Home | Metamath
Proof Explorer Theorem List (p. 422 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dfvd3i 42101 | Inference form of dfvd3 42100. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | ||
Theorem | dfvd3ir 42102 | Right-to-left inference form of dfvd3 42100. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) | ||
Theorem | dfvd3an 42103 | Definition of a 3-hypothesis virtual deduction in vd conjunction form. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (( ( 𝜑 , 𝜓 , 𝜒 ) ▶ 𝜃 ) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)) | ||
Theorem | dfvd3ani 42104 | Inference form of dfvd3an 42103. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( ( 𝜑 , 𝜓 , 𝜒 ) ▶ 𝜃 ) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | dfvd3anir 42105 | Right-to-left inference form of dfvd3an 42103. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( ( 𝜑 , 𝜓 , 𝜒 ) ▶ 𝜃 ) | ||
Theorem | vd01 42106 | A virtual hypothesis virtually infers a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 ⇒ ⊢ ( 𝜓 ▶ 𝜑 ) | ||
Theorem | vd02 42107 | Two virtual hypotheses virtually infer a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜑 ) | ||
Theorem | vd03 42108 | A theorem is virtually inferred by the 3 virtual hypotheses. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 ⇒ ⊢ ( 𝜓 , 𝜒 , 𝜃 ▶ 𝜑 ) | ||
Theorem | vd12 42109 | A virtual deduction with 1 virtual hypothesis virtually inferring a virtual conclusion infers that the same conclusion is virtually inferred by the same virtual hypothesis and an additional hypothesis. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜓 ) | ||
Theorem | vd13 42110 | A virtual deduction with 1 virtual hypothesis virtually inferring a virtual conclusion infers that the same conclusion is virtually inferred by the same virtual hypothesis and a two additional hypotheses. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) ⇒ ⊢ ( 𝜑 , 𝜒 , 𝜃 ▶ 𝜓 ) | ||
Theorem | vd23 42111 | A virtual deduction with 2 virtual hypotheses virtually inferring a virtual conclusion infers that the same conclusion is virtually inferred by the same 2 virtual hypotheses and a third hypothesis. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜃 ▶ 𝜒 ) | ||
Theorem | dfvd2imp 42112 | The virtual deduction form of a 2-antecedent nested implication implies the 2-antecedent nested implication. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (( 𝜑 , 𝜓 ▶ 𝜒 ) → (𝜑 → (𝜓 → 𝜒))) | ||
Theorem | dfvd2impr 42113 | A 2-antecedent nested implication implies its virtual deduction form. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ( 𝜑 , 𝜓 ▶ 𝜒 )) | ||
Theorem | in2 42114 | The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) ⇒ ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) | ||
Theorem | int2 42115 | The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. Conventional form of int2 42115 is ex 412. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜒 ) ⇒ ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) | ||
Theorem | iin2 42116 | in2 42114 without virtual deductions. (Contributed by Alan Sare, 20-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → 𝜒)) | ||
Theorem | in2an 42117 | The virtual deduction introduction rule converting the second conjunct of the second virtual hypothesis into the antecedent of the conclusion. expd 415 is the non-virtual deduction form of in2an 42117. (Contributed by Alan Sare, 30-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , (𝜓 ∧ 𝜒) ▶ 𝜃 ) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ (𝜒 → 𝜃) ) | ||
Theorem | in3 42118 | The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ (𝜒 → 𝜃) ) | ||
Theorem | iin3 42119 | in3 42118 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | ||
Theorem | in3an 42120 | The virtual deduction introduction rule converting the second conjunct of the third virtual hypothesis into the antecedent of the conclusion. exp4a 431 is the non-virtual deduction form of in3an 42120. (Contributed by Alan Sare, 25-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , (𝜒 ∧ 𝜃) ▶ 𝜏 ) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ (𝜃 → 𝜏) ) | ||
Theorem | int3 42121 | The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. Conventional form of int3 42121 is 3expia 1119. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( ( 𝜑 , 𝜓 , 𝜒 ) ▶ 𝜃 ) ⇒ ⊢ ( ( 𝜑 , 𝜓 ) ▶ (𝜒 → 𝜃) ) | ||
Theorem | idn2 42122 | Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) | ||
Theorem | iden2 42123 | Virtual deduction identity rule. simpr 484 in conjunction form Virtual Deduction notation. (Contributed by Alan Sare, 5-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜓 ) | ||
Theorem | idn3 42124 | Virtual deduction identity rule for three virtual hypotheses. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜒 ) | ||
Theorem | gen11 42125* | Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1931 is gen11 42125 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) ⇒ ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) | ||
Theorem | gen11nv 42126 | Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis without distinct variables. alrimih 1827 is gen11nv 42126 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ ( 𝜑 ▶ 𝜓 ) ⇒ ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) | ||
Theorem | gen12 42127* | Virtual deduction generalizing rule for two quantifying variables and one virtual hypothesis. gen12 42127 is alrimivv 1932 with virtual deductions. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) ⇒ ⊢ ( 𝜑 ▶ ∀𝑥∀𝑦𝜓 ) | ||
Theorem | gen21 42128* | Virtual deduction generalizing rule for one quantifying variables and two virtual hypothesis. gen21 42128 is alrimdv 1933 with virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ ∀𝑥𝜒 ) | ||
Theorem | gen21nv 42129 | Virtual deduction form of alrimdh 1867. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ ∀𝑥𝜒 ) | ||
Theorem | gen31 42130* | Virtual deduction generalizing rule for one quantifying variable and three virtual hypothesis. gen31 42130 is ggen31 42054 with virtual deductions. (Contributed by Alan Sare, 22-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ ∀𝑥𝜃 ) | ||
Theorem | gen22 42131* | Virtual deduction generalizing rule for two quantifying variables and two virtual hypothesis. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ ∀𝑥∀𝑦𝜒 ) | ||
Theorem | ggen22 42132* | gen22 42131 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥∀𝑦𝜒)) | ||
Theorem | exinst 42133 | Existential Instantiation. Virtual deduction form of exlimexi 42033. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ ( ∃𝑥𝜑 , 𝜑 ▶ 𝜓 ) ⇒ ⊢ (∃𝑥𝜑 → 𝜓) | ||
Theorem | exinst01 42134 | Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in [Margaris] p. 79 and E ∃ in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∃𝑥𝜓 & ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
Theorem | exinst11 42135 | Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in [Margaris] p. 79 and E ∃ in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ ∃𝑥𝜓 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
Theorem | e1a 42136 | A Virtual deduction elimination rule. syl 17 is e1a 42136 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
Theorem | el1 42137 | A Virtual deduction elimination rule. syl 17 is el1 42137 without virtual deductions. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
Theorem | e1bi 42138 | Biconditional form of e1a 42136. sylib 217 is e1bi 42138 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
Theorem | e1bir 42139 | Right biconditional form of e1a 42136. sylibr 233 is e1bir 42139 without virtual deductions. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ (𝜒 ↔ 𝜓) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
Theorem | e2 42140 | A virtual deduction elimination rule. syl6 35 is e2 42140 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜒 → 𝜃) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
Theorem | e2bi 42141 | Biconditional form of e2 42140. syl6ib 250 is e2bi 42141 without virtual deductions. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
Theorem | e2bir 42142 | Right biconditional form of e2 42140. syl6ibr 251 is e2bir 42142 without virtual deductions. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜃 ↔ 𝜒) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
Theorem | ee223 42143 | e223 42144 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) & ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜁))) | ||
Theorem | e223 42144 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜂 ) & ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜁 ) | ||
Theorem | e222 42145 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | e220 42146 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee220 42147 | e220 42146 without virtual deductions. (Contributed by Alan Sare, 12-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e202 42148 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee202 42149 | e202 42148 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e022 42150 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee022 42151 | e022 42150 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ (𝜓 → (𝜒 → 𝜏)) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜒 → 𝜂)) | ||
Theorem | e002 42152 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ ( 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜒 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee002 42153 | e002 42152 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜒 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜒 → (𝜃 → 𝜂)) | ||
Theorem | e020 42154 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee020 42155 | e020 42154 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ 𝜏 & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜒 → 𝜂)) | ||
Theorem | e200 42156 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee200 42157 | e200 42156 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e221 42158 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee221 42159 | e221 42158 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e212 42160 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee212 42161 | e212 42160 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e122 42162 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜂 ) | ||
Theorem | e112 42163 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee112 42164 | e112 42163 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜃 → 𝜂)) | ||
Theorem | e121 42165 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜂 ) | ||
Theorem | e211 42166 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee211 42167 | e211 42166 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e210 42168 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee210 42169 | e210 42168 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e201 42170 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee201 42171 | e201 42170 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ (𝜑 → 𝜏) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e120 42172 | A virtual deduction elimination rule. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee120 42173 | Virtual deduction rule e120 42172 without virtual deduction symbols. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ 𝜏 & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜂)) | ||
Theorem | e021 42174 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜓 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee021 42175 | e021 42174 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ (𝜓 → 𝜏) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜒 → 𝜂)) | ||
Theorem | e012 42176 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee012 42177 | e012 42176 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜃 → 𝜂)) | ||
Theorem | e102 42178 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ( 𝜑 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee102 42179 | e102 42178 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜃 → 𝜂)) | ||
Theorem | e22 42180 | A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ (𝜒 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
Theorem | e22an 42181 | Conjunction form of e22 42180. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
Theorem | ee22an 42182 | e22an 42181 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → 𝜏)) | ||
Theorem | e111 42183 | A virtual deduction elimination rule (see syl3c 66). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
Theorem | e1111 42184 | A virtual deduction elimination rule. (Contributed by Alan Sare, 6-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂)))) ⇒ ⊢ ( 𝜑 ▶ 𝜂 ) | ||
Theorem | e110 42185 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
Theorem | ee110 42186 | e110 42185 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | e101 42187 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
Theorem | ee101 42188 | e101 42187 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ (𝜑 → 𝜃) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | e011 42189 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜓 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜓 ▶ 𝜏 ) | ||
Theorem | ee011 42190 | e011 42189 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜓 → 𝜏) | ||
Theorem | e100 42191 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
Theorem | ee100 42192 | e100 42191 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | e010 42193 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜓 ▶ 𝜏 ) | ||
Theorem | ee010 42194 | e010 42193 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜓 → 𝜏) | ||
Theorem | e001 42195 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ ( 𝜒 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜒 ▶ 𝜏 ) | ||
Theorem | ee001 42196 | e001 42195 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜒 → 𝜏) | ||
Theorem | e11 42197 | A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ (𝜓 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
Theorem | e11an 42198 | Conjunction form of e11 42197. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
Theorem | ee11an 42199 | e11an 42198 without virtual deductions. syl22anc 835 is also e11an 42198 without virtual deductions, exept with a different order of hypotheses. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | e01 42200 | A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ (𝜑 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜓 ▶ 𝜃 ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |