Step | Hyp | Ref
| Expression |
1 | | cmsax 34579 |
. 2
class
mSAX |
2 | | vt |
. . 3
setvar π‘ |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vp |
. . . 4
setvar π |
5 | 2 | cv 1540 |
. . . . 5
class π‘ |
6 | | cmsa 34572 |
. . . . 5
class
mSA |
7 | 5, 6 | cfv 6543 |
. . . 4
class
(mSAβπ‘) |
8 | | cmvh 34458 |
. . . . . 6
class
mVH |
9 | 5, 8 | cfv 6543 |
. . . . 5
class
(mVHβπ‘) |
10 | 4 | cv 1540 |
. . . . . 6
class π |
11 | | cmvrs 34455 |
. . . . . . 7
class
mVars |
12 | 5, 11 | cfv 6543 |
. . . . . 6
class
(mVarsβπ‘) |
13 | 10, 12 | cfv 6543 |
. . . . 5
class
((mVarsβπ‘)βπ) |
14 | 9, 13 | cima 5679 |
. . . 4
class
((mVHβπ‘)
β ((mVarsβπ‘)βπ)) |
15 | 4, 7, 14 | cmpt 5231 |
. . 3
class (π β (mSAβπ‘) β¦ ((mVHβπ‘) β ((mVarsβπ‘)βπ))) |
16 | 2, 3, 15 | cmpt 5231 |
. 2
class (π‘ β V β¦ (π β (mSAβπ‘) β¦ ((mVHβπ‘) β ((mVarsβπ‘)βπ)))) |
17 | 1, 16 | wceq 1541 |
1
wff mSAX =
(π‘ β V β¦ (π β (mSAβπ‘) β¦ ((mVHβπ‘) β ((mVarsβπ‘)βπ)))) |