MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-oppr Structured version   Visualization version   GIF version

Definition df-oppr 19907
Description: Define an opposite ring, which is the same as the original ring but with multiplication written the other way around. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
df-oppr oppr = (𝑓 ∈ V ↦ (𝑓 sSet ⟨(.r‘ndx), tpos (.r𝑓)⟩))

Detailed syntax breakdown of Definition df-oppr
StepHypRef Expression
1 coppr 19906 . 2 class oppr
2 vf . . 3 setvar 𝑓
3 cvv 3437 . . 3 class V
42cv 1538 . . . 4 class 𝑓
5 cnx 16939 . . . . . 6 class ndx
6 cmulr 17008 . . . . . 6 class .r
75, 6cfv 6458 . . . . 5 class (.r‘ndx)
84, 6cfv 6458 . . . . . 6 class (.r𝑓)
98ctpos 8072 . . . . 5 class tpos (.r𝑓)
107, 9cop 4571 . . . 4 class ⟨(.r‘ndx), tpos (.r𝑓)⟩
11 csts 16909 . . . 4 class sSet
124, 10, 11co 7307 . . 3 class (𝑓 sSet ⟨(.r‘ndx), tpos (.r𝑓)⟩)
132, 3, 12cmpt 5164 . 2 class (𝑓 ∈ V ↦ (𝑓 sSet ⟨(.r‘ndx), tpos (.r𝑓)⟩))
141, 13wceq 1539 1 wff oppr = (𝑓 ∈ V ↦ (𝑓 sSet ⟨(.r‘ndx), tpos (.r𝑓)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  opprval  19908
  Copyright terms: Public domain W3C validator