Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mxidlval Structured version   Visualization version   GIF version

Theorem mxidlval 33278
Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.)
Hypothesis
Ref Expression
mxidlval.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
mxidlval (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))})
Distinct variable group:   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐵(𝑖,𝑗)

Proof of Theorem mxidlval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6896 . . 3 (𝑟 = 𝑅 → (LIdeal‘𝑟) = (LIdeal‘𝑅))
2 fveq2 6896 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 mxidlval.1 . . . . . 6 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2783 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
54neeq2d 2990 . . . 4 (𝑟 = 𝑅 → (𝑖 ≠ (Base‘𝑟) ↔ 𝑖𝐵))
64eqeq2d 2736 . . . . . . 7 (𝑟 = 𝑅 → (𝑗 = (Base‘𝑟) ↔ 𝑗 = 𝐵))
76orbi2d 913 . . . . . 6 (𝑟 = 𝑅 → ((𝑗 = 𝑖𝑗 = (Base‘𝑟)) ↔ (𝑗 = 𝑖𝑗 = 𝐵)))
87imbi2d 339 . . . . 5 (𝑟 = 𝑅 → ((𝑖𝑗 → (𝑗 = 𝑖𝑗 = (Base‘𝑟))) ↔ (𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵))))
91, 8raleqbidv 3329 . . . 4 (𝑟 = 𝑅 → (∀𝑗 ∈ (LIdeal‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = (Base‘𝑟))) ↔ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵))))
105, 9anbi12d 630 . . 3 (𝑟 = 𝑅 → ((𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = (Base‘𝑟)))) ↔ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))))
111, 10rabeqbidv 3436 . 2 (𝑟 = 𝑅 → {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = (Base‘𝑟))))} = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))})
12 df-mxidl 33277 . 2 MaxIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = (Base‘𝑟))))})
13 fvex 6909 . . 3 (LIdeal‘𝑅) ∈ V
1413rabex 5335 . 2 {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))} ∈ V
1511, 12, 14fvmpt 7004 1 (𝑅 ∈ Ring → (MaxIdeal‘𝑅) = {𝑖 ∈ (LIdeal‘𝑅) ∣ (𝑖𝐵 ∧ ∀𝑗 ∈ (LIdeal‘𝑅)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = 𝐵)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  wral 3050  {crab 3418  wss 3944  cfv 6549  Basecbs 17188  Ringcrg 20190  LIdealclidl 21119  MaxIdealcmxidl 33276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-mxidl 33277
This theorem is referenced by:  ismxidl  33279
  Copyright terms: Public domain W3C validator