Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlval Structured version   Visualization version   GIF version

Theorem mxidlval 32572
Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.)
Hypothesis
Ref Expression
mxidlval.1 𝐡 = (Baseβ€˜π‘…)
Assertion
Ref Expression
mxidlval (𝑅 ∈ Ring β†’ (MaxIdealβ€˜π‘…) = {𝑖 ∈ (LIdealβ€˜π‘…) ∣ (𝑖 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡)))})
Distinct variable group:   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐡(𝑖,𝑗)

Proof of Theorem mxidlval
Dummy variable π‘Ÿ is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . 3 (π‘Ÿ = 𝑅 β†’ (LIdealβ€˜π‘Ÿ) = (LIdealβ€˜π‘…))
2 fveq2 6891 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘…))
3 mxidlval.1 . . . . . 6 𝐡 = (Baseβ€˜π‘…)
42, 3eqtr4di 2790 . . . . 5 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = 𝐡)
54neeq2d 3001 . . . 4 (π‘Ÿ = 𝑅 β†’ (𝑖 β‰  (Baseβ€˜π‘Ÿ) ↔ 𝑖 β‰  𝐡))
64eqeq2d 2743 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (𝑗 = (Baseβ€˜π‘Ÿ) ↔ 𝑗 = 𝐡))
76orbi2d 914 . . . . . 6 (π‘Ÿ = 𝑅 β†’ ((𝑗 = 𝑖 ∨ 𝑗 = (Baseβ€˜π‘Ÿ)) ↔ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡)))
87imbi2d 340 . . . . 5 (π‘Ÿ = 𝑅 β†’ ((𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = (Baseβ€˜π‘Ÿ))) ↔ (𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡))))
91, 8raleqbidv 3342 . . . 4 (π‘Ÿ = 𝑅 β†’ (βˆ€π‘— ∈ (LIdealβ€˜π‘Ÿ)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = (Baseβ€˜π‘Ÿ))) ↔ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡))))
105, 9anbi12d 631 . . 3 (π‘Ÿ = 𝑅 β†’ ((𝑖 β‰  (Baseβ€˜π‘Ÿ) ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘Ÿ)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = (Baseβ€˜π‘Ÿ)))) ↔ (𝑖 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡)))))
111, 10rabeqbidv 3449 . 2 (π‘Ÿ = 𝑅 β†’ {𝑖 ∈ (LIdealβ€˜π‘Ÿ) ∣ (𝑖 β‰  (Baseβ€˜π‘Ÿ) ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘Ÿ)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = (Baseβ€˜π‘Ÿ))))} = {𝑖 ∈ (LIdealβ€˜π‘…) ∣ (𝑖 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡)))})
12 df-mxidl 32571 . 2 MaxIdeal = (π‘Ÿ ∈ Ring ↦ {𝑖 ∈ (LIdealβ€˜π‘Ÿ) ∣ (𝑖 β‰  (Baseβ€˜π‘Ÿ) ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘Ÿ)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = (Baseβ€˜π‘Ÿ))))})
13 fvex 6904 . . 3 (LIdealβ€˜π‘…) ∈ V
1413rabex 5332 . 2 {𝑖 ∈ (LIdealβ€˜π‘…) ∣ (𝑖 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡)))} ∈ V
1511, 12, 14fvmpt 6998 1 (𝑅 ∈ Ring β†’ (MaxIdealβ€˜π‘…) = {𝑖 ∈ (LIdealβ€˜π‘…) ∣ (𝑖 β‰  𝐡 ∧ βˆ€π‘— ∈ (LIdealβ€˜π‘…)(𝑖 βŠ† 𝑗 β†’ (𝑗 = 𝑖 ∨ 𝑗 = 𝐡)))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  {crab 3432   βŠ† wss 3948  β€˜cfv 6543  Basecbs 17143  Ringcrg 20055  LIdealclidl 20782  MaxIdealcmxidl 32570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-mxidl 32571
This theorem is referenced by:  ismxidl  32573
  Copyright terms: Public domain W3C validator