Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsval Structured version   Visualization version   GIF version

Theorem omsval 34325
Description: Value of the function mapping a content function to the corresponding outer measure. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
omsval (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
Distinct variable group:   𝑥,𝑎,𝑦,𝑧,𝑅

Proof of Theorem omsval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 df-oms 34324 . 2 toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < )))
2 dmeq 5883 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
32unieqd 4896 . . . 4 (𝑟 = 𝑅 dom 𝑟 = dom 𝑅)
43pweqd 4592 . . 3 (𝑟 = 𝑅 → 𝒫 dom 𝑟 = 𝒫 dom 𝑅)
52pweqd 4592 . . . . . . 7 (𝑟 = 𝑅 → 𝒫 dom 𝑟 = 𝒫 dom 𝑅)
6 rabeq 3430 . . . . . . 7 (𝒫 dom 𝑟 = 𝒫 dom 𝑅 → {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} = {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)})
75, 6syl 17 . . . . . 6 (𝑟 = 𝑅 → {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} = {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)})
8 simpl 482 . . . . . . . 8 ((𝑟 = 𝑅𝑦𝑥) → 𝑟 = 𝑅)
98fveq1d 6878 . . . . . . 7 ((𝑟 = 𝑅𝑦𝑥) → (𝑟𝑦) = (𝑅𝑦))
109esumeq2dv 34069 . . . . . 6 (𝑟 = 𝑅 → Σ*𝑦𝑥(𝑟𝑦) = Σ*𝑦𝑥(𝑅𝑦))
117, 10mpteq12dv 5207 . . . . 5 (𝑟 = 𝑅 → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1211rneqd 5918 . . . 4 (𝑟 = 𝑅 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)) = ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1312infeq1d 9490 . . 3 (𝑟 = 𝑅 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < ) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
144, 13mpteq12dv 5207 . 2 (𝑟 = 𝑅 → (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < )) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
15 id 22 . 2 (𝑅 ∈ V → 𝑅 ∈ V)
16 dmexg 7897 . . 3 (𝑅 ∈ V → dom 𝑅 ∈ V)
17 uniexg 7734 . . 3 (dom 𝑅 ∈ V → dom 𝑅 ∈ V)
18 pwexg 5348 . . 3 ( dom 𝑅 ∈ V → 𝒫 dom 𝑅 ∈ V)
19 mptexg 7213 . . 3 (𝒫 dom 𝑅 ∈ V → (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )) ∈ V)
2016, 17, 18, 194syl 19 . 2 (𝑅 ∈ V → (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )) ∈ V)
211, 14, 15, 20fvmptd3 7009 1 (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  wss 3926  𝒫 cpw 4575   cuni 4883   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  cfv 6531  (class class class)co 7405  ωcom 7861  cdom 8957  infcinf 9453  0cc0 11129  +∞cpnf 11266   < clt 11269  [,]cicc 13365  Σ*cesum 34058  toOMeascoms 34323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-sup 9454  df-inf 9455  df-esum 34059  df-oms 34324
This theorem is referenced by:  omsfval  34326  omsf  34328
  Copyright terms: Public domain W3C validator