| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq2 7440 | . . . . . . . . 9
⊢ (𝑚 = 𝑁 → (𝑥 gcd 𝑚) = (𝑥 gcd 𝑁)) | 
| 2 | 1 | eqeq1d 2738 | . . . . . . . 8
⊢ (𝑚 = 𝑁 → ((𝑥 gcd 𝑚) = 1 ↔ (𝑥 gcd 𝑁) = 1)) | 
| 3 | 2 | rabbidv 3443 | . . . . . . 7
⊢ (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1}) | 
| 4 |  | oveq1 7439 | . . . . . . . . 9
⊢ (𝑛 = 𝑥 → (𝑛 gcd 𝑁) = (𝑥 gcd 𝑁)) | 
| 5 | 4 | eqeq1d 2738 | . . . . . . . 8
⊢ (𝑛 = 𝑥 → ((𝑛 gcd 𝑁) = 1 ↔ (𝑥 gcd 𝑁) = 1)) | 
| 6 | 5 | cbvrabv 3446 | . . . . . . 7
⊢ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1} | 
| 7 | 3, 6 | eqtr4di 2794 | . . . . . 6
⊢ (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1}) | 
| 8 |  | breq1 5145 | . . . . . . . 8
⊢ (𝑚 = 𝑁 → (𝑚 ∥ ((𝑥↑𝑛) − 1) ↔ 𝑁 ∥ ((𝑥↑𝑛) − 1))) | 
| 9 | 8 | rabbidv 3443 | . . . . . . 7
⊢ (𝑚 = 𝑁 → {𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥↑𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}) | 
| 10 | 9 | infeq1d 9518 | . . . . . 6
⊢ (𝑚 = 𝑁 → inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
)) | 
| 11 | 7, 10 | mpteq12dv 5232 | . . . . 5
⊢ (𝑚 = 𝑁 → (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
))) | 
| 12 |  | df-odz 16803 | . . . . 5
⊢
odℤ = (𝑚 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
))) | 
| 13 |  | zex 12624 | . . . . . 6
⊢ ℤ
∈ V | 
| 14 | 13 | mptrabex 7246 | . . . . 5
⊢ (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < )) ∈
V | 
| 15 | 11, 12, 14 | fvmpt 7015 | . . . 4
⊢ (𝑁 ∈ ℕ →
(odℤ‘𝑁) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
))) | 
| 16 | 15 | fveq1d 6907 | . . 3
⊢ (𝑁 ∈ ℕ →
((odℤ‘𝑁)‘𝐴) = ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ))‘𝐴)) | 
| 17 |  | oveq1 7439 | . . . . . 6
⊢ (𝑛 = 𝐴 → (𝑛 gcd 𝑁) = (𝐴 gcd 𝑁)) | 
| 18 | 17 | eqeq1d 2738 | . . . . 5
⊢ (𝑛 = 𝐴 → ((𝑛 gcd 𝑁) = 1 ↔ (𝐴 gcd 𝑁) = 1)) | 
| 19 | 18 | elrab 3691 | . . . 4
⊢ (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↔ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) | 
| 20 |  | oveq1 7439 | . . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝑥↑𝑛) = (𝐴↑𝑛)) | 
| 21 | 20 | oveq1d 7447 | . . . . . . . 8
⊢ (𝑥 = 𝐴 → ((𝑥↑𝑛) − 1) = ((𝐴↑𝑛) − 1)) | 
| 22 | 21 | breq2d 5154 | . . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑁 ∥ ((𝑥↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑𝑛) − 1))) | 
| 23 | 22 | rabbidv 3443 | . . . . . 6
⊢ (𝑥 = 𝐴 → {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) | 
| 24 | 23 | infeq1d 9518 | . . . . 5
⊢ (𝑥 = 𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) | 
| 25 |  | eqid 2736 | . . . . 5
⊢ (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
)) | 
| 26 |  | ltso 11342 | . . . . . 6
⊢  < Or
ℝ | 
| 27 | 26 | infex 9534 | . . . . 5
⊢
inf({𝑛 ∈
ℕ ∣ 𝑁 ∥
((𝐴↑𝑛) − 1)}, ℝ, < ) ∈
V | 
| 28 | 24, 25, 27 | fvmpt 7015 | . . . 4
⊢ (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) | 
| 29 | 19, 28 | sylbir 235 | . . 3
⊢ ((𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) | 
| 30 | 16, 29 | sylan9eq 2796 | . 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) →
((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) | 
| 31 | 30 | 3impb 1114 | 1
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) →
((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) |