Detailed syntax breakdown of Definition df-oms
| Step | Hyp | Ref
| Expression |
| 1 | | coms 34293 |
. 2
class
toOMeas |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | va |
. . . 4
setvar 𝑎 |
| 5 | 2 | cv 1539 |
. . . . . . 7
class 𝑟 |
| 6 | 5 | cdm 5685 |
. . . . . 6
class dom 𝑟 |
| 7 | 6 | cuni 4907 |
. . . . 5
class ∪ dom 𝑟 |
| 8 | 7 | cpw 4600 |
. . . 4
class 𝒫
∪ dom 𝑟 |
| 9 | | vx |
. . . . . . 7
setvar 𝑥 |
| 10 | 4 | cv 1539 |
. . . . . . . . . 10
class 𝑎 |
| 11 | | vz |
. . . . . . . . . . . 12
setvar 𝑧 |
| 12 | 11 | cv 1539 |
. . . . . . . . . . 11
class 𝑧 |
| 13 | 12 | cuni 4907 |
. . . . . . . . . 10
class ∪ 𝑧 |
| 14 | 10, 13 | wss 3951 |
. . . . . . . . 9
wff 𝑎 ⊆ ∪ 𝑧 |
| 15 | | com 7887 |
. . . . . . . . . 10
class
ω |
| 16 | | cdom 8983 |
. . . . . . . . . 10
class
≼ |
| 17 | 12, 15, 16 | wbr 5143 |
. . . . . . . . 9
wff 𝑧 ≼
ω |
| 18 | 14, 17 | wa 395 |
. . . . . . . 8
wff (𝑎 ⊆ ∪ 𝑧
∧ 𝑧 ≼
ω) |
| 19 | 6 | cpw 4600 |
. . . . . . . 8
class 𝒫
dom 𝑟 |
| 20 | 18, 11, 19 | crab 3436 |
. . . . . . 7
class {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} |
| 21 | 9 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 22 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 23 | 22 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 24 | 23, 5 | cfv 6561 |
. . . . . . . 8
class (𝑟‘𝑦) |
| 25 | 21, 24, 22 | cesum 34028 |
. . . . . . 7
class
Σ*𝑦
∈ 𝑥(𝑟‘𝑦) |
| 26 | 9, 20, 25 | cmpt 5225 |
. . . . . 6
class (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑟‘𝑦)) |
| 27 | 26 | crn 5686 |
. . . . 5
class ran
(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑟‘𝑦)) |
| 28 | | cc0 11155 |
. . . . . 6
class
0 |
| 29 | | cpnf 11292 |
. . . . . 6
class
+∞ |
| 30 | | cicc 13390 |
. . . . . 6
class
[,] |
| 31 | 28, 29, 30 | co 7431 |
. . . . 5
class
(0[,]+∞) |
| 32 | | clt 11295 |
. . . . 5
class
< |
| 33 | 27, 31, 32 | cinf 9481 |
. . . 4
class inf(ran
(𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑟‘𝑦)), (0[,]+∞), < ) |
| 34 | 4, 8, 33 | cmpt 5225 |
. . 3
class (𝑎 ∈ 𝒫 ∪ dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑟‘𝑦)), (0[,]+∞), < )) |
| 35 | 2, 3, 34 | cmpt 5225 |
. 2
class (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 ∪ dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑟‘𝑦)), (0[,]+∞), < ))) |
| 36 | 1, 35 | wceq 1540 |
1
wff toOMeas =
(𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 ∪ dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑟‘𝑦)), (0[,]+∞), < ))) |