HomeHome Metamath Proof Explorer
Theorem List (p. 422 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 42101-42200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdfvd3i 42101 Inference form of dfvd3 42100. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )       (𝜑 → (𝜓 → (𝜒𝜃)))
 
Theoremdfvd3ir 42102 Right-to-left inference form of dfvd3 42100. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
 
Theoremdfvd3an 42103 Definition of a 3-hypothesis virtual deduction in vd conjunction form. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
((   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   ) ↔ ((𝜑𝜓𝜒) → 𝜃))
 
Theoremdfvd3ani 42104 Inference form of dfvd3an 42103. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   )       ((𝜑𝜓𝜒) → 𝜃)
 
Theoremdfvd3anir 42105 Right-to-left inference form of dfvd3an 42103. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓𝜒) → 𝜃)       (   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   )
 
Theoremvd01 42106 A virtual hypothesis virtually infers a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       (   𝜓   ▶   𝜑   )
 
Theoremvd02 42107 Two virtual hypotheses virtually infer a theorem. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       (   𝜓   ,   𝜒   ▶   𝜑   )
 
Theoremvd03 42108 A theorem is virtually inferred by the 3 virtual hypotheses. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       (   𝜓   ,   𝜒   ,   𝜃   ▶   𝜑   )
 
Theoremvd12 42109 A virtual deduction with 1 virtual hypothesis virtually inferring a virtual conclusion infers that the same conclusion is virtually inferred by the same virtual hypothesis and an additional hypothesis. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )       (   𝜑   ,   𝜒   ▶   𝜓   )
 
Theoremvd13 42110 A virtual deduction with 1 virtual hypothesis virtually inferring a virtual conclusion infers that the same conclusion is virtually inferred by the same virtual hypothesis and a two additional hypotheses. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )       (   𝜑   ,   𝜒   ,   𝜃   ▶   𝜓   )
 
Theoremvd23 42111 A virtual deduction with 2 virtual hypotheses virtually inferring a virtual conclusion infers that the same conclusion is virtually inferred by the same 2 virtual hypotheses and a third hypothesis. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )       (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   )
 
Theoremdfvd2imp 42112 The virtual deduction form of a 2-antecedent nested implication implies the 2-antecedent nested implication. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((   𝜑   ,   𝜓   ▶   𝜒   ) → (𝜑 → (𝜓𝜒)))
 
Theoremdfvd2impr 42113 A 2-antecedent nested implication implies its virtual deduction form. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓𝜒)) → (   𝜑   ,   𝜓   ▶   𝜒   ))
 
Theoremin2 42114 The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )       (   𝜑   ▶   (𝜓𝜒)   )
 
Theoremint2 42115 The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. Conventional form of int2 42115 is ex 412. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (   𝜑   ,   𝜓   )   ▶   𝜒   )       (   𝜑   ▶   (𝜓𝜒)   )
 
Theoremiin2 42116 in2 42114 without virtual deductions. (Contributed by Alan Sare, 20-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓𝜒))
 
Theoremin2an 42117 The virtual deduction introduction rule converting the second conjunct of the second virtual hypothesis into the antecedent of the conclusion. expd 415 is the non-virtual deduction form of in2an 42117. (Contributed by Alan Sare, 30-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   (𝜓𝜒)   ▶   𝜃   )       (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )
 
Theoremin3 42118 The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )       (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )
 
Theoremiin3 42119 in3 42118 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → (𝜓 → (𝜒𝜃)))
 
Theoremin3an 42120 The virtual deduction introduction rule converting the second conjunct of the third virtual hypothesis into the antecedent of the conclusion. exp4a 431 is the non-virtual deduction form of in3an 42120. (Contributed by Alan Sare, 25-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ,   (𝜒𝜃)   ▶   𝜏   )       (   𝜑   ,   𝜓   ,   𝜒   ▶   (𝜃𝜏)   )
 
Theoremint3 42121 The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. Conventional form of int3 42121 is 3expia 1119. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (   𝜑   ,   𝜓   ,   𝜒   )   ▶   𝜃   )       (   (   𝜑   ,   𝜓   )   ▶   (𝜒𝜃)   )
 
Theoremidn2 42122 Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜓   )
 
Theoremiden2 42123 Virtual deduction identity rule. simpr 484 in conjunction form Virtual Deduction notation. (Contributed by Alan Sare, 5-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (   𝜑   ,   𝜓   )   ▶   𝜓   )
 
Theoremidn3 42124 Virtual deduction identity rule for three virtual hypotheses. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ,   𝜒   ▶   𝜒   )
 
Theoremgen11 42125* Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1931 is gen11 42125 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )       (   𝜑   ▶   𝑥𝜓   )
 
Theoremgen11nv 42126 Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis without distinct variables. alrimih 1827 is gen11nv 42126 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (   𝜑   ▶   𝜓   )       (   𝜑   ▶   𝑥𝜓   )
 
Theoremgen12 42127* Virtual deduction generalizing rule for two quantifying variables and one virtual hypothesis. gen12 42127 is alrimivv 1932 with virtual deductions. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )       (   𝜑   ▶   𝑥𝑦𝜓   )
 
Theoremgen21 42128* Virtual deduction generalizing rule for one quantifying variables and two virtual hypothesis. gen21 42128 is alrimdv 1933 with virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )       (   𝜑   ,   𝜓   ▶   𝑥𝜒   )
 
Theoremgen21nv 42129 Virtual deduction form of alrimdh 1867. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (   𝜑   ,   𝜓   ▶   𝜒   )       (   𝜑   ,   𝜓   ▶   𝑥𝜒   )
 
Theoremgen31 42130* Virtual deduction generalizing rule for one quantifying variable and three virtual hypothesis. gen31 42130 is ggen31 42054 with virtual deductions. (Contributed by Alan Sare, 22-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )       (   𝜑   ,   𝜓   ,   𝜒   ▶   𝑥𝜃   )
 
Theoremgen22 42131* Virtual deduction generalizing rule for two quantifying variables and two virtual hypothesis. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )       (   𝜑   ,   𝜓   ▶   𝑥𝑦𝜒   )
 
Theoremggen22 42132* gen22 42131 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝑦𝜒))
 
Theoremexinst 42133 Existential Instantiation. Virtual deduction form of exlimexi 42033. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (   𝑥𝜑   ,   𝜑   ▶   𝜓   )       (∃𝑥𝜑𝜓)
 
Theoremexinst01 42134 Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in [Margaris] p. 79 and E in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   (   𝜑   ,   𝜓   ▶   𝜒   )    &   (𝜑 → ∀𝑥𝜑)    &   (𝜒 → ∀𝑥𝜒)       (   𝜑   ▶   𝜒   )
 
Theoremexinst11 42135 Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in [Margaris] p. 79 and E in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝑥𝜓   )    &   (   𝜑   ,   𝜓   ▶   𝜒   )    &   (𝜑 → ∀𝑥𝜑)    &   (𝜒 → ∀𝑥𝜒)       (   𝜑   ▶   𝜒   )
 
Theoreme1a 42136 A Virtual deduction elimination rule. syl 17 is e1a 42136 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (𝜓𝜒)       (   𝜑   ▶   𝜒   )
 
Theoremel1 42137 A Virtual deduction elimination rule. syl 17 is el1 42137 without virtual deductions. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (𝜓𝜒)       (   𝜑   ▶   𝜒   )
 
Theoreme1bi 42138 Biconditional form of e1a 42136. sylib 217 is e1bi 42138 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (𝜓𝜒)       (   𝜑   ▶   𝜒   )
 
Theoreme1bir 42139 Right biconditional form of e1a 42136. sylibr 233 is e1bir 42139 without virtual deductions. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (𝜒𝜓)       (   𝜑   ▶   𝜒   )
 
Theoreme2 42140 A virtual deduction elimination rule. syl6 35 is e2 42140 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (𝜒𝜃)       (   𝜑   ,   𝜓   ▶   𝜃   )
 
Theoreme2bi 42141 Biconditional form of e2 42140. syl6ib 250 is e2bi 42141 without virtual deductions. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (𝜒𝜃)       (   𝜑   ,   𝜓   ▶   𝜃   )
 
Theoreme2bir 42142 Right biconditional form of e2 42140. syl6ibr 251 is e2bir 42142 without virtual deductions. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (𝜃𝜒)       (   𝜑   ,   𝜓   ▶   𝜃   )
 
Theoremee223 42143 e223 42144 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓𝜃))    &   (𝜑 → (𝜓 → (𝜏𝜂)))    &   (𝜒 → (𝜃 → (𝜂𝜁)))       (𝜑 → (𝜓 → (𝜏𝜁)))
 
Theoreme223 42144 A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ,   𝜓   ▶   𝜃   )    &   (   𝜑   ,   𝜓   ,   𝜏   ▶   𝜂   )    &   (𝜒 → (𝜃 → (𝜂𝜁)))       (   𝜑   ,   𝜓   ,   𝜏   ▶   𝜁   )
 
Theoreme222 42145 A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ,   𝜓   ▶   𝜃   )    &   (   𝜑   ,   𝜓   ▶   𝜏   )    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )
 
Theoreme220 42146 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ,   𝜓   ▶   𝜃   )    &   𝜏    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )
 
Theoremee220 42147 e220 42146 without virtual deductions. (Contributed by Alan Sare, 12-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓𝜃))    &   𝜏    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))
 
Theoreme202 42148 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   𝜃    &   (   𝜑   ,   𝜓   ▶   𝜏   )    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )
 
Theoremee202 42149 e202 42148 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   𝜃    &   (𝜑 → (𝜓𝜏))    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))
 
Theoreme022 42150 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (   𝜓   ,   𝜒   ▶   𝜃   )    &   (   𝜓   ,   𝜒   ▶   𝜏   )    &   (𝜑 → (𝜃 → (𝜏𝜂)))       (   𝜓   ,   𝜒   ▶   𝜂   )
 
Theoremee022 42151 e022 42150 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜓 → (𝜒𝜃))    &   (𝜓 → (𝜒𝜏))    &   (𝜑 → (𝜃 → (𝜏𝜂)))       (𝜓 → (𝜒𝜂))
 
Theoreme002 42152 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   𝜓    &   (   𝜒   ,   𝜃   ▶   𝜏   )    &   (𝜑 → (𝜓 → (𝜏𝜂)))       (   𝜒   ,   𝜃   ▶   𝜂   )
 
Theoremee002 42153 e002 42152 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   𝜓    &   (𝜒 → (𝜃𝜏))    &   (𝜑 → (𝜓 → (𝜏𝜂)))       (𝜒 → (𝜃𝜂))
 
Theoreme020 42154 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (   𝜓   ,   𝜒   ▶   𝜃   )    &   𝜏    &   (𝜑 → (𝜃 → (𝜏𝜂)))       (   𝜓   ,   𝜒   ▶   𝜂   )
 
Theoremee020 42155 e020 42154 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜓 → (𝜒𝜃))    &   𝜏    &   (𝜑 → (𝜃 → (𝜏𝜂)))       (𝜓 → (𝜒𝜂))
 
Theoreme200 42156 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   𝜃    &   𝜏    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )
 
Theoremee200 42157 e200 42156 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   𝜃    &   𝜏    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))
 
Theoreme221 42158 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ,   𝜓   ▶   𝜃   )    &   (   𝜑   ▶   𝜏   )    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )
 
Theoremee221 42159 e221 42158 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓𝜃))    &   (𝜑𝜏)    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))
 
Theoreme212 42160 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ▶   𝜃   )    &   (   𝜑   ,   𝜓   ▶   𝜏   )    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )
 
Theoremee212 42161 e212 42160 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑𝜃)    &   (𝜑 → (𝜓𝜏))    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))
 
Theoreme122 42162 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (   𝜑   ,   𝜒   ▶   𝜃   )    &   (   𝜑   ,   𝜒   ▶   𝜏   )    &   (𝜓 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜒   ▶   𝜂   )
 
Theoreme112 42163 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (   𝜑   ▶   𝜒   )    &   (   𝜑   ,   𝜃   ▶   𝜏   )    &   (𝜓 → (𝜒 → (𝜏𝜂)))       (   𝜑   ,   𝜃   ▶   𝜂   )
 
Theoremee112 42164 e112 42163 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜑 → (𝜃𝜏))    &   (𝜓 → (𝜒 → (𝜏𝜂)))       (𝜑 → (𝜃𝜂))
 
Theoreme121 42165 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (   𝜑   ,   𝜒   ▶   𝜃   )    &   (   𝜑   ▶   𝜏   )    &   (𝜓 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜒   ▶   𝜂   )
 
Theoreme211 42166 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ▶   𝜃   )    &   (   𝜑   ▶   𝜏   )    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )
 
Theoremee211 42167 e211 42166 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑𝜃)    &   (𝜑𝜏)    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))
 
Theoreme210 42168 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ▶   𝜃   )    &   𝜏    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )
 
Theoremee210 42169 e210 42168 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑𝜃)    &   𝜏    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))
 
Theoreme201 42170 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   𝜃    &   (   𝜑   ▶   𝜏   )    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜓   ▶   𝜂   )
 
Theoremee201 42171 e201 42170 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   𝜃    &   (𝜑𝜏)    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))
 
Theoreme120 42172 A virtual deduction elimination rule. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (   𝜑   ,   𝜒   ▶   𝜃   )    &   𝜏    &   (𝜓 → (𝜃 → (𝜏𝜂)))       (   𝜑   ,   𝜒   ▶   𝜂   )
 
Theoremee120 42173 Virtual deduction rule e120 42172 without virtual deduction symbols. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   (𝜑 → (𝜒𝜃))    &   𝜏    &   (𝜓 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜒𝜂))
 
Theoreme021 42174 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (   𝜓   ,   𝜒   ▶   𝜃   )    &   (   𝜓   ▶   𝜏   )    &   (𝜑 → (𝜃 → (𝜏𝜂)))       (   𝜓   ,   𝜒   ▶   𝜂   )
 
Theoremee021 42175 e021 42174 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜓 → (𝜒𝜃))    &   (𝜓𝜏)    &   (𝜑 → (𝜃 → (𝜏𝜂)))       (𝜓 → (𝜒𝜂))
 
Theoreme012 42176 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (   𝜓   ▶   𝜒   )    &   (   𝜓   ,   𝜃   ▶   𝜏   )    &   (𝜑 → (𝜒 → (𝜏𝜂)))       (   𝜓   ,   𝜃   ▶   𝜂   )
 
Theoremee012 42177 e012 42176 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜓𝜒)    &   (𝜓 → (𝜃𝜏))    &   (𝜑 → (𝜒 → (𝜏𝜂)))       (𝜓 → (𝜃𝜂))
 
Theoreme102 42178 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   𝜒    &   (   𝜑   ,   𝜃   ▶   𝜏   )    &   (𝜓 → (𝜒 → (𝜏𝜂)))       (   𝜑   ,   𝜃   ▶   𝜂   )
 
Theoremee102 42179 e102 42178 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   𝜒    &   (𝜑 → (𝜃𝜏))    &   (𝜓 → (𝜒 → (𝜏𝜂)))       (𝜑 → (𝜃𝜂))
 
Theoreme22 42180 A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ,   𝜓   ▶   𝜃   )    &   (𝜒 → (𝜃𝜏))       (   𝜑   ,   𝜓   ▶   𝜏   )
 
Theoreme22an 42181 Conjunction form of e22 42180. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ,   𝜓   ▶   𝜒   )    &   (   𝜑   ,   𝜓   ▶   𝜃   )    &   ((𝜒𝜃) → 𝜏)       (   𝜑   ,   𝜓   ▶   𝜏   )
 
Theoremee22an 42182 e22an 42181 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓𝜃))    &   ((𝜒𝜃) → 𝜏)       (𝜑 → (𝜓𝜏))
 
Theoreme111 42183 A virtual deduction elimination rule (see syl3c 66). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (   𝜑   ▶   𝜒   )    &   (   𝜑   ▶   𝜃   )    &   (𝜓 → (𝜒 → (𝜃𝜏)))       (   𝜑   ▶   𝜏   )
 
Theoreme1111 42184 A virtual deduction elimination rule. (Contributed by Alan Sare, 6-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (   𝜑   ▶   𝜒   )    &   (   𝜑   ▶   𝜃   )    &   (   𝜑   ▶   𝜏   )    &   (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂))))       (   𝜑   ▶   𝜂   )
 
Theoreme110 42185 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (   𝜑   ▶   𝜒   )    &   𝜃    &   (𝜓 → (𝜒 → (𝜃𝜏)))       (   𝜑   ▶   𝜏   )
 
Theoremee110 42186 e110 42185 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   (𝜑𝜒)    &   𝜃    &   (𝜓 → (𝜒 → (𝜃𝜏)))       (𝜑𝜏)
 
Theoreme101 42187 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   𝜒    &   (   𝜑   ▶   𝜃   )    &   (𝜓 → (𝜒 → (𝜃𝜏)))       (   𝜑   ▶   𝜏   )
 
Theoremee101 42188 e101 42187 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   𝜒    &   (𝜑𝜃)    &   (𝜓 → (𝜒 → (𝜃𝜏)))       (𝜑𝜏)
 
Theoreme011 42189 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (   𝜓   ▶   𝜒   )    &   (   𝜓   ▶   𝜃   )    &   (𝜑 → (𝜒 → (𝜃𝜏)))       (   𝜓   ▶   𝜏   )
 
Theoremee011 42190 e011 42189 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜓𝜒)    &   (𝜓𝜃)    &   (𝜑 → (𝜒 → (𝜃𝜏)))       (𝜓𝜏)
 
Theoreme100 42191 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   𝜒    &   𝜃    &   (𝜓 → (𝜒 → (𝜃𝜏)))       (   𝜑   ▶   𝜏   )
 
Theoremee100 42192 e100 42191 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   𝜒    &   𝜃    &   (𝜓 → (𝜒 → (𝜃𝜏)))       (𝜑𝜏)
 
Theoreme010 42193 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (   𝜓   ▶   𝜒   )    &   𝜃    &   (𝜑 → (𝜒 → (𝜃𝜏)))       (   𝜓   ▶   𝜏   )
 
Theoremee010 42194 e010 42193 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜓𝜒)    &   𝜃    &   (𝜑 → (𝜒 → (𝜃𝜏)))       (𝜓𝜏)
 
Theoreme001 42195 A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   𝜓    &   (   𝜒   ▶   𝜃   )    &   (𝜑 → (𝜓 → (𝜃𝜏)))       (   𝜒   ▶   𝜏   )
 
Theoremee001 42196 e001 42195 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   𝜓    &   (𝜒𝜃)    &   (𝜑 → (𝜓 → (𝜃𝜏)))       (𝜒𝜏)
 
Theoreme11 42197 A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (   𝜑   ▶   𝜒   )    &   (𝜓 → (𝜒𝜃))       (   𝜑   ▶   𝜃   )
 
Theoreme11an 42198 Conjunction form of e11 42197. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝜓   )    &   (   𝜑   ▶   𝜒   )    &   ((𝜓𝜒) → 𝜃)       (   𝜑   ▶   𝜃   )
 
Theoremee11an 42199 e11an 42198 without virtual deductions. syl22anc 835 is also e11an 42198 without virtual deductions, exept with a different order of hypotheses. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   (𝜑𝜒)    &   ((𝜓𝜒) → 𝜃)       (𝜑𝜃)
 
Theoreme01 42200 A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (   𝜓   ▶   𝜒   )    &   (𝜑 → (𝜒𝜃))       (   𝜓   ▶   𝜃   )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >