Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsval Structured version   Visualization version   GIF version

Theorem omsval 32247
Description: Value of the function mapping a content function to the corresponding outer measure. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
omsval (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
Distinct variable group:   𝑥,𝑎,𝑦,𝑧,𝑅

Proof of Theorem omsval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 df-oms 32246 . 2 toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < )))
2 dmeq 5807 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
32unieqd 4855 . . . 4 (𝑟 = 𝑅 dom 𝑟 = dom 𝑅)
43pweqd 4554 . . 3 (𝑟 = 𝑅 → 𝒫 dom 𝑟 = 𝒫 dom 𝑅)
52pweqd 4554 . . . . . . 7 (𝑟 = 𝑅 → 𝒫 dom 𝑟 = 𝒫 dom 𝑅)
6 rabeq 3417 . . . . . . 7 (𝒫 dom 𝑟 = 𝒫 dom 𝑅 → {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} = {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)})
75, 6syl 17 . . . . . 6 (𝑟 = 𝑅 → {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} = {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)})
8 simpl 483 . . . . . . . 8 ((𝑟 = 𝑅𝑦𝑥) → 𝑟 = 𝑅)
98fveq1d 6770 . . . . . . 7 ((𝑟 = 𝑅𝑦𝑥) → (𝑟𝑦) = (𝑅𝑦))
109esumeq2dv 31993 . . . . . 6 (𝑟 = 𝑅 → Σ*𝑦𝑥(𝑟𝑦) = Σ*𝑦𝑥(𝑅𝑦))
117, 10mpteq12dv 5166 . . . . 5 (𝑟 = 𝑅 → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1211rneqd 5842 . . . 4 (𝑟 = 𝑅 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)) = ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1312infeq1d 9225 . . 3 (𝑟 = 𝑅 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < ) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
144, 13mpteq12dv 5166 . 2 (𝑟 = 𝑅 → (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < )) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
15 id 22 . 2 (𝑅 ∈ V → 𝑅 ∈ V)
16 dmexg 7742 . . 3 (𝑅 ∈ V → dom 𝑅 ∈ V)
17 uniexg 7585 . . 3 (dom 𝑅 ∈ V → dom 𝑅 ∈ V)
18 pwexg 5301 . . 3 ( dom 𝑅 ∈ V → 𝒫 dom 𝑅 ∈ V)
19 mptexg 7091 . . 3 (𝒫 dom 𝑅 ∈ V → (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )) ∈ V)
2016, 17, 18, 194syl 19 . 2 (𝑅 ∈ V → (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )) ∈ V)
211, 14, 15, 20fvmptd3 6892 1 (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3431  wss 3888  𝒫 cpw 4535   cuni 4841   class class class wbr 5075  cmpt 5158  dom cdm 5586  ran crn 5587  cfv 6428  (class class class)co 7269  ωcom 7704  cdom 8720  infcinf 9189  0cc0 10860  +∞cpnf 10995   < clt 10998  [,]cicc 13071  Σ*cesum 31982  toOMeascoms 32245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5486  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-ov 7272  df-sup 9190  df-inf 9191  df-esum 31983  df-oms 32246
This theorem is referenced by:  omsfval  32248  omsf  32250
  Copyright terms: Public domain W3C validator