Detailed syntax breakdown of Definition df-omn
Step | Hyp | Ref
| Expression |
1 | | comn 24146 |
. 2
class
Ω𝑛 |
2 | | vj |
. . 3
setvar 𝑗 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | ctop 22023 |
. . 3
class
Top |
5 | 2 | cv 1540 |
. . . 4
class 𝑗 |
6 | 5 | cuni 4844 |
. . 3
class ∪ 𝑗 |
7 | | vx |
. . . . . 6
setvar 𝑥 |
8 | | vp |
. . . . . 6
setvar 𝑝 |
9 | | cvv 3430 |
. . . . . 6
class
V |
10 | 7 | cv 1540 |
. . . . . . . . . 10
class 𝑥 |
11 | | c1st 7815 |
. . . . . . . . . 10
class
1st |
12 | 10, 11 | cfv 6430 |
. . . . . . . . 9
class
(1st ‘𝑥) |
13 | | ctopn 17113 |
. . . . . . . . 9
class
TopOpen |
14 | 12, 13 | cfv 6430 |
. . . . . . . 8
class
(TopOpen‘(1st ‘𝑥)) |
15 | | c2nd 7816 |
. . . . . . . . 9
class
2nd |
16 | 10, 15 | cfv 6430 |
. . . . . . . 8
class
(2nd ‘𝑥) |
17 | | comi 24145 |
. . . . . . . 8
class
Ω1 |
18 | 14, 16, 17 | co 7268 |
. . . . . . 7
class
((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)) |
19 | | cc0 10855 |
. . . . . . . . 9
class
0 |
20 | | c1 10856 |
. . . . . . . . 9
class
1 |
21 | | cicc 13064 |
. . . . . . . . 9
class
[,] |
22 | 19, 20, 21 | co 7268 |
. . . . . . . 8
class
(0[,]1) |
23 | 16 | csn 4566 |
. . . . . . . 8
class
{(2nd ‘𝑥)} |
24 | 22, 23 | cxp 5586 |
. . . . . . 7
class ((0[,]1)
× {(2nd ‘𝑥)}) |
25 | 18, 24 | cop 4572 |
. . . . . 6
class
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉 |
26 | 7, 8, 9, 9, 25 | cmpo 7270 |
. . . . 5
class (𝑥 ∈ V, 𝑝 ∈ V ↦
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉) |
27 | 26, 11 | ccom 5592 |
. . . 4
class ((𝑥 ∈ V, 𝑝 ∈ V ↦
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉) ∘ 1st
) |
28 | | cnx 16875 |
. . . . . . . 8
class
ndx |
29 | | cbs 16893 |
. . . . . . . 8
class
Base |
30 | 28, 29 | cfv 6430 |
. . . . . . 7
class
(Base‘ndx) |
31 | 30, 6 | cop 4572 |
. . . . . 6
class
〈(Base‘ndx), ∪ 𝑗〉 |
32 | | cts 16949 |
. . . . . . . 8
class
TopSet |
33 | 28, 32 | cfv 6430 |
. . . . . . 7
class
(TopSet‘ndx) |
34 | 33, 5 | cop 4572 |
. . . . . 6
class
〈(TopSet‘ndx), 𝑗〉 |
35 | 31, 34 | cpr 4568 |
. . . . 5
class
{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉} |
36 | 3 | cv 1540 |
. . . . 5
class 𝑦 |
37 | 35, 36 | cop 4572 |
. . . 4
class
〈{〈(Base‘ndx), ∪ 𝑗〉,
〈(TopSet‘ndx), 𝑗〉}, 𝑦〉 |
38 | 27, 37, 19 | cseq 13702 |
. . 3
class
seq0(((𝑥 ∈ V,
𝑝 ∈ V ↦
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉) ∘ 1st ),
〈{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉}, 𝑦〉) |
39 | 2, 3, 4, 6, 38 | cmpo 7270 |
. 2
class (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ seq0(((𝑥 ∈ V, 𝑝 ∈ V ↦
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉) ∘ 1st ),
〈{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉}, 𝑦〉)) |
40 | 1, 39 | wceq 1541 |
1
wff
Ω𝑛 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ seq0(((𝑥 ∈ V, 𝑝 ∈ V ↦
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉) ∘ 1st ),
〈{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉}, 𝑦〉)) |