| Metamath
Proof Explorer Theorem List (p. 422 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hashnexinj 42101* | If the number of elements of the domain are greater than the number of elements in a codomain, then there are two different values that map to the same. (Contributed by metakunt, 2-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (♯‘𝐵) < (♯‘𝐴)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) | ||
| Theorem | hashnexinjle 42102* | If the number of elements of the domain are greater than the number of elements in a codomain, then there are two different values that map to the same. Also we introduce a one sided inequality to simplify a duplicateable proof. (Contributed by metakunt, 2-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → (♯‘𝐵) < (♯‘𝐴)) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) | ||
| Theorem | aks6d1c2 42103* | Claim 2 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 2-May-2025.) |
| ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) & ⊢ 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅)) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) & ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ 𝐻 = (ℎ ∈ (ℕ0 ↑m (0...𝐴)) ↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) & ⊢ 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) & ⊢ 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵))) & ⊢ (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄 ∥ 𝑁 ∧ 𝑃 ≠ 𝑄)) ⇒ ⊢ (𝜑 → (♯‘(𝐻 “ (ℕ0 ↑m (0...𝐴)))) ≤ (𝑁↑𝐵)) | ||
| Theorem | rspcsbnea 42104* | Special case related to rspsbc 3833. (Contributed by metakunt, 5-May-2025.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ≠ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ≠ 𝐷) | ||
| Theorem | idomnnzpownz 42105 | A non-zero power in an integral domain is non-zero. (Contributed by metakunt, 5-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑅)) & ⊢ (𝜑 → 𝐴 ≠ (0g‘𝑅)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) ⇒ ⊢ (𝜑 → (𝑁 ↑ 𝐴) ≠ (0g‘𝑅)) | ||
| Theorem | idomnnzgmulnz 42106* | A finite product of non-zero elements in an integral domain is non-zero. (Contributed by metakunt, 5-May-2025.) |
| ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ≠ (0g‘𝑅)) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) ≠ (0g‘𝑅)) | ||
| Theorem | ringexp0nn 42107 | Zero to the power of a positive integer is zero. (Contributed by metakunt, 5-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) ⇒ ⊢ (𝜑 → (𝑁 ↑ (0g‘𝑅)) = (0g‘𝑅)) | ||
| Theorem | aks6d1c5lem0 42108* | Lemma for Claim 5 of Theorem 6.1, G defines a map into the polynomials. (Contributed by metakunt, 5-May-2025.) |
| ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 < 𝑃) & ⊢ 𝑋 = (var1‘𝐾) & ⊢ ↑ = (.g‘(mulGrp‘(Poly1‘𝐾))) & ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) ⇒ ⊢ (𝜑 → 𝐺:(ℕ0 ↑m (0...𝐴))⟶(Base‘(Poly1‘𝐾))) | ||
| Theorem | aks6d1c5lem1 42109 | Lemma for claim 5, evaluate the linear factor at -c to get a root. (Contributed by metakunt, 5-May-2025.) |
| ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 < 𝑃) & ⊢ 𝑋 = (var1‘𝐾) & ⊢ ↑ = (.g‘(mulGrp‘(Poly1‘𝐾))) & ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) & ⊢ (𝜑 → 𝐵 ∈ (0...𝐴)) & ⊢ (𝜑 → 𝐶 ∈ (0...𝐴)) ⇒ ⊢ (𝜑 → (𝐵 = 𝐶 ↔ (((eval1‘𝐾)‘(𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐵))))‘((ℤRHom‘𝐾)‘(0 − 𝐶))) = (0g‘𝐾))) | ||
| Theorem | aks6d1c5lem3 42110* | Lemma for Claim 5, polynomial division with a linear power. (Contributed by metakunt, 5-May-2025.) |
| ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 < 𝑃) & ⊢ 𝑋 = (var1‘𝐾) & ⊢ ↑ = (.g‘(mulGrp‘(Poly1‘𝐾))) & ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) & ⊢ (𝜑 → 𝑌 ∈ (ℕ0 ↑m (0...𝐴))) & ⊢ (𝜑 → 𝑊 ∈ (0...𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ≤ (𝑌‘𝑊)) & ⊢ 𝑄 = (quot1p‘𝐾) & ⊢ 𝑆 = (algSc‘(Poly1‘𝐾)) & ⊢ 𝑀 = (mulGrp‘(Poly1‘𝐾)) ⇒ ⊢ (𝜑 → ((𝐺‘𝑌)𝑄(𝐶 ↑ (𝑋(+g‘(Poly1‘𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))) = ((((𝑌‘𝑊) − 𝐶) ↑ (𝑋(+g‘(Poly1‘𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑊))))(+g‘𝑀)(𝑀 Σg (𝑖 ∈ ((0...𝐴) ∖ {𝑊}) ↦ ((𝑌‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))(𝑆‘((ℤRHom‘𝐾)‘𝑖)))))))) | ||
| Theorem | aks6d1c5lem2 42111* | Lemma for Claim 5, contradiction of different evaluations that map to the same. (Contributed by metakunt, 5-May-2025.) |
| ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 < 𝑃) & ⊢ 𝑋 = (var1‘𝐾) & ⊢ ↑ = (.g‘(mulGrp‘(Poly1‘𝐾))) & ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) & ⊢ (𝜑 → 𝑌 ∈ (ℕ0 ↑m (0...𝐴))) & ⊢ (𝜑 → 𝑍 ∈ (ℕ0 ↑m (0...𝐴))) & ⊢ (𝜑 → (𝐺‘𝑌) = (𝐺‘𝑍)) & ⊢ (𝜑 → 𝑊 ∈ (0...𝐴)) & ⊢ (𝜑 → (𝑌‘𝑊) < (𝑍‘𝑊)) ⇒ ⊢ (𝜑 → (0g‘𝐾) ≠ (0g‘𝐾)) | ||
| Theorem | aks6d1c5 42112* | Claim 5 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. The mapping defined by 𝐺 is injective. (Contributed by metakunt, 5-May-2025.) |
| ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 < 𝑃) & ⊢ 𝑋 = (var1‘𝐾) & ⊢ ↑ = (.g‘(mulGrp‘(Poly1‘𝐾))) & ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖) ↑ (𝑋(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) ⇒ ⊢ (𝜑 → 𝐺:(ℕ0 ↑m (0...𝐴))–1-1→(Base‘(Poly1‘𝐾))) | ||
| Theorem | deg1gprod 42113* | Degree multiplication is a homomorphism. (Contributed by metakunt, 6-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝑁 ∈ Fin) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 (𝐶 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝐶 ≠ (0g‘(Poly1‘𝑅)))) ⇒ ⊢ (𝜑 → (((deg1‘𝑅)‘((mulGrp‘(Poly1‘𝑅)) Σg (𝑥 ∈ 𝑁 ↦ 𝐶))) = Σ𝑛 ∈ 𝑁 ((deg1‘𝑅)‘((𝑥 ∈ 𝑁 ↦ 𝐶)‘𝑛)) ∧ 0 ≤ ((deg1‘𝑅)‘((mulGrp‘(Poly1‘𝑅)) Σg (𝑥 ∈ 𝑁 ↦ 𝐶))))) | ||
| Theorem | deg1pow 42114 | Exact degree of a power of a polynomial in an integral domain. (Contributed by metakunt, 6-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → 𝐹 ∈ (Base‘(Poly1‘𝑅))) & ⊢ (𝜑 → 𝐹 ≠ (0g‘(Poly1‘𝑅))) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ ↑ = (.g‘(mulGrp‘(Poly1‘𝑅))) & ⊢ 𝐷 = (deg1‘𝑅) ⇒ ⊢ (𝜑 → (𝐷‘(𝐴 ↑ 𝐹)) = (𝐴 · (𝐷‘𝐹))) | ||
| Theorem | 5bc2eq10 42115 | The value of 5 choose 2. (Contributed by metakunt, 8-Jun-2024.) |
| ⊢ (5C2) = ;10 | ||
| Theorem | facp2 42116 | The factorial of a successor's successor. (Contributed by metakunt, 19-Apr-2024.) |
| ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 2)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 2)))) | ||
| Theorem | 2np3bcnp1 42117 | Part of induction step for 2ap1caineq 42118. (Contributed by metakunt, 8-Jun-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((2 · (𝑁 + 1)) + 1)C(𝑁 + 1)) = ((((2 · 𝑁) + 1)C𝑁) · (2 · (((2 · 𝑁) + 3) / (𝑁 + 2))))) | ||
| Theorem | 2ap1caineq 42118 | Inequality for Theorem 6.6 for AKS. (Contributed by metakunt, 8-Jun-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 2 ≤ 𝑁) ⇒ ⊢ (𝜑 → (2↑(𝑁 + 1)) < (((2 · 𝑁) + 1)C𝑁)) | ||
| Theorem | sticksstones1 42119* | Different strictly monotone functions have different ranges. (Contributed by metakunt, 27-Sep-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≠ 𝑌) & ⊢ 𝐼 = inf({𝑧 ∈ (1...𝐾) ∣ (𝑋‘𝑧) ≠ (𝑌‘𝑧)}, ℝ, < ) ⇒ ⊢ (𝜑 → ran 𝑋 ≠ ran 𝑌) | ||
| Theorem | sticksstones2 42120* | The range function on strictly monotone functions with finite domain and codomain is an injective mapping onto 𝐾-elemental sets. (Contributed by metakunt, 27-Sep-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} & ⊢ 𝐹 = (𝑧 ∈ 𝐴 ↦ ran 𝑧) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) | ||
| Theorem | sticksstones3 42121* | The range function on strictly monotone functions with finite domain and codomain is an surjective mapping onto 𝐾-elemental sets. (Contributed by metakunt, 28-Sep-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} & ⊢ 𝐹 = (𝑧 ∈ 𝐴 ↦ ran 𝑧) ⇒ ⊢ (𝜑 → 𝐹:𝐴–onto→𝐵) | ||
| Theorem | sticksstones4 42122* | Equinumerosity lemma for sticks and stones. (Contributed by metakunt, 28-Sep-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐵 = {𝑎 ∈ 𝒫 (1...𝑁) ∣ (♯‘𝑎) = 𝐾} & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐴 ≈ 𝐵) | ||
| Theorem | sticksstones5 42123* | Count the number of strictly monotonely increasing functions on finite domains and codomains. (Contributed by metakunt, 28-Sep-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...𝑁) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → (♯‘𝐴) = (𝑁C𝐾)) | ||
| Theorem | sticksstones6 42124* | Function induces an order isomorphism for sticks and stones theorem. (Contributed by metakunt, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐺:(1...(𝐾 + 1))⟶ℕ0) & ⊢ (𝜑 → 𝑋 ∈ (1...𝐾)) & ⊢ (𝜑 → 𝑌 ∈ (1...𝐾)) & ⊢ (𝜑 → 𝑋 < 𝑌) & ⊢ 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖))) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) < (𝐹‘𝑌)) | ||
| Theorem | sticksstones7 42125* | Closure property of sticks and stones function. (Contributed by metakunt, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐺:(1...(𝐾 + 1))⟶ℕ0) & ⊢ (𝜑 → 𝑋 ∈ (1...𝐾)) & ⊢ 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖))) & ⊢ (𝜑 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝐺‘𝑖) = 𝑁) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ∈ (1...(𝑁 + 𝐾))) | ||
| Theorem | sticksstones8 42126* | Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | ||
| Theorem | sticksstones9 42127* | Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 = 0) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | ||
| Theorem | sticksstones10 42128* | Establish mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | ||
| Theorem | sticksstones11 42129* | Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 = 0) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | ||
| Theorem | sticksstones12a 42130* | Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 11-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → ∀𝑑 ∈ 𝐵 (𝐹‘(𝐺‘𝑑)) = 𝑑) | ||
| Theorem | sticksstones12 42131* | Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | ||
| Theorem | sticksstones13 42132* | Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | ||
| Theorem | sticksstones14 42133* | Sticks and stones with definitions as hypotheses. (Contributed by metakunt, 7-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} ⇒ ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) | ||
| Theorem | sticksstones15 42134* | Sticks and stones with almost collapsed definitions for positive integers. (Contributed by metakunt, 7-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ⇒ ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + 𝐾)C𝐾)) | ||
| Theorem | sticksstones16 42135* | Sticks and stones with collapsed definitions for positive integers. (Contributed by metakunt, 20-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} ⇒ ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) | ||
| Theorem | sticksstones17 42136* | Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)} & ⊢ (𝜑 → 𝑍:(1...𝐾)–1-1-onto→𝑆) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))) ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | ||
| Theorem | sticksstones18 42137* | Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)} & ⊢ (𝜑 → 𝑍:(1...𝐾)–1-1-onto→𝑆) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑥 ∈ 𝑆 ↦ (𝑎‘(◡𝑍‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | ||
| Theorem | sticksstones19 42138* | Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)} & ⊢ (𝜑 → 𝑍:(1...𝐾)–1-1-onto→𝑆) & ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑥 ∈ 𝑆 ↦ (𝑎‘(◡𝑍‘𝑥)))) & ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ (𝑦 ∈ (1...𝐾) ↦ (𝑏‘(𝑍‘𝑦)))) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | ||
| Theorem | sticksstones20 42139* | Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakung, 24-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...𝐾)⟶ℕ0 ∧ Σ𝑖 ∈ (1...𝐾)(𝑔‘𝑖) = 𝑁)} & ⊢ 𝐵 = {ℎ ∣ (ℎ:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (ℎ‘𝑖) = 𝑁)} & ⊢ (𝜑 → (♯‘𝑆) = 𝐾) ⇒ ⊢ (𝜑 → (♯‘𝐵) = ((𝑁 + (𝐾 − 1))C(𝐾 − 1))) | ||
| Theorem | sticksstones21 42140* | Lift sticks and stones to arbitrary finite non-empty sets. (Contributed by metakunt, 24-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) = 𝑁)} ⇒ ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + ((♯‘𝑆) − 1))C((♯‘𝑆) − 1))) | ||
| Theorem | sticksstones22 42141* | Non-exhaustive sticks and stones. (Contributed by metakunt, 26-Oct-2024.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)} ⇒ ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) | ||
| Theorem | sticksstones23 42142* | Non-exhaustive sticks and stones. (Contributed by metakunt, 7-May-2025.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → 𝑆 ≠ ∅) & ⊢ 𝐴 = {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁} ⇒ ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) | ||
| Theorem | aks6d1c6lem1 42143* | Lemma for claim 6, deduce exact degree of the polynomial. (Contributed by metakunt, 7-May-2025.) |
| ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ (𝜑 → 𝐴 < 𝑃) & ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) & ⊢ 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅)) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) & ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ 𝐻 = (ℎ ∈ (ℕ0 ↑m (0...𝐴)) ↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) & ⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) & ⊢ 𝑆 = {𝑠 ∈ (ℕ0 ↑m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} & ⊢ (𝜑 → 𝑈 ∈ (ℕ0 ↑m (0...𝐴))) ⇒ ⊢ (𝜑 → ((deg1‘𝐾)‘(𝐺‘𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈‘𝑡)) | ||
| Theorem | aks6d1c6lem2 42144* | Every primitive root is root of G(u)-G(v). (Contributed by metakunt, 8-May-2025.) |
| ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ (𝜑 → 𝐴 < 𝑃) & ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) & ⊢ 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅)) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) & ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ 𝐻 = (ℎ ∈ (ℕ0 ↑m (0...𝐴)) ↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) & ⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) & ⊢ 𝑆 = {𝑠 ∈ (ℕ0 ↑m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑉 ∈ 𝑆) & ⊢ (𝜑 → ((𝐻 ↾ 𝑆)‘𝑈) = ((𝐻 ↾ 𝑆)‘𝑉)) & ⊢ (𝜑 → 𝑈 ≠ 𝑉) & ⊢ 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸‘𝑗)(.g‘(mulGrp‘𝐾))𝑀)) & ⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0)))) ⇒ ⊢ (𝜑 → 𝐷 ≤ (♯‘(◡((eval1‘𝐾)‘((𝐺‘𝑈)(-g‘(Poly1‘𝐾))(𝐺‘𝑉))) “ {(0g‘𝐾)}))) | ||
| Theorem | aks6d1c6lem3 42145* | Claim 6 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf TODO, eliminate hypothesis. (Contributed by metakunt, 8-May-2025.) |
| ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ (𝜑 → 𝐴 < 𝑃) & ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) & ⊢ 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅)) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) & ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ 𝐻 = (ℎ ∈ (ℕ0 ↑m (0...𝐴)) ↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) & ⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) & ⊢ 𝑆 = {𝑠 ∈ (ℕ0 ↑m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} & ⊢ 𝐽 = (𝑗 ∈ (ℕ0 × ℕ0) ↦ ((𝐸‘𝑗)(.g‘(mulGrp‘𝐾))𝑀)) & ⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (ℕ0 × ℕ0)))) ⇒ ⊢ (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0 ↑m (0...𝐴))))) | ||
| Theorem | aks6d1c6lem4 42146* | Claim 6 of Theorem 6.1 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf Add hypothesis on coprimality, lift function to the integers so that group operations may be applied. Inline definition. (Contributed by metakunt, 14-May-2025.) |
| ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) & ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) & ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) & ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) & ⊢ 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅)) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) & ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ 𝐻 = (ℎ ∈ (ℕ0 ↑m (0...𝐴)) ↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) & ⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) & ⊢ 𝑆 = {𝑠 ∈ (ℕ0 ↑m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} & ⊢ 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) & ⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ≤ (♯‘(𝐽 “ (𝐸 “ (ℕ0 × ℕ0))))) & ⊢ 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))} ⇒ ⊢ (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0 ↑m (0...𝐴))))) | ||
| Theorem | aks6d1c6isolem1 42147* | Lemma to construct the map out of the quotient for AKS. (Contributed by metakunt, 14-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ CMnd) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) & ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) ⇒ ⊢ (𝜑 → ((𝑅 ↾s 𝑈) ↾s ran 𝐹) ∈ Grp) | ||
| Theorem | aks6d1c6isolem2 42148* | Lemma to construct the group homomorphism for the AKS Theorem. (Contributed by metakunt, 14-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ CMnd) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) & ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (ℤring GrpHom ((𝑅 ↾s 𝑈) ↾s ran 𝐹))) | ||
| Theorem | aks6d1c6isolem3 42149* | The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide 𝑅. (Contributed by metakunt, 15-May-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ CMnd) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} & ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) & ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) & ⊢ 𝑆 = (RSpan‘ℤring) ⇒ ⊢ (𝜑 → (𝑆‘{𝐾}) = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) | ||
| Theorem | aks6d1c6lem5 42150* | Eliminate the size hypothesis. Claim 6. (Contributed by metakunt, 15-May-2025.) |
| ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) & ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) & ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) & ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) & ⊢ 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅)) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) & ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ 𝐻 = (ℎ ∈ (ℕ0 ↑m (0...𝐴)) ↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) & ⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) & ⊢ 𝑆 = {𝑠 ∈ (ℕ0 ↑m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} & ⊢ 𝐽 = (𝑗 ∈ ℤ ↦ (𝑗(.g‘((mulGrp‘𝐾) ↾s 𝑈))𝑀)) & ⊢ 𝑈 = {𝑚 ∈ (Base‘(mulGrp‘𝐾)) ∣ ∃𝑛 ∈ (Base‘(mulGrp‘𝐾))(𝑛(+g‘(mulGrp‘𝐾))𝑚) = (0g‘(mulGrp‘𝐾))} & ⊢ 𝑋 = (𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG (◡𝐽 “ {(0g‘(((mulGrp‘𝐾) ↾s 𝑈) ↾s ran 𝐽))})))) ↦ ∪ (𝐽 “ 𝑏)) ⇒ ⊢ (𝜑 → ((𝐷 + 𝐴)C(𝐷 − 1)) ≤ (♯‘(𝐻 “ (ℕ0 ↑m (0...𝐴))))) | ||
| Theorem | bcled 42151 | Inequality for binomial coefficients. (Contributed by metakunt, 12-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴C𝐶) ≤ (𝐵C𝐶)) | ||
| Theorem | bcle2d 42152 | Inequality for binomial coefficients. (Contributed by metakunt, 12-May-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐷 ≤ 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶)C(𝐴 + 𝐷)) ≤ ((𝐵 + 𝐶)C(𝐵 + 𝐷))) | ||
| Theorem | aks6d1c7lem1 42153* | The last set of inequalities of Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 12-May-2025.) |
| ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) & ⊢ 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅)) & ⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) & ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) & ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) ⇒ ⊢ (𝜑 → (𝑁↑(⌊‘(√‘𝐷))) < ((𝐷 + 𝐴)C(𝐷 − 1))) | ||
| Theorem | aks6d1c7lem2 42154* | Contradiction to Claim 2 and Claim 7. We assumed in Claim 2 that there are two different prime numbers 𝑃 and 𝑄. (Contributed by metakunt, 16-May-2025.) |
| ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) & ⊢ 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅)) & ⊢ 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) & ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) & ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) & ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ 𝐻 = (ℎ ∈ (ℕ0 ↑m (0...𝐴)) ↦ (((eval1‘𝐾)‘(𝐺‘ℎ))‘𝑀)) & ⊢ 𝐵 = (⌊‘(√‘(♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))) & ⊢ 𝐶 = (𝐸 “ ((0...𝐵) × (0...𝐵))) & ⊢ (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄 ∥ 𝑁)) & ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) & ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) & ⊢ 𝑆 = {𝑠 ∈ (ℕ0 ↑m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠‘𝑡) ≤ (𝐷 − 1)} ⇒ ⊢ (𝜑 → 𝑃 = 𝑄) | ||
| Theorem | aks6d1c7lem3 42155* | Remove lots of hypotheses now that we have the AKS contradiction. (Contributed by metakunt, 16-May-2025.) |
| ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) & ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) & ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) & ⊢ (𝜑 → (𝑄 ∈ ℙ ∧ 𝑄 ∥ 𝑁)) ⇒ ⊢ (𝜑 → 𝑃 = 𝑄) | ||
| Theorem | aks6d1c7lem4 42156* | In the AKS algorithm there exists a unique prime number 𝑝 that divides 𝑁. (Contributed by metakunt, 16-May-2025.) |
| ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) & ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) & ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) ⇒ ⊢ (𝜑 → ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝑁) | ||
| Theorem | aks6d1c7 42157* | 𝑁 is a prime power if the hypotheses of the AKS algorithm hold. Claim 7 of Theorem 6.1 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. (Contributed by metakunt, 16-May-2025.) |
| ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) & ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) & ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) ⇒ ⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) | ||
| Theorem | rhmqusspan 42158* | Ring homomorphism out of a quotient given an ideal spanned by a singleton. (Contributed by metakunt, 7-Jun-2025.) |
| ⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 RingHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ (𝜑 → 𝐺 ∈ CRing) & ⊢ 𝑁 = ((RSpan‘𝐺)‘{𝑋}) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) & ⊢ (𝜑 → (𝐹‘𝑋) = 0 ) ⇒ ⊢ (𝜑 → (𝐽 ∈ (𝑄 RingHom 𝐻) ∧ ∀𝑔 ∈ (Base‘𝐺)(𝐽‘[𝑔](𝐺 ~QG 𝑁)) = (𝐹‘𝑔))) | ||
| Theorem | aks5lem1 42159* | Section 5 of https://www3.nd.edu/%7eandyp/notes/AKS.pdf. Construction of a ring homomorphism out of Zn X to K. (Contributed by metakunt, 7-Jun-2025.) |
| ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) & ⊢ 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺 ∘ 𝑝)) & ⊢ 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑞)) & ⊢ 𝐻 = (𝑟 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑟)‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ (Base‘𝐾)) ⇒ ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ ((Poly1‘(ℤ/nℤ‘𝑁)) RingHom 𝐾)) | ||
| Theorem | aks5lem2 42160* | Lemma for section 5 https://www3.nd.edu/%7eandyp/notes/AKS.pdf. Construct the quotient for the AKS reduction. (Contributed by metakunt, 7-Jun-2025.) |
| ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) & ⊢ 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺 ∘ 𝑝)) & ⊢ 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑞)) & ⊢ 𝐻 = (𝑟 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑟)‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ 𝐼 = (𝑠 ∈ (Base‘𝐴) ↦ ∪ ((𝐻 ∘ 𝐹) “ 𝑠)) & ⊢ 𝐴 = ((Poly1‘(ℤ/nℤ‘𝑁)) /s ((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) & ⊢ 𝐿 = ((RSpan‘(Poly1‘(ℤ/nℤ‘𝑁)))‘{((𝑅(.g‘(mulGrp‘(Poly1‘(ℤ/nℤ‘𝑁))))(var1‘(ℤ/nℤ‘𝑁)))(-g‘(Poly1‘(ℤ/nℤ‘𝑁)))(1r‘(Poly1‘(ℤ/nℤ‘𝑁))))}) & ⊢ (𝜑 → 𝑅 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐼 ∈ (𝐴 RingHom 𝐾) ∧ ∀𝑔 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁)))(𝐼‘[𝑔]((Poly1‘(ℤ/nℤ‘𝑁)) ~QG 𝐿)) = ((𝐻 ∘ 𝐹)‘𝑔))) | ||
| Theorem | ply1asclzrhval 42161 | Transfer results from algebraic scalars and ZR ring homomorphisms. (Contributed by metakunt, 17-Jun-2025.) |
| ⊢ 𝑊 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐵 = (ℤRHom‘𝑊) & ⊢ 𝐶 = (ℤRHom‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴‘(𝐶‘𝑋)) = (𝐵‘𝑋)) | ||
| Theorem | aks5lem3a 42162* | Lemma for AKS section 5. (Contributed by metakunt, 17-Jun-2025.) |
| ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) & ⊢ 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿)) & ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) & ⊢ 𝐹 = (𝑝 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ (𝐺 ∘ 𝑝)) & ⊢ 𝐺 = (𝑞 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑞)) & ⊢ 𝐻 = (𝑟 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑟)‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ 𝐼 = (𝑠 ∈ (Base‘𝐵) ↦ ∪ ((𝐻 ∘ 𝐹) “ 𝑠)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿)) ⇒ ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀))) | ||
| Theorem | aks5lem4a 42163* | Lemma for AKS section 5, reduce hypotheses. (Contributed by metakunt, 17-Jun-2025.) |
| ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) & ⊢ 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿)) & ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿)) ⇒ ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀))) | ||
| Theorem | aks5lem5a 42164* | Lemma for AKS, section 5, connect to Theorem 6.1. (Contributed by metakunt, 17-Jun-2025.) |
| ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) & ⊢ 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿)) & ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ⇒ ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) | ||
| Theorem | aks5lem6 42165* | Connect results of section 5 and Theorem 6.1 AKS. (Contributed by metakunt, 25-Jun-2025.) |
| ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) & ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) & ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) & ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) & ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) & ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) & ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) & ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) ⇒ ⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) | ||
| Theorem | indstrd 42166* | Strong induction, deduction version. (Contributed by Steven Nguyen, 13-Jul-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜒)) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | grpods 42167* | Relate sums of elements of orders and roots of unity. (Contributed by metakunt, 14-Jul-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝑚 ∈ (1...𝑁) ∣ 𝑚 ∥ 𝑁} (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥 ∈ 𝐵 ∣ (𝑁 ↑ 𝑥) = (0g‘𝐺)})) | ||
| Theorem | unitscyglem1 42168* | Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ 𝐵 ∣ (((od‘𝐺)‘𝐴) ↑ 𝑥) = (0g‘𝐺)}) = ((od‘𝐺)‘𝐴)) | ||
| Theorem | unitscyglem2 42169* | Lemma for unitscyg. (Contributed by metakunt, 13-Jul-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∥ (♯‘𝐵)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → ((od‘𝐺)‘𝐴) = 𝐷) & ⊢ (𝜑 → ∀𝑐 ∈ ℕ (𝑐 < 𝐷 → ((𝑐 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑐}) = (ϕ‘𝑐)))) ⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷)) | ||
| Theorem | unitscyglem3 42170* | Lemma for unitscyg. (Contributed by metakunt, 14-Jul-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛) ⇒ ⊢ (𝜑 → ∀𝑑 ∈ ℕ ((𝑑 ∥ (♯‘𝐵) ∧ {𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑} ≠ ∅) → (♯‘{𝑥 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑑}) = (ϕ‘𝑑))) | ||
| Theorem | unitscyglem4 42171* | Lemma for unitscyg (Contributed by metakunt, 14-Jul-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥 ∈ 𝐵 ∣ (𝑛 ↑ 𝑥) = (0g‘𝐺)}) ≤ 𝑛) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∥ (♯‘𝐵)) ⇒ ⊢ (𝜑 → (♯‘{𝑦 ∈ 𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷)) | ||
| Theorem | unitscyglem5 42172 | Lemma for unitscyg (Contributed by metakunt, 9-Aug-2025.) |
| ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ IDomn) & ⊢ (𝜑 → (Base‘𝑅) ∈ Fin) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∥ (♯‘(Base‘𝐺))) ⇒ ⊢ (𝜑 → ((mulGrp‘𝑅) PrimRoots 𝐷) ≠ ∅) | ||
| Theorem | aks5lem7 42173* | Lemma for aks5. We clean up the hypotheses compared to aks5lem6 42165. (Contributed by metakunt, 9-Aug-2025.) |
| ⊢ (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ) & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) & ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) & ⊢ (𝜑 → 𝑅 ∥ ((♯‘(Base‘𝐾)) − 1)) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) & ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) & ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) & ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) & ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) ⇒ ⊢ (𝜑 → 𝑁 = (𝑃↑(𝑃 pCnt 𝑁))) | ||
| Theorem | aks5lem8 42174* | Lemma for aks5. Clean up the conclusion. (Contributed by metakunt, 9-Aug-2025.) |
| ⊢ (𝜑 → (♯‘(Base‘𝐾)) ∈ ℕ) & ⊢ 𝑃 = (chr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝑃 ∥ 𝑁) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) & ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) & ⊢ (𝜑 → 𝑅 ∥ ((♯‘(Base‘𝐾)) − 1)) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) & ⊢ (𝜑 → ∀𝑏 ∈ (1...𝐴)(𝑏 gcd 𝑁) = 1) & ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) & ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) & ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) | ||
| Axiom | ax-exfinfld 42175* | Existence axiom for finite fields, eventually we want to construct them. (Contributed by metakunt, 13-Jul-2025.) |
| ⊢ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ∧ (chr‘𝑘) = 𝑝) | ||
| Theorem | exfinfldd 42176* | For any prime 𝑃 and any positive integer 𝑁 there exists a field 𝑘 such that 𝑘 contains 𝑃↑𝑁 elements. (Contributed by metakunt, 13-Jul-2025.) |
| ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑃↑𝑁) ∧ (chr‘𝑘) = 𝑃)) | ||
| Theorem | aks5 42177* | The AKS Primality test, given an integer 𝑁 greater than or equal to 3, find a coprime 𝑅 such that 𝑅 is big enough. Then, if a bunch of polynomial equalities in the residue ring hold then 𝑁 is a prime power. Currently depends on the axiom ax-exfinfld 42175, since we currently do not have the existence of finite fields in the database. (Contributed by metakunt, 16-Aug-2025.) |
| ⊢ 𝐴 = (⌊‘((√‘(ϕ‘𝑅)) · (2 logb 𝑁))) & ⊢ 𝑋 = (var1‘(ℤ/nℤ‘𝑁)) & ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) & ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))𝑋)(-g‘𝑆)(1r‘𝑆))}) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) & ⊢ (𝜑 → ((2 logb 𝑁)↑2) < ((odℤ‘𝑅)‘𝑁)) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)[(𝑁(.g‘(mulGrp‘𝑆))(𝑋(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎)))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))𝑋)(+g‘𝑆)((ℤRHom‘𝑆)‘𝑎))](𝑆 ~QG 𝐿)) & ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)(𝑎 gcd 𝑁) = 1) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ ℙ ∃𝑛 ∈ ℕ 𝑁 = (𝑝↑𝑛)) | ||
| Theorem | jarrii 42178 | Inference associated with jarri 107. A consequence of ax-mp 5 and ax-1 6. (Contributed by SN, 14-Oct-2025.) |
| ⊢ 𝜓 & ⊢ ((𝜑 → 𝜓) → 𝜒) ⇒ ⊢ 𝜒 | ||
| Theorem | intnanrt 42179 | Introduction of conjunct inside of a contradiction. Would be used in elfvov1 7395. (Contributed by SN, 18-May-2025.) |
| ⊢ (¬ 𝜑 → ¬ (𝜑 ∧ 𝜓)) | ||
| Theorem | ioin9i8 42180 | Miscellaneous inference creating a biconditional from an implied converse implication. (Contributed by Steven Nguyen, 17-Jul-2022.) |
| ⊢ (𝜑 → (𝜓 ∨ 𝜒)) & ⊢ (𝜒 → ¬ 𝜃) & ⊢ (𝜓 → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | ||
| Theorem | jaodd 42181 | Double deduction form of jaoi 857. (Contributed by Steven Nguyen, 17-Jul-2022.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜏) → 𝜃))) | ||
| Theorem | syl3an12 42182 | A double syllogism inference. (Contributed by SN, 15-Sep-2024.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | ||
| Theorem | exbiii 42183 | Inference associated with exbii 1848. Weaker version of eximii 1837. (Contributed by SN, 14-Oct-2025.) |
| ⊢ ∃𝑥𝜑 & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ∃𝑥𝜓 | ||
| Theorem | sbtd 42184* | A true statement is true upon substitution (deduction). A similar proof is possible for icht 47437. (Contributed by SN, 4-May-2024.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → [𝑡 / 𝑥]𝜓) | ||
| Theorem | sbor2 42185 | One direction of sbor 2306, using fewer axioms. Compare 19.33 1884. (Contributed by Steven Nguyen, 18-Aug-2023.) |
| ⊢ (([𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑 ∨ 𝜓)) | ||
| Theorem | sbalexi 42186* | Inference form of sbalex 2243, avoiding ax-10 2142 by using ax-gen 1795. (Contributed by SN, 12-Aug-2025.) |
| ⊢ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ⇒ ⊢ ∀𝑥(𝑥 = 𝑦 → 𝜑) | ||
| Theorem | 19.9dev 42187* | 19.9d 2204 in the case of an existential quantifier, avoiding the ax-10 2142 from nfex 2323 that would be used for the hypothesis of 19.9d 2204, at the cost of an additional DV condition on 𝑦, 𝜑. (Contributed by SN, 26-May-2024.) |
| ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑦𝜓)) | ||
| Theorem | 3rspcedvd 42188* | Triple application of rspcedvd 3581. (Contributed by Steven Nguyen, 27-Feb-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (𝜒 ↔ 𝜃)) & ⊢ ((𝜑 ∧ 𝑧 = 𝐶) → (𝜃 ↔ 𝜏)) & ⊢ (𝜑 → 𝜏) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 𝜓) | ||
| Theorem | sn-axrep5v 42189* | A condensed form of axrep5 5229. (Contributed by SN, 21-Sep-2023.) |
| ⊢ (∀𝑤 ∈ 𝑥 ∃*𝑧𝜑 → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) | ||
| Theorem | sn-axprlem3 42190* | axprlem3 5367 using only Tarski's FOL axiom schemes and ax-rep 5221. (Contributed by SN, 22-Sep-2023.) |
| ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏)) | ||
| Theorem | sn-exelALT 42191* | Alternate proof of exel 5380, avoiding ax-pr 5374 but requiring ax-5 1910, ax-9 2119, and ax-pow 5307. This is similar to how elALT2 5311 uses ax-pow 5307 instead of ax-pr 5374 compared to el 5384. (Contributed by SN, 18-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑦∃𝑥 𝑥 ∈ 𝑦 | ||
| Theorem | ss2ab1 42192 | Class abstractions in a subclass relationship, closed form. One direction of ss2ab 4016 using fewer axioms. (Contributed by SN, 22-Dec-2024.) |
| ⊢ (∀𝑥(𝜑 → 𝜓) → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) | ||
| Theorem | ssabdv 42193* | Deduction of abstraction subclass from implication. (Contributed by SN, 22-Dec-2024.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∣ 𝜓}) | ||
| Theorem | sn-iotalem 42194* | An unused lemma showing that many equivalences involving df-iota 6442 are potentially provable without ax-10 2142, ax-11 2158, ax-12 2178. (Contributed by SN, 6-Nov-2024.) |
| ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧 ∣ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧}} | ||
| Theorem | sn-iotalemcor 42195* | Corollary of sn-iotalem 42194. Compare sb8iota 6453. (Contributed by SN, 6-Nov-2024.) |
| ⊢ (℩𝑥𝜑) = (℩𝑦{𝑥 ∣ 𝜑} = {𝑦}) | ||
| Theorem | abbi1sn 42196* | Originally part of uniabio 6456. Convert a theorem about df-iota 6442 to one about dfiota2 6443, without ax-10 2142, ax-11 2158, ax-12 2178. Although, eu6 2567 uses ax-10 2142 and ax-12 2178. (Contributed by SN, 23-Nov-2024.) |
| ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) | ||
| Theorem | brif2 42197 | Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) |
| ⊢ (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵)) | ||
| Theorem | brif12 42198 | Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) |
| ⊢ (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷)) | ||
| Theorem | pssexg 42199 | The proper subset of a set is also a set. (Contributed by Steven Nguyen, 17-Jul-2022.) |
| ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
| Theorem | pssn0 42200 | A proper superset is nonempty. (Contributed by Steven Nguyen, 17-Jul-2022.) |
| ⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |