MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odzval Structured version   Visualization version   GIF version

Theorem odzval 16838
Description: Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod 𝑁 for some 𝑁, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod 𝑁. In order to ensure the supremum is well-defined, we only define the expression when 𝐴 and 𝑁 are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzval ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
Distinct variable groups:   𝑛,𝑁   𝐴,𝑛

Proof of Theorem odzval
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . . . . . 9 (𝑚 = 𝑁 → (𝑥 gcd 𝑚) = (𝑥 gcd 𝑁))
21eqeq1d 2742 . . . . . . . 8 (𝑚 = 𝑁 → ((𝑥 gcd 𝑚) = 1 ↔ (𝑥 gcd 𝑁) = 1))
32rabbidv 3451 . . . . . . 7 (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1})
4 oveq1 7455 . . . . . . . . 9 (𝑛 = 𝑥 → (𝑛 gcd 𝑁) = (𝑥 gcd 𝑁))
54eqeq1d 2742 . . . . . . . 8 (𝑛 = 𝑥 → ((𝑛 gcd 𝑁) = 1 ↔ (𝑥 gcd 𝑁) = 1))
65cbvrabv 3454 . . . . . . 7 {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1}
73, 6eqtr4di 2798 . . . . . 6 (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1})
8 breq1 5169 . . . . . . . 8 (𝑚 = 𝑁 → (𝑚 ∥ ((𝑥𝑛) − 1) ↔ 𝑁 ∥ ((𝑥𝑛) − 1)))
98rabbidv 3451 . . . . . . 7 (𝑚 = 𝑁 → {𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)})
109infeq1d 9546 . . . . . 6 (𝑚 = 𝑁 → inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))
117, 10mpteq12dv 5257 . . . . 5 (𝑚 = 𝑁 → (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )))
12 df-odz 16812 . . . . 5 od = (𝑚 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)}, ℝ, < )))
13 zex 12648 . . . . . 6 ℤ ∈ V
1413mptrabex 7262 . . . . 5 (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )) ∈ V
1511, 12, 14fvmpt 7029 . . . 4 (𝑁 ∈ ℕ → (od𝑁) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )))
1615fveq1d 6922 . . 3 (𝑁 ∈ ℕ → ((od𝑁)‘𝐴) = ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))‘𝐴))
17 oveq1 7455 . . . . . 6 (𝑛 = 𝐴 → (𝑛 gcd 𝑁) = (𝐴 gcd 𝑁))
1817eqeq1d 2742 . . . . 5 (𝑛 = 𝐴 → ((𝑛 gcd 𝑁) = 1 ↔ (𝐴 gcd 𝑁) = 1))
1918elrab 3708 . . . 4 (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↔ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
20 oveq1 7455 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝑛) = (𝐴𝑛))
2120oveq1d 7463 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥𝑛) − 1) = ((𝐴𝑛) − 1))
2221breq2d 5178 . . . . . . 7 (𝑥 = 𝐴 → (𝑁 ∥ ((𝑥𝑛) − 1) ↔ 𝑁 ∥ ((𝐴𝑛) − 1)))
2322rabbidv 3451 . . . . . 6 (𝑥 = 𝐴 → {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)})
2423infeq1d 9546 . . . . 5 (𝑥 = 𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
25 eqid 2740 . . . . 5 (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))
26 ltso 11370 . . . . . 6 < Or ℝ
2726infex 9562 . . . . 5 inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ∈ V
2824, 25, 27fvmpt 7029 . . . 4 (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
2919, 28sylbir 235 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
3016, 29sylan9eq 2800 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
31303impb 1115 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  infcinf 9510  cr 11183  1c1 11185   < clt 11324  cmin 11520  cn 12293  cz 12639  cexp 14112  cdvds 16302   gcd cgcd 16540  odcodz 16810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-neg 11523  df-z 12640  df-odz 16812
This theorem is referenced by:  odzcllem  16839  odzdvds  16842  hashscontpow1  42078
  Copyright terms: Public domain W3C validator