![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mxidlval | Structured version Visualization version GIF version |
Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) |
Ref | Expression |
---|---|
mxidlval.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
mxidlval | ⊢ (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . 3 ⊢ (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅)) | |
2 | fveq2 6907 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
3 | mxidlval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 2, 3 | eqtr4di 2793 | . . . . 5 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
5 | 4 | neeq2d 2999 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑖 ≠ (Base‘𝑟) ↔ 𝑖 ≠ 𝐵)) |
6 | 4 | eqeq2d 2746 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (𝑗 = (Base‘𝑟) ↔ 𝑗 = 𝐵)) |
7 | 6 | orbi2d 915 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟)) ↔ (𝑗 = 𝑖 ∨ 𝑗 = 𝐵))) |
8 | 7 | imbi2d 340 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))) ↔ (𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))) |
9 | 1, 8 | raleqbidv 3344 | . . . 4 ⊢ (𝑟 = 𝑅 → (∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))) ↔ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))) |
10 | 5, 9 | anbi12d 632 | . . 3 ⊢ (𝑟 = 𝑅 → ((𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟)))) ↔ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵))))) |
11 | 1, 10 | rabeqbidv 3452 | . 2 ⊢ (𝑟 = 𝑅 → {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))))} = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))}) |
12 | df-mxidl 33468 | . 2 ⊢ MaxIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))))}) | |
13 | fvex 6920 | . . 3 ⊢ (LIdeal‘𝑅) ∈ V | |
14 | 13 | rabex 5345 | . 2 ⊢ {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))} ∈ V |
15 | 11, 12, 14 | fvmpt 7016 | 1 ⊢ (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖 ≠ 𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝐵)))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 {crab 3433 ⊆ wss 3963 ‘cfv 6563 Basecbs 17245 Ringcrg 20251 LIdealclidl 21234 MaxIdealcmxidl 33467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-mxidl 33468 |
This theorem is referenced by: ismxidl 33470 |
Copyright terms: Public domain | W3C validator |