Detailed syntax breakdown of Definition df-mst
| Step | Hyp | Ref
| Expression |
| 1 | | cmst 35597 |
. 2
class
mST |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | c0 4333 |
. . . . 5
class
∅ |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑡 |
| 6 | | cmtree 35596 |
. . . . . 6
class
mTree |
| 7 | 5, 6 | cfv 6561 |
. . . . 5
class
(mTree‘𝑡) |
| 8 | 4, 4, 7 | co 7431 |
. . . 4
class
(∅(mTree‘𝑡)∅) |
| 9 | | cmex 35472 |
. . . . . 6
class
mEx |
| 10 | 5, 9 | cfv 6561 |
. . . . 5
class
(mEx‘𝑡) |
| 11 | | cmvt 35468 |
. . . . . 6
class
mVT |
| 12 | 5, 11 | cfv 6561 |
. . . . 5
class
(mVT‘𝑡) |
| 13 | 10, 12 | cres 5687 |
. . . 4
class
((mEx‘𝑡)
↾ (mVT‘𝑡)) |
| 14 | 8, 13 | cres 5687 |
. . 3
class
((∅(mTree‘𝑡)∅) ↾ ((mEx‘𝑡) ↾ (mVT‘𝑡))) |
| 15 | 2, 3, 14 | cmpt 5225 |
. 2
class (𝑡 ∈ V ↦
((∅(mTree‘𝑡)∅) ↾ ((mEx‘𝑡) ↾ (mVT‘𝑡)))) |
| 16 | 1, 15 | wceq 1540 |
1
wff mST =
(𝑡 ∈ V ↦
((∅(mTree‘𝑡)∅) ↾ ((mEx‘𝑡) ↾ (mVT‘𝑡)))) |