| Metamath
Proof Explorer Theorem List (p. 167 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dvdslcmf 16601* | The least common multiple of a set of integers is divisible by each of its elements. (Contributed by AV, 22-Aug-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) | ||
| Theorem | lcmfledvds 16602* | A positive integer which is divisible by all elements of a set of integers bounds the least common multiple of the set. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍) → ((𝐾 ∈ ℕ ∧ ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾) → (lcm‘𝑍) ≤ 𝐾)) | ||
| Theorem | lcmf 16603* | Characterization of the least common multiple of a set of integers (without 0): A positiven integer is the least common multiple of a set of integers iff it divides each of the elements of the set and every integer which divides each of the elements of the set is greater than or equal to this integer. (Contributed by AV, 22-Aug-2020.) |
| ⊢ ((𝐾 ∈ ℕ ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍)) → (𝐾 = (lcm‘𝑍) ↔ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘)))) | ||
| Theorem | lcmf0 16604 | The least common multiple of the empty set is 1. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| ⊢ (lcm‘∅) = 1 | ||
| Theorem | lcmfsn 16605 | The least common multiple of a singleton is its absolute value. (Contributed by AV, 22-Aug-2020.) |
| ⊢ (𝑀 ∈ ℤ → (lcm‘{𝑀}) = (abs‘𝑀)) | ||
| Theorem | lcmftp 16606 | The least common multiple of a triple of integers is the least common multiple of the third integer and the least common multiple of the first two integers. Although there would be a shorter proof using lcmfunsn 16614, this explicit proof (not based on induction) should be kept. (Proof modification is discouraged.) (Contributed by AV, 23-Aug-2020.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶)) | ||
| Theorem | lcmfunsnlem1 16607* | Lemma for lcmfdvds 16612 and lcmfunsnlem 16611 (Induction step part 1). (Contributed by AV, 25-Aug-2020.) |
| ⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚 ∥ 𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)) | ||
| Theorem | lcmfunsnlem2lem1 16608* | Lemma 1 for lcmfunsnlem2 16610. (Contributed by AV, 26-Aug-2020.) |
| ⊢ (((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)) | ||
| Theorem | lcmfunsnlem2lem2 16609* | Lemma 2 for lcmfunsnlem2 16610. (Contributed by AV, 26-Aug-2020.) |
| ⊢ (((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) | ||
| Theorem | lcmfunsnlem2 16610* | Lemma for lcmfunsn 16614 and lcmfunsnlem 16611 (Induction step part 2). (Contributed by AV, 26-Aug-2020.) |
| ⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) | ||
| Theorem | lcmfunsnlem 16611* | Lemma for lcmfdvds 16612 and lcmfunsn 16614. These two theorems must be proven simultaneously by induction on the cardinality of a finite set 𝑌, because they depend on each other. This can be seen by the two parts lcmfunsnlem1 16607 and lcmfunsnlem2 16610 of the induction step, each of them using both induction hypotheses. (Contributed by AV, 26-Aug-2020.) |
| ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑌 𝑚 ∥ 𝑘 → (lcm‘𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm‘𝑌) lcm 𝑛))) | ||
| Theorem | lcmfdvds 16612* | The least common multiple of a set of integers divides any integer which is divisible by all elements of the set. (Contributed by AV, 26-Aug-2020.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → (lcm‘𝑍) ∥ 𝐾)) | ||
| Theorem | lcmfdvdsb 16613* | Biconditional form of lcmfdvds 16612. (Contributed by AV, 26-Aug-2020.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ (lcm‘𝑍) ∥ 𝐾)) | ||
| Theorem | lcmfunsn 16614 | The lcm function for a union of a set of integer and a singleton. (Contributed by AV, 26-Aug-2020.) |
| ⊢ ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ∧ 𝑁 ∈ ℤ) → (lcm‘(𝑌 ∪ {𝑁})) = ((lcm‘𝑌) lcm 𝑁)) | ||
| Theorem | lcmfun 16615 | The lcm function for a union of sets of integers. (Contributed by AV, 27-Aug-2020.) |
| ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘(𝑌 ∪ 𝑍)) = ((lcm‘𝑌) lcm (lcm‘𝑍))) | ||
| Theorem | lcmfass 16616 | Associative law for the lcm function. (Contributed by AV, 27-Aug-2020.) |
| ⊢ (((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘({(lcm‘𝑌)} ∪ 𝑍)) = (lcm‘(𝑌 ∪ {(lcm‘𝑍)}))) | ||
| Theorem | lcmf2a3a4e12 16617 | The least common multiple of 2 , 3 and 4 is 12. (Contributed by AV, 27-Aug-2020.) |
| ⊢ (lcm‘{2, 3, 4}) = ;12 | ||
| Theorem | lcmflefac 16618 | The least common multiple of all positive integers less than or equal to an integer is less than or equal to the factorial of the integer. (Contributed by AV, 16-Aug-2020.) (Revised by AV, 27-Aug-2020.) |
| ⊢ (𝑁 ∈ ℕ → (lcm‘(1...𝑁)) ≤ (!‘𝑁)) | ||
According to Wikipedia "Coprime integers", see https://en.wikipedia.org/wiki/Coprime_integers (16-Aug-2020) "[...] two integers a and b are said to be relatively prime, mutually prime, or coprime [...] if the only positive integer (factor) that divides both of them is 1. Consequently, any prime number that divides one does not divide the other. This is equivalent to their greatest common divisor (gcd) being 1.". In the following, we use this equivalent characterization to say that 𝐴 ∈ ℤ and 𝐵 ∈ ℤ are coprime (or relatively prime) if (𝐴 gcd 𝐵) = 1. The equivalence of the definitions is shown by coprmgcdb 16619. The negation, i.e. two integers are not coprime, can be expressed either by (𝐴 gcd 𝐵) ≠ 1, see ncoprmgcdne1b 16620, or equivalently by 1 < (𝐴 gcd 𝐵), see ncoprmgcdgt1b 16621. A proof of Euclid's lemma based on coprimality is provided in coprmdvds 16623 (see euclemma 16683 for a version of Euclid's lemma for primes). | ||
| Theorem | coprmgcdb 16619* | Two positive integers are coprime, i.e. the only positive integer that divides both of them is 1, iff their greatest common divisor is 1. (Contributed by AV, 9-Aug-2020.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) | ||
| Theorem | ncoprmgcdne1b 16620* | Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. See prmdvdsncoprmbd 16697 for a version where the existential quantifier is restricted to primes. (Contributed by AV, 9-Aug-2020.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) | ||
| Theorem | ncoprmgcdgt1b 16621* | Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is greater than 1. (Contributed by AV, 9-Aug-2020.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ 1 < (𝐴 gcd 𝐵))) | ||
| Theorem | coprmdvds1 16622 | If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021.) |
| ⊢ ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1)) | ||
| Theorem | coprmdvds 16623 | Euclid's Lemma (see ProofWiki "Euclid's Lemma", 10-Jul-2021, https://proofwiki.org/wiki/Euclid's_Lemma): If an integer divides the product of two integers and is coprime to one of them, then it divides the other. See also theorem 1.5 in [ApostolNT] p. 16. Generalization of euclemma 16683. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by AV, 10-Jul-2021.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 · 𝑁) ∧ (𝐾 gcd 𝑀) = 1) → 𝐾 ∥ 𝑁)) | ||
| Theorem | coprmdvds2 16624 | If an integer is divisible by two coprime integers, then it is divisible by their product. (Contributed by Mario Carneiro, 24-Feb-2014.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ 𝐾 ∧ 𝑁 ∥ 𝐾) → (𝑀 · 𝑁) ∥ 𝐾)) | ||
| Theorem | mulgcddvds 16625 | One half of rpmulgcd2 16626, which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 gcd (𝑀 · 𝑁)) ∥ ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))) | ||
| Theorem | rpmulgcd2 16626 | If 𝑀 is relatively prime to 𝑁, then the GCD of 𝐾 with 𝑀 · 𝑁 is the product of the GCDs with 𝑀 and 𝑁 respectively. (Contributed by Mario Carneiro, 2-Jul-2015.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · (𝐾 gcd 𝑁))) | ||
| Theorem | qredeq 16627 | Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃 ∧ 𝑁 = 𝑄)) | ||
| Theorem | qredeu 16628* | Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| ⊢ (𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))) | ||
| Theorem | rpmul 16629 | If 𝐾 is relatively prime to 𝑀 and to 𝑁, it is also relatively prime to their product. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-Jul-2015.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd 𝑀) = 1 ∧ (𝐾 gcd 𝑁) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = 1)) | ||
| Theorem | rpdvds 16630 | If 𝐾 is relatively prime to 𝑁 then it is also relatively prime to any divisor 𝑀 of 𝑁. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑀) = 1) | ||
| Theorem | coprmprod 16631* | The product of the elements of a sequence of pairwise coprime positive integers is coprime to a positive integer which is coprime to all integers of the sequence. (Contributed by AV, 18-Aug-2020.) |
| ⊢ (((𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ 𝑀 ((𝐹‘𝑚) gcd 𝑁) = 1) → (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 → (∏𝑚 ∈ 𝑀 (𝐹‘𝑚) gcd 𝑁) = 1)) | ||
| Theorem | coprmproddvdslem 16632* | Lemma for coprmproddvds 16633: Induction step. (Contributed by AV, 19-Aug-2020.) |
| ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((((𝑦 ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ 𝑦 ∀𝑛 ∈ (𝑦 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑦 (𝐹‘𝑚) ∥ 𝐾) → ((((𝑦 ∪ {𝑧}) ⊆ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ)) ∧ (∀𝑚 ∈ (𝑦 ∪ {𝑧})∀𝑛 ∈ ((𝑦 ∪ {𝑧}) ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ (𝑦 ∪ {𝑧})(𝐹‘𝑚) ∥ 𝐾))) | ||
| Theorem | coprmproddvds 16633* | If a positive integer is divisible by each element of a set of pairwise coprime positive integers, then it is divisible by their product. (Contributed by AV, 19-Aug-2020.) |
| ⊢ (((𝑀 ⊆ ℕ ∧ 𝑀 ∈ Fin) ∧ (𝐾 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ (∀𝑚 ∈ 𝑀 ∀𝑛 ∈ (𝑀 ∖ {𝑚})((𝐹‘𝑚) gcd (𝐹‘𝑛)) = 1 ∧ ∀𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾)) → ∏𝑚 ∈ 𝑀 (𝐹‘𝑚) ∥ 𝐾) | ||
| Theorem | congr 16634* | Definition of congruence by integer multiple (see ProofWiki "Congruence (Number Theory)", 11-Jul-2021, https://proofwiki.org/wiki/Definition:Congruence_(Number_Theory)): An integer 𝐴 is congruent to an integer 𝐵 modulo 𝑀 if their difference is a multiple of 𝑀. See also the definition in [ApostolNT] p. 104: "... 𝑎 is congruent to 𝑏 modulo 𝑚, and we write 𝑎≡𝑏 (mod 𝑚) if 𝑚 divides the difference 𝑎 − 𝑏", or Wikipedia "Modular arithmetic - Congruence", https://en.wikipedia.org/wiki/Modular_arithmetic#Congruence, 11-Jul-2021,: "Given an integer n > 1, called a modulus, two integers are said to be congruent modulo n, if n is a divisor of their difference (i.e., if there is an integer k such that a-b = kn)". (Contributed by AV, 11-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = (𝐴 − 𝐵))) | ||
| Theorem | divgcdcoprm0 16635 | Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1) | ||
| Theorem | divgcdcoprmex 16636* | Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)) | ||
| Theorem | cncongr1 16637 | One direction of the bicondition in cncongr 16639. Theorem 5.4 in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))) | ||
| Theorem | cncongr2 16638 | The other direction of the bicondition in cncongr 16639. (Contributed by AV, 11-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁))) | ||
| Theorem | cncongr 16639 | Cancellability of Congruences (see ProofWiki "Cancellability of Congruences, https://proofwiki.org/wiki/Cancellability_of_Congruences, 10-Jul-2021): Two products with a common factor are congruent modulo a positive integer iff the other factors are congruent modulo the integer divided by the greatest common divisor of the integer and the common factor. See also Theorem 5.4 "Cancellation law" in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ (𝐴 mod 𝑀) = (𝐵 mod 𝑀))) | ||
| Theorem | cncongrcoprm 16640 | Corollary 1 of Cancellability of Congruences: Two products with a common factor are congruent modulo an integer being coprime to the common factor iff the other factors are congruent modulo the integer. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ (𝐶 gcd 𝑁) = 1)) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ (𝐴 mod 𝑁) = (𝐵 mod 𝑁))) | ||
Remark: to represent odd prime numbers, i.e., all prime numbers except 2, the idiom 𝑃 ∈ (ℙ ∖ {2}) is used. It is a little bit shorter than (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2). Both representations can be converted into each other by eldifsn 4750. | ||
| Syntax | cprime 16641 | Extend the definition of a class to include the set of prime numbers. |
| class ℙ | ||
| Definition | df-prm 16642* | Define the set of prime numbers. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o} | ||
| Theorem | isprm 16643* | The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) | ||
| Theorem | prmnn 16644 | A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | ||
| Theorem | prmz 16645 | A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.) |
| ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | ||
| Theorem | prmssnn 16646 | The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
| ⊢ ℙ ⊆ ℕ | ||
| Theorem | prmex 16647 | The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.) |
| ⊢ ℙ ∈ V | ||
| Theorem | 0nprm 16648 | 0 is not a prime number. Already Definition df-prm 16642 excludes 0 from being prime (ℙ = {𝑝 ∈ ℕ ∣ ...), but even if 𝑝 ∈ ℕ0 was allowed, the condition {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o would not hold for 𝑝 = 0, because {𝑛 ∈ ℕ ∣ 𝑛 ∥ 0} = ℕ, see dvds0 16241, and ¬ ℕ ≈ 2o (there are more than 2 positive integers). (Contributed by AV, 29-May-2023.) |
| ⊢ ¬ 0 ∈ ℙ | ||
| Theorem | 1nprm 16649 | 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
| ⊢ ¬ 1 ∈ ℙ | ||
| Theorem | 1idssfct 16650* | The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) | ||
| Theorem | isprm2lem 16651* | Lemma for isprm2 16652. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃})) | ||
| Theorem | isprm2 16652* | The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | ||
| Theorem | isprm3 16653* | The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧 ∥ 𝑃)) | ||
| Theorem | isprm4 16654* | The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) | ||
| Theorem | prmind2 16655* | A variation on prmind 16656 assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 · 𝑧) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ 𝜓 & ⊢ ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑) & ⊢ ((𝑦 ∈ (ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2)) → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜂) | ||
| Theorem | prmind 16656* | Perform induction over the multiplicative structure of ℕ. If a property 𝜑(𝑥) holds for the primes and 1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 · 𝑧) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ 𝜓 & ⊢ (𝑥 ∈ ℙ → 𝜑) & ⊢ ((𝑦 ∈ (ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2)) → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜂) | ||
| Theorem | dvdsprime 16657 | If 𝑀 divides a prime, then 𝑀 is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) | ||
| Theorem | nprm 16658 | A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ) | ||
| Theorem | nprmi 16659 | An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ & ⊢ 1 < 𝐴 & ⊢ 1 < 𝐵 & ⊢ (𝐴 · 𝐵) = 𝑁 ⇒ ⊢ ¬ 𝑁 ∈ ℙ | ||
| Theorem | dvdsnprmd 16660 | If a number is divisible by an integer greater than 1 and less than the number, the number is not prime. (Contributed by AV, 24-Jul-2021.) |
| ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐴 < 𝑁) & ⊢ (𝜑 → 𝐴 ∥ 𝑁) ⇒ ⊢ (𝜑 → ¬ 𝑁 ∈ ℙ) | ||
| Theorem | prm2orodd 16661 | A prime number is either 2 or odd. (Contributed by AV, 19-Jun-2021.) |
| ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃)) | ||
| Theorem | 2prm 16662 | 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
| ⊢ 2 ∈ ℙ | ||
| Theorem | 2mulprm 16663 | A multiple of two is prime iff the multiplier is one. (Contributed by AV, 8-Jun-2023.) |
| ⊢ (𝐴 ∈ ℤ → ((2 · 𝐴) ∈ ℙ ↔ 𝐴 = 1)) | ||
| Theorem | 3prm 16664 | 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ 3 ∈ ℙ | ||
| Theorem | 4nprm 16665 | 4 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 18-Feb-2014.) |
| ⊢ ¬ 4 ∈ ℙ | ||
| Theorem | prmuz2 16666 | A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | ||
| Theorem | prmgt1 16667 | A prime number is an integer greater than 1. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | ||
| Theorem | prmm2nn0 16668 | Subtracting 2 from a prime number results in a nonnegative integer. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
| ⊢ (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0) | ||
| Theorem | oddprmgt2 16669 | An odd prime is greater than 2. (Contributed by AV, 20-Aug-2021.) |
| ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃) | ||
| Theorem | oddprmge3 16670 | An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 20-Aug-2021.) |
| ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ≥‘3)) | ||
| Theorem | ge2nprmge4 16671 | A composite integer greater than or equal to 2 is greater than or equal to 4. (Contributed by AV, 5-Jun-2023.) |
| ⊢ ((𝑋 ∈ (ℤ≥‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ≥‘4)) | ||
| Theorem | sqnprm 16672 | A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ) | ||
| Theorem | dvdsprm 16673 | An integer greater than or equal to 2 divides a prime number iff it is equal to it. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (𝑁 ∥ 𝑃 ↔ 𝑁 = 𝑃)) | ||
| Theorem | exprmfct 16674* | Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑁) | ||
| Theorem | prmdvdsfz 16675* | Each integer greater than 1 and less than or equal to a fixed number is divisible by a prime less than or equal to this fixed number. (Contributed by AV, 15-Aug-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) | ||
| Theorem | nprmdvds1 16676 | No prime number divides 1. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 2-Jul-2015.) |
| ⊢ (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1) | ||
| Theorem | isprm5 16677* | One need only check prime divisors of 𝑃 up to √𝑃 in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃))) | ||
| Theorem | isprm7 16678* | One need only check prime divisors of 𝑃 up to √𝑃 in order to ensure primality. This version of isprm5 16677 combines the primality and bound on 𝑧 into a finite interval of prime numbers. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧 ∥ 𝑃)) | ||
| Theorem | maxprmfct 16679* | The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁} ⇒ ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆)) | ||
| Theorem | divgcdodd 16680 | Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))) | ||
This section is about coprimality with respect to primes, and a special version of Euclid's lemma for primes is provided, see euclemma 16683. | ||
| Theorem | coprm 16681 | A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) | ||
| Theorem | prmrp 16682 | Unequal prime numbers are relatively prime. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃 ≠ 𝑄)) | ||
| Theorem | euclemma 16683 | Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) ↔ (𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁))) | ||
| Theorem | isprm6 16684* | A number is prime iff it satisfies Euclid's lemma euclemma 16683. (Contributed by Mario Carneiro, 6-Sep-2015.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) | ||
| Theorem | prmdvdsexp 16685 | A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014.) (Revised by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴↑𝑁) ↔ 𝑃 ∥ 𝐴)) | ||
| Theorem | prmdvdsexpb 16686 | A prime divides a positive power of another iff they are equal. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 24-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 = 𝑄)) | ||
| Theorem | prmdvdsexpr 16687 | If a prime divides a nonnegative power of another, then they are equal. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄)) | ||
| Theorem | prmdvdssq 16688 | Condition for a prime dividing a square. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by SN, 21-Aug-2024.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ) → (𝑃 ∥ 𝑀 ↔ 𝑃 ∥ (𝑀↑2))) | ||
| Theorem | prmexpb 16689 | Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.) |
| ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (𝑄↑𝑁) ↔ (𝑃 = 𝑄 ∧ 𝑀 = 𝑁))) | ||
| Theorem | prmfac1 16690 | The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (!‘𝑁)) → 𝑃 ≤ 𝑁) | ||
| Theorem | dvdszzq 16691 | Divisibility for an integer quotient. (Contributed by Thierry Arnoux, 17-Sep-2023.) |
| ⊢ 𝑁 = (𝐴 / 𝐵) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝑃 ∥ 𝐴) & ⊢ (𝜑 → ¬ 𝑃 ∥ 𝐵) ⇒ ⊢ (𝜑 → 𝑃 ∥ 𝑁) | ||
| Theorem | rpexp 16692 | If two numbers 𝐴 and 𝐵 are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)) | ||
| Theorem | rpexp1i 16693 | Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) | ||
| Theorem | rpexp12i 16694 | Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = 1)) | ||
| Theorem | prmndvdsfaclt 16695 | A prime number does not divide the factorial of a nonnegative integer less than the prime number. (Contributed by AV, 13-Jul-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 < 𝑃 → ¬ 𝑃 ∥ (!‘𝑁))) | ||
| Theorem | prmdvdsbc 16696 | Condition for a prime number to divide a binomial coefficient. (Contributed by Thierry Arnoux, 17-Sep-2023.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑁)) | ||
| Theorem | prmdvdsncoprmbd 16697* | Two positive integers are not coprime iff a prime divides both integers. Deduction version of ncoprmgcdne1b 16620 with the existential quantifier over the primes instead of integers greater than or equal to 2. (Contributed by SN, 24-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (∃𝑝 ∈ ℙ (𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1)) | ||
| Theorem | ncoprmlnprm 16698 | If two positive integers are not coprime, the larger of them is not a prime number. (Contributed by AV, 9-Aug-2020.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ)) | ||
| Theorem | cncongrprm 16699 | Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃))) | ||
| Theorem | isevengcd2 16700 | The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.) |
| ⊢ (𝑍 ∈ ℤ → (2 ∥ 𝑍 ↔ (2 gcd 𝑍) = 2)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |