Detailed syntax breakdown of Definition df-mxidl
Step | Hyp | Ref
| Expression |
1 | | cmxidl 31533 |
. 2
class
MaxIdeal |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | crg 19698 |
. . 3
class
Ring |
4 | | vi |
. . . . . . 7
setvar 𝑖 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑖 |
6 | 2 | cv 1538 |
. . . . . . 7
class 𝑟 |
7 | | cbs 16840 |
. . . . . . 7
class
Base |
8 | 6, 7 | cfv 6418 |
. . . . . 6
class
(Base‘𝑟) |
9 | 5, 8 | wne 2942 |
. . . . 5
wff 𝑖 ≠ (Base‘𝑟) |
10 | | vj |
. . . . . . . . 9
setvar 𝑗 |
11 | 10 | cv 1538 |
. . . . . . . 8
class 𝑗 |
12 | 5, 11 | wss 3883 |
. . . . . . 7
wff 𝑖 ⊆ 𝑗 |
13 | 10, 4 | weq 1967 |
. . . . . . . 8
wff 𝑗 = 𝑖 |
14 | 11, 8 | wceq 1539 |
. . . . . . . 8
wff 𝑗 = (Base‘𝑟) |
15 | 13, 14 | wo 843 |
. . . . . . 7
wff (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟)) |
16 | 12, 15 | wi 4 |
. . . . . 6
wff (𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))) |
17 | | clidl 20347 |
. . . . . . 7
class
LIdeal |
18 | 6, 17 | cfv 6418 |
. . . . . 6
class
(LIdeal‘𝑟) |
19 | 16, 10, 18 | wral 3063 |
. . . . 5
wff
∀𝑗 ∈
(LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))) |
20 | 9, 19 | wa 395 |
. . . 4
wff (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟)))) |
21 | 20, 4, 18 | crab 3067 |
. . 3
class {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))))} |
22 | 2, 3, 21 | cmpt 5153 |
. 2
class (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))))}) |
23 | 1, 22 | wceq 1539 |
1
wff MaxIdeal =
(𝑟 ∈ Ring ↦
{𝑖 ∈
(LIdeal‘𝑟) ∣
(𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))))}) |