| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pi1 | Structured version Visualization version GIF version | ||
| Description: Define the fundamental group, whose operation is given by concatenation of homotopy classes of loops. Definition of [Hatcher] p. 26. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| df-pi1 | ⊢ π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpi1 25036 | . 2 class π1 | |
| 2 | vj | . . 3 setvar 𝑗 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | ctop 22899 | . . 3 class Top | |
| 5 | 2 | cv 1539 | . . . 4 class 𝑗 |
| 6 | 5 | cuni 4907 | . . 3 class ∪ 𝑗 |
| 7 | 3 | cv 1539 | . . . . 5 class 𝑦 |
| 8 | comi 25034 | . . . . 5 class Ω1 | |
| 9 | 5, 7, 8 | co 7431 | . . . 4 class (𝑗 Ω1 𝑦) |
| 10 | cphtpc 25001 | . . . . 5 class ≃ph | |
| 11 | 5, 10 | cfv 6561 | . . . 4 class ( ≃ph‘𝑗) |
| 12 | cqus 17550 | . . . 4 class /s | |
| 13 | 9, 11, 12 | co 7431 | . . 3 class ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗)) |
| 14 | 2, 3, 4, 6, 13 | cmpo 7433 | . 2 class (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗))) |
| 15 | 1, 14 | wceq 1540 | 1 wff π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: pi1val 25070 |
| Copyright terms: Public domain | W3C validator |