Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlval Structured version   Visualization version   GIF version

Theorem mxidlval 33439
Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.)
Hypothesis
Ref Expression
mxidlval.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
mxidlval (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))})
Distinct variable group:   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐵(𝑖,𝑗)

Proof of Theorem mxidlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . 3 (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅))
2 fveq2 6861 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 mxidlval.1 . . . . . 6 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2783 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
54neeq2d 2986 . . . 4 (𝑟 = 𝑅 → (𝑖 ≠ (Base‘𝑟) ↔ 𝑖𝐵))
64eqeq2d 2741 . . . . . . 7 (𝑟 = 𝑅 → (𝑗 = (Base‘𝑟) ↔ 𝑗 = 𝐵))
76orbi2d 915 . . . . . 6 (𝑟 = 𝑅 → ((𝑗 = 𝑖𝑗 = (Base‘𝑟)) ↔ (𝑗 = 𝑖𝑗 = 𝐵)))
87imbi2d 340 . . . . 5 (𝑟 = 𝑅 → ((𝑖𝑗 → (𝑗 = 𝑖𝑗 = (Base‘𝑟))) ↔ (𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵))))
91, 8raleqbidv 3321 . . . 4 (𝑟 = 𝑅 → (∀𝑗 ∈ (LIdeal‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = (Base‘𝑟))) ↔ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵))))
105, 9anbi12d 632 . . 3 (𝑟 = 𝑅 → ((𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = (Base‘𝑟)))) ↔ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))))
111, 10rabeqbidv 3427 . 2 (𝑟 = 𝑅 → {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = (Base‘𝑟))))} = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))})
12 df-mxidl 33438 . 2 MaxIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = (Base‘𝑟))))})
13 fvex 6874 . . 3 (LIdeal‘𝑅) ∈ V
1413rabex 5297 . 2 {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))} ∈ V
1511, 12, 14fvmpt 6971 1 (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  wss 3917  cfv 6514  Basecbs 17186  Ringcrg 20149  LIdealclidl 21123  MaxIdealcmxidl 33437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-mxidl 33438
This theorem is referenced by:  ismxidl  33440
  Copyright terms: Public domain W3C validator