Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsval Structured version   Visualization version   GIF version

Theorem omsval 34291
Description: Value of the function mapping a content function to the corresponding outer measure. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
omsval (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
Distinct variable group:   𝑥,𝑎,𝑦,𝑧,𝑅

Proof of Theorem omsval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 df-oms 34290 . 2 toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < )))
2 dmeq 5870 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
32unieqd 4887 . . . 4 (𝑟 = 𝑅 dom 𝑟 = dom 𝑅)
43pweqd 4583 . . 3 (𝑟 = 𝑅 → 𝒫 dom 𝑟 = 𝒫 dom 𝑅)
52pweqd 4583 . . . . . . 7 (𝑟 = 𝑅 → 𝒫 dom 𝑟 = 𝒫 dom 𝑅)
6 rabeq 3423 . . . . . . 7 (𝒫 dom 𝑟 = 𝒫 dom 𝑅 → {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} = {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)})
75, 6syl 17 . . . . . 6 (𝑟 = 𝑅 → {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} = {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)})
8 simpl 482 . . . . . . . 8 ((𝑟 = 𝑅𝑦𝑥) → 𝑟 = 𝑅)
98fveq1d 6863 . . . . . . 7 ((𝑟 = 𝑅𝑦𝑥) → (𝑟𝑦) = (𝑅𝑦))
109esumeq2dv 34035 . . . . . 6 (𝑟 = 𝑅 → Σ*𝑦𝑥(𝑟𝑦) = Σ*𝑦𝑥(𝑅𝑦))
117, 10mpteq12dv 5197 . . . . 5 (𝑟 = 𝑅 → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1211rneqd 5905 . . . 4 (𝑟 = 𝑅 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)) = ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1312infeq1d 9436 . . 3 (𝑟 = 𝑅 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < ) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
144, 13mpteq12dv 5197 . 2 (𝑟 = 𝑅 → (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < )) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
15 id 22 . 2 (𝑅 ∈ V → 𝑅 ∈ V)
16 dmexg 7880 . . 3 (𝑅 ∈ V → dom 𝑅 ∈ V)
17 uniexg 7719 . . 3 (dom 𝑅 ∈ V → dom 𝑅 ∈ V)
18 pwexg 5336 . . 3 ( dom 𝑅 ∈ V → 𝒫 dom 𝑅 ∈ V)
19 mptexg 7198 . . 3 (𝒫 dom 𝑅 ∈ V → (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )) ∈ V)
2016, 17, 18, 194syl 19 . 2 (𝑅 ∈ V → (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )) ∈ V)
211, 14, 15, 20fvmptd3 6994 1 (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  wss 3917  𝒫 cpw 4566   cuni 4874   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cfv 6514  (class class class)co 7390  ωcom 7845  cdom 8919  infcinf 9399  0cc0 11075  +∞cpnf 11212   < clt 11215  [,]cicc 13316  Σ*cesum 34024  toOMeascoms 34289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-sup 9400  df-inf 9401  df-esum 34025  df-oms 34290
This theorem is referenced by:  omsfval  34292  omsf  34294
  Copyright terms: Public domain W3C validator