Detailed syntax breakdown of Definition df-odz
| Step | Hyp | Ref
| Expression |
| 1 | | codz 16800 |
. 2
class
odℤ |
| 2 | | vn |
. . 3
setvar 𝑛 |
| 3 | | cn 12266 |
. . 3
class
ℕ |
| 4 | | vx |
. . . 4
setvar 𝑥 |
| 5 | 4 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 6 | 2 | cv 1539 |
. . . . . . 7
class 𝑛 |
| 7 | | cgcd 16531 |
. . . . . . 7
class
gcd |
| 8 | 5, 6, 7 | co 7431 |
. . . . . 6
class (𝑥 gcd 𝑛) |
| 9 | | c1 11156 |
. . . . . 6
class
1 |
| 10 | 8, 9 | wceq 1540 |
. . . . 5
wff (𝑥 gcd 𝑛) = 1 |
| 11 | | cz 12613 |
. . . . 5
class
ℤ |
| 12 | 10, 4, 11 | crab 3436 |
. . . 4
class {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} |
| 13 | | vm |
. . . . . . . . . 10
setvar 𝑚 |
| 14 | 13 | cv 1539 |
. . . . . . . . 9
class 𝑚 |
| 15 | | cexp 14102 |
. . . . . . . . 9
class
↑ |
| 16 | 5, 14, 15 | co 7431 |
. . . . . . . 8
class (𝑥↑𝑚) |
| 17 | | cmin 11492 |
. . . . . . . 8
class
− |
| 18 | 16, 9, 17 | co 7431 |
. . . . . . 7
class ((𝑥↑𝑚) − 1) |
| 19 | | cdvds 16290 |
. . . . . . 7
class
∥ |
| 20 | 6, 18, 19 | wbr 5143 |
. . . . . 6
wff 𝑛 ∥ ((𝑥↑𝑚) − 1) |
| 21 | 20, 13, 3 | crab 3436 |
. . . . 5
class {𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥↑𝑚) − 1)} |
| 22 | | cr 11154 |
. . . . 5
class
ℝ |
| 23 | | clt 11295 |
. . . . 5
class
< |
| 24 | 21, 22, 23 | cinf 9481 |
. . . 4
class
inf({𝑚 ∈
ℕ ∣ 𝑛 ∥
((𝑥↑𝑚) − 1)}, ℝ, <
) |
| 25 | 4, 12, 24 | cmpt 5225 |
. . 3
class (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥↑𝑚) − 1)}, ℝ, <
)) |
| 26 | 2, 3, 25 | cmpt 5225 |
. 2
class (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥↑𝑚) − 1)}, ℝ, <
))) |
| 27 | 1, 26 | wceq 1540 |
1
wff
odℤ = (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥↑𝑚) − 1)}, ℝ, <
))) |