       (𝜑𝐹 ∈ (ℤring GrpHom ((𝑅s 𝑈) ↾s ran 𝐹)))
 
Theoremaks6d1c6isolem3 42133* The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide 𝑅. (Contributed by metakunt, 15-May-2025.)
(𝜑𝑅 ∈ CMnd)    &   (𝜑𝐾 ∈ ℕ)    &   𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}    &   𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))    &   (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))    &   𝑆 = (RSpan‘ℤring)       (𝜑 → (𝑆‘{𝐾}) = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
 
Theoremaks6d1c6lem5 42134* Eliminate the size hypothesis. Claim 6. (Contributed by metakunt, 15-May-2025.)
= {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑃 = (chr‘𝐾)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)    &   𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))    &   𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))    &   𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))    &   𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))    &   (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))    &   𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))    &   𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}    &   𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀))    &   𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))}    &   𝑋 = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG (𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ (𝐽𝑏))       (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0m (0...𝐴)))))
 
Theorembcled 42135 Inequality for binomial coefficients. (Contributed by metakunt, 12-May-2025.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴C𝐶) ≤ (𝐵C𝐶))
 
Theorembcle2d 42136 Inequality for binomial coefficients. (Contributed by metakunt, 12-May-2025.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)    &   (𝜑𝐶 ∈ ℕ0)    &   (𝜑𝐷 ∈ ℤ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐷𝐶)       (𝜑 → ((𝐴 + 𝐶)C(𝐴 + 𝐷)) ≤ ((𝐵 + 𝐶)C(𝐵 + 𝐷)))
 
Theoremaks6d1c7lem1 42137* The last set of inequalities of Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 12-May-2025.)
(𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ‘3))    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))    &   𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))    &   𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))    &   𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))    &   (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))       (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1)))
 
Theoremaks6d1c7lem2 42138* Contradiction to Claim 2 and Claim 7. We assumed in Claim 2 that there are two different prime numbers 𝑃 and 𝑄. (Contributed by metakunt, 16-May-2025.)
= {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑃 = (chr‘𝐾)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ‘3))    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))    &   𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))    &   𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))    &   𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))    &   (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))    &   (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))    &   𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))))    &   𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵)))    &   (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄𝑁))    &   (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)    &   𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))    &   𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}       (𝜑𝑃 = 𝑄)
 
Theoremaks6d1c7lem3 42139* Remove lots of hypotheses now that we have the AKS contradiction. (Contributed by metakunt, 16-May-2025.)
= {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑃 = (chr‘𝐾)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ‘3))    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))    &   (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))    &   (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))    &   (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄𝑁))       (𝜑𝑃 = 𝑄)
 
Theoremaks6d1c7lem4 42140* In the AKS algorithm there exists a unique prime number 𝑝 that divides 𝑁. (Contributed by metakunt, 16-May-2025.)
= {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑃 = (chr‘𝐾)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ‘3))    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))    &   (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))    &   (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))       (𝜑 → ∃!𝑝 ∈ ℙ 𝑝𝑁)
 
Theoremaks6d1c7 42141* 𝑁 is a prime power if the hypotheses of the AKS algorithm hold. Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 16-May-2025.)
= {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑃 = (chr‘𝐾)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ‘3))    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))    &   (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))    &   (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))       (𝜑𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))
 
Theoremrhmqusspan 42142* Ring homomorphism out of a quotient given an ideal spanned by a singleton. (Contributed by metakunt, 7-Jun-2025.)
0 = (0g𝐻)    &   (𝜑𝐹 ∈ (𝐺 RingHom 𝐻))    &   𝐾 = (𝐹 “ { 0 })    &   𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))    &   𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))    &   (𝜑𝐺 ∈ CRing)    &   𝑁 = ((RSpan‘𝐺)‘{𝑋})    &   (𝜑𝑋 ∈ (Base‘𝐺))    &   (𝜑 → (𝐹𝑋) = 0 )       (𝜑 → (𝐽 ∈ (𝑄 RingHom 𝐻) ∧ ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹𝑔)))
 
Theoremaks5lem1 42143* Section 5 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf. Construction of a ring homomorphism out of Zn X to K. (Contributed by metakunt, 7-Jun-2025.)
(𝜑𝐾 ∈ Field)    &   𝑃 = (chr‘𝐾)    &   (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))    &   𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺𝑝))    &   𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑞))    &   𝐻 = (𝑟 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑟)‘𝑀))    &   (𝜑𝑀 ∈ (Base‘𝐾))       (𝜑 → (𝐻𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾))
 
Theoremaks5lem2 42144* Lemma for section 5 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. Construct the quotient for the AKS reduction. (Contributed by metakunt, 7-Jun-2025.)
(𝜑𝐾 ∈ Field)    &   𝑃 = (chr‘𝐾)    &   (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))    &   𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺𝑝))    &   𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑞))    &   𝐻 = (𝑟 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑟)‘𝑀))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   𝐼 = (𝑠 ∈ (Base‘𝐴) ↦ ((𝐻𝐹) “ 𝑠))    &   𝐴 = ((Poly1‘(ℤ/nℤ‘𝑁)) /s ((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿))    &   𝐿 = ((RSpan‘(Poly1‘(ℤ/nℤ‘𝑁)))‘{((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))})    &   (𝜑𝑅 ∈ ℕ)       (𝜑 → (𝐼 ∈ (𝐴 RingHom 𝐾) ∧ ∀𝑔 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝐼‘[𝑔]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻𝐹)‘𝑔)))
 
Theoremply1asclzrhval 42145 Transfer results from algebraic scalars and ZR ring homomorphisms. (Contributed by metakunt, 17-Jun-2025.)
𝑊 = (Poly1𝑅)    &   𝐴 = (algSc‘𝑊)    &   𝐵 = (ℤRHom‘𝑊)    &   𝐶 = (ℤRHom‘𝑅)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝑋 ∈ ℤ)       (𝜑 → (𝐴‘(𝐶𝑋)) = (𝐵𝑋))
 
Theoremaks5lem3a 42146* Lemma for AKS section 5. (Contributed by metakunt, 17-Jun-2025.)
(𝜑𝐾 ∈ Field)    &   𝑃 = (chr‘𝐾)    &   (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))    &   𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))    &   𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})    &   (𝜑𝑅 ∈ ℕ)    &    = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))    &   𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺𝑝))    &   𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑞))    &   𝐻 = (𝑟 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑟)‘𝑀))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   𝐼 = (𝑠 ∈ (Base‘𝐵) ↦ ((𝐻𝐹) “ 𝑠))    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿))       (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀)))
 
Theoremaks5lem4a 42147* Lemma for AKS section 5, reduce hypotheses. (Contributed by metakunt, 17-Jun-2025.)
(𝜑𝐾 ∈ Field)    &   𝑃 = (chr‘𝐾)    &   (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))    &   𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))    &   𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})    &   (𝜑𝑅 ∈ ℕ)    &    = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿))       (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀)))
 
Theoremaks5lem5a 42148* Lemma for AKS, section 5, connect to Theorem 6.1. (Contributed by metakunt, 17-Jun-2025.)
(𝜑𝐾 ∈ Field)    &   𝑃 = (chr‘𝐾)    &   (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))    &   𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))    &   𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})    &   (𝜑𝑅 ∈ ℕ)    &    = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))       (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
 
Theoremaks5lem6 42149* Connect results of section 5 and Theorem 6.1 AKS. (Contributed by metakunt, 25-Jun-2025.)
= {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}    &   𝑃 = (chr‘𝐾)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ‘3))    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))    &   (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))    &   (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))    &   (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))    &   (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)    &   𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))    &   𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})    &   𝑋 = (var1‘(ℤ/nℤ‘𝑁))    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))       (𝜑𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))
 
Theoremindstrd 42150* Strong induction, deduction version. (Contributed by Steven Nguyen, 13-Jul-2025.)
(𝑥 = 𝑦 → (𝜓𝜒))    &   (𝑥 = 𝐴 → (𝜓𝜃))    &   ((𝜑𝑥 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜒)) → 𝜓)    &   (𝜑𝐴 ∈ ℕ)       (𝜑𝜃)
 
Theoremgrpods 42151* Relate sums of elements of orders and roots of unity. (Contributed by metakunt, 14-Jul-2025.)
𝐵 = (Base‘𝐺)    &    = (.g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚𝑁} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ (𝑁 𝑥) = (0g𝐺)}))
 
Theoremunitscyglem1 42152* Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025.)
𝐵 = (Base‘𝐺)    &    = (.g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)    &   (𝜑𝐴𝐵)       (𝜑 → (♯‘{𝑥𝐵 ∣ (((od‘𝐺)‘𝐴) 𝑥) = (0g𝐺)}) = ((od‘𝐺)‘𝐴))
 
Theoremunitscyglem2 42153* Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025.)
𝐵 = (Base‘𝐺)    &    = (.g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)    &   (𝜑𝐷 ∈ ℕ)    &   (𝜑𝐷 ∥ (♯‘𝐵))    &   (𝜑𝐴𝐵)    &   (𝜑 → ((od‘𝐺)‘𝐴) = 𝐷)    &   (𝜑 → ∀𝑐 ∈ ℕ (𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐))))       (𝜑 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
 
Theoremunitscyglem3 42154* Lemma for unitscyg. (Contributed by metakunt, 14-Jul-2025.)
𝐵 = (Base‘𝐺)    &    = (.g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)       (𝜑 → ∀𝑑 ∈ ℕ ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑)))
 
Theoremunitscyglem4 42155* Lemma for unitscyg (Contributed by metakunt, 14-Jul-2025.)
𝐵 = (Base‘𝐺)    &    = (.g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 ∈ Fin)    &   (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)    &   (𝜑𝐷 ∈ ℕ)    &   (𝜑𝐷 ∥ (♯‘𝐵))       (𝜑 → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
 
Theoremunitscyglem5 42156 Lemma for unitscyg (Contributed by metakunt, 9-Aug-2025.)
𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))    &   (𝜑𝑅 ∈ IDomn)    &   (𝜑 → (Base‘𝑅) ∈ Fin)    &   (𝜑𝐷 ∈ ℕ)    &   (𝜑𝐷 ∥ (♯‘(Base‘𝐺)))       (𝜑 → ((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅)
 
Theoremaks5lem7 42157* Lemma for aks5. We clean up the hypotheses compared to aks5lem6 42149. (Contributed by metakunt, 9-Aug-2025.)
(𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ)    &   𝑃 = (chr‘𝐾)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ‘3))    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))    &   (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))    &   (𝜑𝑅 ∥ ((♯‘(Base‘𝐾)) − 1))    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))    &   (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)    &   𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))    &   𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g𝑆)(1r𝑆))})    &   𝑋 = (var1‘(ℤ/nℤ‘𝑁))       (𝜑𝑁 = (𝑃↑(𝑃 pCnt 𝑁)))
 
Theoremaks5lem8 42158* Lemma for aks5. Clean up the conclusion. (Contributed by metakunt, 9-Aug-2025.)
(𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ)    &   𝑃 = (chr‘𝐾)    &   (𝜑𝐾 ∈ Field)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑𝑁 ∈ (ℤ‘3))    &   (𝜑𝑃𝑁)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))    &   (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))    &   (𝜑𝑅 ∥ ((♯‘(Base‘𝐾)) − 1))    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))    &   (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1)    &   𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))    &   𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g𝑆)(1r𝑆))})    &   𝑋 = (var1‘(ℤ/nℤ‘𝑁))       (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
 
Axiomax-exfinfld 42159* Existence axiom for finite fields, eventually we want to construct them. (Contributed by metakunt, 13-Jul-2025.)
𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝)
 
Theoremexfinfldd 42160* For any prime 𝑃 and any positive integer 𝑁 there exists a field 𝑘 such that 𝑘 contains 𝑃𝑁 elements. (Contributed by metakunt, 13-Jul-2025.)
(𝜑𝑃 ∈ ℙ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃𝑁) ∧ (chr‘𝑘) = 𝑃))
 
Theoremaks5 42161* The AKS Primality test, given an integer 𝑁 greater than or equal to 3, find a coprime 𝑅 such that 𝑅 is big enough. Then, if a bunch of polynomial equalities in the residue ring hold then 𝑁 is a prime power. Currently depends on the axiom ax-exfinfld 42159, since we currently do not have the existence of finite fields in the database. (Contributed by metakunt, 16-Aug-2025.)
𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁)))    &   𝑋 = (var1‘(ℤ/nℤ‘𝑁))    &   𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))    &   𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g𝑆)(1r𝑆))})    &   (𝜑𝑁 ∈ (ℤ‘3))    &   (𝜑𝑅 ∈ ℕ)    &   (𝜑 → (𝑁 gcd 𝑅) = 1)    &   (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿))    &   (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1)       (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝𝑛))
 
21.29.9  Permutation results
 
Theoremmetakunt1 42162* A is an endomapping. (Contributed by metakunt, 23-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))       (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
 
Theoremmetakunt2 42163* A is an endomapping. (Contributed by metakunt, 23-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))))       (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
 
Theoremmetakunt3 42164* Value of A. (Contributed by metakunt, 23-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       (𝜑 → (𝐴𝑋) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
 
Theoremmetakunt4 42165* Value of A. (Contributed by metakunt, 23-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝐼, if(𝑥 < 𝐼, 𝑥, (𝑥 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       (𝜑 → (𝐴𝑋) = if(𝑋 = 𝑀, 𝐼, if(𝑋 < 𝐼, 𝑋, (𝑋 + 1))))
 
Theoremmetakunt5 42166* C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
 
Theoremmetakunt6 42167* C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
 
Theoremmetakunt7 42168* C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
 
Theoremmetakunt8 42169* C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑𝐼 < 𝑋) → (𝐶‘(𝐴𝑋)) = 𝑋)
 
Theoremmetakunt9 42170* C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       (𝜑 → (𝐶‘(𝐴𝑋)) = 𝑋)
 
Theoremmetakunt10 42171* C is the right inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑𝑋 = 𝑀) → (𝐴‘(𝐶𝑋)) = 𝑋)
 
Theoremmetakunt11 42172* C is the right inverse for A. (Contributed by metakunt, 24-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑𝑋 < 𝐼) → (𝐴‘(𝐶𝑋)) = 𝑋)
 
Theoremmetakunt12 42173* C is the right inverse for A. (Contributed by metakunt, 25-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       ((𝜑 ∧ ¬ (𝑋 = 𝑀𝑋 < 𝐼)) → (𝐴‘(𝐶𝑋)) = 𝑋)
 
Theoremmetakunt13 42174* C is the right inverse for A. (Contributed by metakunt, 25-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   (𝜑𝑋 ∈ (1...𝑀))       (𝜑 → (𝐴‘(𝐶𝑋)) = 𝑋)
 
Theoremmetakunt14 42175* A is a primitive permutation that moves the I-th element to the end and C is its inverse that moves the last element back to the I-th position. (Contributed by metakunt, 25-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))       (𝜑 → (𝐴:(1...𝑀)–1-1-onto→(1...𝑀) ∧ 𝐴 = 𝐶))
 
Theoremmetakunt15 42176* Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐹 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))       (𝜑𝐹:(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
 
Theoremmetakunt16 42177* Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐹 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))       (𝜑𝐹:(𝐼...(𝑀 − 1))–1-1-onto→(1...(𝑀𝐼)))
 
Theoremmetakunt17 42178 The union of three disjoint bijections is a bijection. (Contributed by metakunt, 28-May-2024.)
(𝜑𝐺:𝐴1-1-onto𝑋)    &   (𝜑𝐻:𝐵1-1-onto𝑌)    &   (𝜑𝐼:𝐶1-1-onto𝑍)    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑 → (𝐴𝐶) = ∅)    &   (𝜑 → (𝐵𝐶) = ∅)    &   (𝜑 → (𝑋𝑌) = ∅)    &   (𝜑 → (𝑋𝑍) = ∅)    &   (𝜑 → (𝑌𝑍) = ∅)    &   (𝜑𝐹 = ((𝐺𝐻) ∪ 𝐼))    &   (𝜑𝐷 = ((𝐴𝐵) ∪ 𝐶))    &   (𝜑𝑊 = ((𝑋𝑌) ∪ 𝑍))       (𝜑𝐹:𝐷1-1-onto𝑊)
 
Theoremmetakunt18 42179 Disjoint domains and codomains. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)       (𝜑 → ((((1...(𝐼 − 1)) ∩ (𝐼...(𝑀 − 1))) = ∅ ∧ ((1...(𝐼 − 1)) ∩ {𝑀}) = ∅ ∧ ((𝐼...(𝑀 − 1)) ∩ {𝑀}) = ∅) ∧ (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ (1...(𝑀𝐼))) = ∅ ∧ ((((𝑀𝐼) + 1)...(𝑀 − 1)) ∩ {𝑀}) = ∅ ∧ ((1...(𝑀𝐼)) ∩ {𝑀}) = ∅)))
 
Theoremmetakunt19 42180* Domains on restrictions of functions. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))    &   𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))    &   𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))       (𝜑 → ((𝐶 Fn (1...(𝐼 − 1)) ∧ 𝐷 Fn (𝐼...(𝑀 − 1)) ∧ (𝐶𝐷) Fn ((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1)))) ∧ {⟨𝑀, 𝑀⟩} Fn {𝑀}))
 
Theoremmetakunt20 42181* Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))    &   𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))    &   𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))    &   (𝜑𝑋 ∈ (1...𝑀))    &   (𝜑𝑋 = 𝑀)       (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
 
Theoremmetakunt21 42182* Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))    &   𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))    &   𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))    &   (𝜑𝑋 ∈ (1...𝑀))    &   (𝜑 → ¬ 𝑋 = 𝑀)    &   (𝜑𝑋 < 𝐼)       (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
 
Theoremmetakunt22 42183* Show that B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))    &   𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))    &   𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))    &   (𝜑𝑋 ∈ (1...𝑀))    &   (𝜑 → ¬ 𝑋 = 𝑀)    &   (𝜑 → ¬ 𝑋 < 𝐼)       (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
 
Theoremmetakunt23 42184* B coincides on the union of bijections of functions. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))    &   𝐶 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))    &   𝐷 = (𝑥 ∈ (𝐼...(𝑀 − 1)) ↦ (𝑥 + (1 − 𝐼)))    &   (𝜑𝑋 ∈ (1...𝑀))       (𝜑 → (𝐵𝑋) = (((𝐶𝐷) ∪ {⟨𝑀, 𝑀⟩})‘𝑋))
 
Theoremmetakunt24 42185 Technical condition such that metakunt17 42178 holds. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)       (𝜑 → ((((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∩ {𝑀}) = ∅ ∧ (1...𝑀) = (((1...(𝐼 − 1)) ∪ (𝐼...(𝑀 − 1))) ∪ {𝑀}) ∧ (1...𝑀) = (((((𝑀𝐼) + 1)...(𝑀 − 1)) ∪ (1...(𝑀𝐼))) ∪ {𝑀})))
 
Theoremmetakunt25 42186* B is a permutation. (Contributed by metakunt, 28-May-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐵 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝑀, 𝑀, if(𝑥 < 𝐼, (𝑥 + (𝑀𝐼)), (𝑥 + (1 − 𝐼)))))       (𝜑𝐵:(1...𝑀)–1-1-onto→(1...𝑀))
 
Theoremmetakunt26 42187* Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   (𝜑𝑋 = 𝐼)       (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑋)
 
Theoremmetakunt27 42188* Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   (𝜑𝑋 ∈ (1...𝑀))    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   (𝜑 → ¬ 𝑋 = 𝐼)    &   (𝜑𝑋 < 𝐼)       (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋 + (𝑀𝐼)))
 
Theoremmetakunt28 42189* Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   (𝜑𝑋 ∈ (1...𝑀))    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   (𝜑 → ¬ 𝑋 = 𝐼)    &   (𝜑 → ¬ 𝑋 < 𝐼)       (𝜑 → (𝐵‘(𝐴𝑋)) = (𝑋𝐼))
 
Theoremmetakunt29 42190* Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   (𝜑𝑋 ∈ (1...𝑀))    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   (𝜑 → ¬ 𝑋 = 𝐼)    &   (𝜑𝑋 < 𝐼)    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   𝐻 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)       (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋 + (𝑀𝐼)) + 𝐻))
 
Theoremmetakunt30 42191* Construction of one solution of the increment equation system. (Contributed by metakunt, 7-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   (𝜑𝑋 ∈ (1...𝑀))    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   (𝜑 → ¬ 𝑋 = 𝐼)    &   (𝜑 → ¬ 𝑋 < 𝐼)    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)       (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = ((𝑋𝐼) + 𝐻))
 
Theoremmetakunt31 42192* Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   (𝜑𝑋 ∈ (1...𝑀))    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)    &   𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)    &   𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))       (𝜑 → (𝐶‘(𝐵‘(𝐴𝑋))) = 𝑅)
 
Theoremmetakunt32 42193* Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   (𝜑𝑋 ∈ (1...𝑀))    &   𝐷 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑥, if(𝑥 < 𝐼, ((𝑥 + (𝑀𝐼)) + if(𝐼 ≤ (𝑥 + (𝑀𝐼)), 1, 0)), ((𝑥𝐼) + if(𝐼 ≤ (𝑥𝐼), 1, 0)))))    &   𝐺 = if(𝐼 ≤ (𝑋 + (𝑀𝐼)), 1, 0)    &   𝐻 = if(𝐼 ≤ (𝑋𝐼), 1, 0)    &   𝑅 = if(𝑋 = 𝐼, 𝑋, if(𝑋 < 𝐼, ((𝑋 + (𝑀𝐼)) + 𝐺), ((𝑋𝐼) + 𝐻)))       (𝜑 → (𝐷𝑋) = 𝑅)
 
Theoremmetakunt33 42194* Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))    &   𝐵 = (𝑧 ∈ (1...𝑀) ↦ if(𝑧 = 𝑀, 𝑀, if(𝑧 < 𝐼, (𝑧 + (𝑀𝐼)), (𝑧 + (1 − 𝐼)))))    &   𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))    &   𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))       (𝜑 → (𝐶 ∘ (𝐵𝐴)) = 𝐷)
 
Theoremmetakunt34 42195* 𝐷 is a permutation. (Contributed by metakunt, 18-Jul-2024.)
(𝜑𝑀 ∈ ℕ)    &   (𝜑𝐼 ∈ ℕ)    &   (𝜑𝐼𝑀)    &   𝐷 = (𝑤 ∈ (1...𝑀) ↦ if(𝑤 = 𝐼, 𝑤, if(𝑤 < 𝐼, ((𝑤 + (𝑀𝐼)) + if(𝐼 ≤ (𝑤 + (𝑀𝐼)), 1, 0)), ((𝑤𝐼) + if(𝐼 ≤ (𝑤𝐼), 1, 0)))))       (𝜑𝐷:(1...𝑀)–1-1-onto→(1...𝑀))
 
21.29.10  Unused lemmas scheduled for deletion
 
Theoremfac2xp3 42196 Factorial of 2x+3, sublemma for sublemma for AKS. (Contributed by metakunt, 19-Apr-2024.)
(𝑥 ∈ ℕ0 → (!‘((2 · 𝑥) + 3)) = ((!‘((2 · 𝑥) + 1)) · (((2 · 𝑥) + 2) · ((2 · 𝑥) + 3))))
 
Theoremprodsplit 42197* Product split into two factors, original by Steven Nguyen. (Contributed by metakunt, 21-Apr-2024.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑀𝑁)    &   (𝜑𝐾 ∈ ℕ0)    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 + 𝐾))) → 𝐴 ∈ ℂ)       (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 𝐾))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...(𝑁 + 𝐾))𝐴))
 
Theorem2xp3dxp2ge1d 42198 2x+3 is greater than or equal to x+2 for x >= -1, a deduction version (Contributed by metakunt, 21-Apr-2024.)
(𝜑𝑋 ∈ (-1[,)+∞))       (𝜑 → 1 ≤ (((2 · 𝑋) + 3) / (𝑋 + 2)))
 
Theoremfactwoffsmonot 42199 A factorial with offset is monotonely increasing. (Contributed by metakunt, 20-Apr-2024.)
(((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) ∧ 𝑁 ∈ ℕ0) → (!‘(𝑋 + 𝑁)) ≤ (!‘(𝑌 + 𝑁)))
 
21.30  Mathbox for Steven Nguyen
 
21.30.1  Utility theorems
 
Theoremintnanrt 42200 Introduction of conjunct inside of a contradiction. Would be used in elfvov1 7490. (Contributed by SN, 18-May-2025.)
𝜑 → ¬ (𝜑𝜓))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48899
  Copyright terms: Public domain < Previous  Next >