Detailed syntax breakdown of Definition df-msax
| Step | Hyp | Ref
| Expression |
| 1 | | cmsax 35535 |
. 2
class
mSAX |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vp |
. . . 4
setvar 𝑝 |
| 5 | 2 | cv 1538 |
. . . . 5
class 𝑡 |
| 6 | | cmsa 35528 |
. . . . 5
class
mSA |
| 7 | 5, 6 | cfv 6542 |
. . . 4
class
(mSA‘𝑡) |
| 8 | | cmvh 35414 |
. . . . . 6
class
mVH |
| 9 | 5, 8 | cfv 6542 |
. . . . 5
class
(mVH‘𝑡) |
| 10 | 4 | cv 1538 |
. . . . . 6
class 𝑝 |
| 11 | | cmvrs 35411 |
. . . . . . 7
class
mVars |
| 12 | 5, 11 | cfv 6542 |
. . . . . 6
class
(mVars‘𝑡) |
| 13 | 10, 12 | cfv 6542 |
. . . . 5
class
((mVars‘𝑡)‘𝑝) |
| 14 | 9, 13 | cima 5670 |
. . . 4
class
((mVH‘𝑡)
“ ((mVars‘𝑡)‘𝑝)) |
| 15 | 4, 7, 14 | cmpt 5207 |
. . 3
class (𝑝 ∈ (mSA‘𝑡) ↦ ((mVH‘𝑡) “ ((mVars‘𝑡)‘𝑝))) |
| 16 | 2, 3, 15 | cmpt 5207 |
. 2
class (𝑡 ∈ V ↦ (𝑝 ∈ (mSA‘𝑡) ↦ ((mVH‘𝑡) “ ((mVars‘𝑡)‘𝑝)))) |
| 17 | 1, 16 | wceq 1539 |
1
wff mSAX =
(𝑡 ∈ V ↦ (𝑝 ∈ (mSA‘𝑡) ↦ ((mVH‘𝑡) “ ((mVars‘𝑡)‘𝑝)))) |