Detailed syntax breakdown of Definition df-omn
| Step | Hyp | Ref
| Expression |
| 1 | | comn 25035 |
. 2
class
Ω𝑛 |
| 2 | | vj |
. . 3
setvar 𝑗 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | ctop 22899 |
. . 3
class
Top |
| 5 | 2 | cv 1539 |
. . . 4
class 𝑗 |
| 6 | 5 | cuni 4907 |
. . 3
class ∪ 𝑗 |
| 7 | | vx |
. . . . . 6
setvar 𝑥 |
| 8 | | vp |
. . . . . 6
setvar 𝑝 |
| 9 | | cvv 3480 |
. . . . . 6
class
V |
| 10 | 7 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 11 | | c1st 8012 |
. . . . . . . . . 10
class
1st |
| 12 | 10, 11 | cfv 6561 |
. . . . . . . . 9
class
(1st ‘𝑥) |
| 13 | | ctopn 17466 |
. . . . . . . . 9
class
TopOpen |
| 14 | 12, 13 | cfv 6561 |
. . . . . . . 8
class
(TopOpen‘(1st ‘𝑥)) |
| 15 | | c2nd 8013 |
. . . . . . . . 9
class
2nd |
| 16 | 10, 15 | cfv 6561 |
. . . . . . . 8
class
(2nd ‘𝑥) |
| 17 | | comi 25034 |
. . . . . . . 8
class
Ω1 |
| 18 | 14, 16, 17 | co 7431 |
. . . . . . 7
class
((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)) |
| 19 | | cc0 11155 |
. . . . . . . . 9
class
0 |
| 20 | | c1 11156 |
. . . . . . . . 9
class
1 |
| 21 | | cicc 13390 |
. . . . . . . . 9
class
[,] |
| 22 | 19, 20, 21 | co 7431 |
. . . . . . . 8
class
(0[,]1) |
| 23 | 16 | csn 4626 |
. . . . . . . 8
class
{(2nd ‘𝑥)} |
| 24 | 22, 23 | cxp 5683 |
. . . . . . 7
class ((0[,]1)
× {(2nd ‘𝑥)}) |
| 25 | 18, 24 | cop 4632 |
. . . . . 6
class
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉 |
| 26 | 7, 8, 9, 9, 25 | cmpo 7433 |
. . . . 5
class (𝑥 ∈ V, 𝑝 ∈ V ↦
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉) |
| 27 | 26, 11 | ccom 5689 |
. . . 4
class ((𝑥 ∈ V, 𝑝 ∈ V ↦
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉) ∘ 1st
) |
| 28 | | cnx 17230 |
. . . . . . . 8
class
ndx |
| 29 | | cbs 17247 |
. . . . . . . 8
class
Base |
| 30 | 28, 29 | cfv 6561 |
. . . . . . 7
class
(Base‘ndx) |
| 31 | 30, 6 | cop 4632 |
. . . . . 6
class
〈(Base‘ndx), ∪ 𝑗〉 |
| 32 | | cts 17303 |
. . . . . . . 8
class
TopSet |
| 33 | 28, 32 | cfv 6561 |
. . . . . . 7
class
(TopSet‘ndx) |
| 34 | 33, 5 | cop 4632 |
. . . . . 6
class
〈(TopSet‘ndx), 𝑗〉 |
| 35 | 31, 34 | cpr 4628 |
. . . . 5
class
{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉} |
| 36 | 3 | cv 1539 |
. . . . 5
class 𝑦 |
| 37 | 35, 36 | cop 4632 |
. . . 4
class
〈{〈(Base‘ndx), ∪ 𝑗〉,
〈(TopSet‘ndx), 𝑗〉}, 𝑦〉 |
| 38 | 27, 37, 19 | cseq 14042 |
. . 3
class
seq0(((𝑥 ∈ V,
𝑝 ∈ V ↦
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉) ∘ 1st ),
〈{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉}, 𝑦〉) |
| 39 | 2, 3, 4, 6, 38 | cmpo 7433 |
. 2
class (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ seq0(((𝑥 ∈ V, 𝑝 ∈ V ↦
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉) ∘ 1st ),
〈{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉}, 𝑦〉)) |
| 40 | 1, 39 | wceq 1540 |
1
wff
Ω𝑛 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ seq0(((𝑥 ∈ V, 𝑝 ∈ V ↦
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉) ∘ 1st ),
〈{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉}, 𝑦〉)) |