Home | Metamath
Proof Explorer Theorem List (p. 202 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | lmodpropd 20101* | If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) | ||
Theorem | gsumvsmul 20102* | Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc2 19761, since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) (Revised by AV, 10-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑆 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)))) | ||
Theorem | mptscmfsupp0 20103* | A mapping to a scalar product is finitely supported if the mapping to the scalar is finitely supported. (Contributed by AV, 5-Oct-2019.) |
⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑄 ∈ LMod) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑄)) & ⊢ 𝐾 = (Base‘𝑄) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑆 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑊 ∈ 𝐾) & ⊢ 0 = (0g‘𝑄) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ 𝑆) finSupp 𝑍) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (𝑆 ∗ 𝑊)) finSupp 0 ) | ||
Theorem | mptscmfsuppd 20104* | A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe 21377. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) (Proof shortened by AV, 18-Oct-2019.) |
⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑆 = (Scalar‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ (𝜑 → 𝑃 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐴:𝑋⟶𝑌) & ⊢ (𝜑 → 𝐴 finSupp (0g‘𝑆)) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ ((𝐴‘𝑘) · 𝑍)) finSupp (0g‘𝑃)) | ||
Theorem | rmodislmodlem 20105* | Lemma for rmodislmod 20106. This is the part of the proof of rmodislmod 20106 which requires the scalar ring to be commutative. (Contributed by AV, 3-Dec-2021.) |
⊢ 𝑉 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ = (𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠)) & ⊢ 𝐿 = (𝑅 sSet 〈( ·𝑠 ‘ndx), ∗ 〉) ⇒ ⊢ ((𝐹 ∈ CRing ∧ (𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉)) → ((𝑎 × 𝑏) ∗ 𝑐) = (𝑎 ∗ (𝑏 ∗ 𝑐))) | ||
Theorem | rmodislmod 20106* | The right module 𝑅 induces a left module 𝐿 by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 20040 of a left module, see also islmod 20042. (Contributed by AV, 3-Dec-2021.) (Proof shortened by AV, 18-Oct-2024.) |
⊢ 𝑉 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ = (𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠)) & ⊢ 𝐿 = (𝑅 sSet 〈( ·𝑠 ‘ndx), ∗ 〉) ⇒ ⊢ (𝐹 ∈ CRing → 𝐿 ∈ LMod) | ||
Theorem | rmodislmodOLD 20107* | Obsolete version of rmodislmod 20106 as of 18-Oct-2024. The right module 𝑅 induces a left module 𝐿 by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 20040 of a left module, see also islmod 20042. (Contributed by AV, 3-Dec-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑉 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ 𝐹 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ (𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑤 · 𝑟) ∈ 𝑉 ∧ ((𝑤 + 𝑥) · 𝑟) = ((𝑤 · 𝑟) + (𝑥 · 𝑟)) ∧ (𝑤 · (𝑞 ⨣ 𝑟)) = ((𝑤 · 𝑞) + (𝑤 · 𝑟))) ∧ ((𝑤 · (𝑞 × 𝑟)) = ((𝑤 · 𝑞) · 𝑟) ∧ (𝑤 · 1 ) = 𝑤))) & ⊢ ∗ = (𝑠 ∈ 𝐾, 𝑣 ∈ 𝑉 ↦ (𝑣 · 𝑠)) & ⊢ 𝐿 = (𝑅 sSet 〈( ·𝑠 ‘ndx), ∗ 〉) ⇒ ⊢ (𝐹 ∈ CRing → 𝐿 ∈ LMod) | ||
Syntax | clss 20108 | Extend class notation with linear subspaces of a left module or left vector space. |
class LSubSp | ||
Definition | df-lss 20109* | Define the set of linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) |
⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ (𝒫 (Base‘𝑤) ∖ {∅}) ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠 ‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠}) | ||
Theorem | lssset 20110* | The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑆 = {𝑠 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠}) | ||
Theorem | islss 20111* | The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) | ||
Theorem | islssd 20112* | Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → + = (+g‘𝑊)) & ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) & ⊢ (𝜑 → 𝑆 = (LSubSp‘𝑊)) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉) & ⊢ (𝜑 → 𝑈 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈)) → ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝑆) | ||
Theorem | lssss 20113 | A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) | ||
Theorem | lssel 20114 | A subspace member is a vector. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) | ||
Theorem | lss1 20115 | The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) | ||
Theorem | lssuni 20116 | The union of all subspaces is the vector space. (Contributed by NM, 13-Mar-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → ∪ 𝑆 = 𝑉) | ||
Theorem | lssn0 20117 | A subspace is not empty. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑈 ∈ 𝑆 → 𝑈 ≠ ∅) | ||
Theorem | 00lss 20118 | The empty structure has no subspaces (for use with fvco4i 6851). (Contributed by Stefan O'Rear, 31-Mar-2015.) |
⊢ ∅ = (LSubSp‘∅) | ||
Theorem | lsscl 20119 | Closure property of a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → ((𝑍 · 𝑋) + 𝑌) ∈ 𝑈) | ||
Theorem | lssvsubcl 20120 | Closure of vector subtraction in a subspace. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ − = (-g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 − 𝑌) ∈ 𝑈) | ||
Theorem | lssvancl1 20121 | Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 20313. Can it be used along with lspsnne1 20294, lspsnne2 20295 to shorten this proof? (Contributed by NM, 14-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) | ||
Theorem | lssvancl2 20122 | Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → ¬ (𝑌 + 𝑋) ∈ 𝑈) | ||
Theorem | lss0cl 20123 | The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 0 ∈ 𝑈) | ||
Theorem | lsssn0 20124 | The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → { 0 } ∈ 𝑆) | ||
Theorem | lss0ss 20125 | The zero subspace is included in every subspace. (sh0le 29703 analog.) (Contributed by NM, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑆) → { 0 } ⊆ 𝑋) | ||
Theorem | lssle0 20126 | No subspace is smaller than the zero subspace. (shle0 29705 analog.) (Contributed by NM, 20-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑋 ⊆ { 0 } ↔ 𝑋 = { 0 })) | ||
Theorem | lssne0 20127* | A nonzero subspace has a nonzero vector. (shne0i 29711 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 8-Jan-2015.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑋 ∈ 𝑆 → (𝑋 ≠ { 0 } ↔ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 )) | ||
Theorem | lssvneln0 20128 | A vector 𝑋 which doesn't belong to a subspace 𝑈 is nonzero. (Contributed by NM, 14-May-2015.) (Revised by AV, 19-Jul-2022.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑋 ≠ 0 ) | ||
Theorem | lssneln0 20129 | A vector 𝑋 which doesn't belong to a subspace 𝑈 is nonzero. (Contributed by NM, 14-May-2015.) (Revised by AV, 17-Jul-2022.) (Proof shortened by AV, 19-Jul-2022.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | ||
Theorem | lssssr 20130* | Conclude subspace ordering from nonzero vector membership. (ssrdv 3923 analog.) (Contributed by NM, 17-Aug-2014.) (Revised by AV, 13-Jul-2022.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ⊆ 𝑉) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑈)) ⇒ ⊢ (𝜑 → 𝑇 ⊆ 𝑈) | ||
Theorem | lssvacl 20131 | Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ + = (+g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝑈) | ||
Theorem | lssvscl 20132 | Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ 𝑈) | ||
Theorem | lssvnegcl 20133 | Closure of negative vectors in a subspace. (Contributed by Stefan O'Rear, 11-Dec-2014.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) | ||
Theorem | lsssubg 20134 | All subspaces are subgroups. (Contributed by Stefan O'Rear, 11-Dec-2014.) |
⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) | ||
Theorem | lsssssubg 20135 | All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) | ||
Theorem | islss3 20136 | A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod))) | ||
Theorem | lsslmod 20137 | A submodule is a module. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LMod) | ||
Theorem | lsslss 20138 | The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑇 = (LSubSp‘𝑋) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) | ||
Theorem | islss4 20139* | A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈))) | ||
Theorem | lss1d 20140* | One-dimensional subspace (or zero-dimensional if 𝑋 is the zero vector). (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ∈ 𝑆) | ||
Theorem | lssintcl 20141 | The intersection of a nonempty set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ⊆ 𝑆 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝑆) | ||
Theorem | lssincl 20142 | The intersection of two subspaces is a subspace. (Contributed by NM, 7-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆) → (𝑇 ∩ 𝑈) ∈ 𝑆) | ||
Theorem | lssmre 20143 | The subspaces of a module comprise a Moore system on the vectors of the module. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑆 ∈ (Moore‘𝐵)) | ||
Theorem | lssacs 20144 | Submodules are an algebraic closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑆 ∈ (ACS‘𝐵)) | ||
Theorem | prdsvscacl 20145* | Pointwise scalar multiplication is closed in products of modules. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶LMod) & ⊢ (𝜑 → 𝐹 ∈ 𝐾) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) ⇒ ⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) | ||
Theorem | prdslmodd 20146* | The product of a family of left modules is a left module. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶LMod) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (Scalar‘(𝑅‘𝑦)) = 𝑆) ⇒ ⊢ (𝜑 → 𝑌 ∈ LMod) | ||
Theorem | pwslmod 20147 | A structure power of a left module is a left module. (Contributed by Mario Carneiro, 11-Jan-2015.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ LMod) | ||
Syntax | clspn 20148 | Extend class notation with span of a set of vectors. |
class LSpan | ||
Definition | df-lsp 20149* | Define span of a set of vectors of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) |
⊢ LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠 ⊆ 𝑡})) | ||
Theorem | lspfval 20150* | The span function for a left vector space (or a left module). (df-span 29572 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡})) | ||
Theorem | lspf 20151 | The span operator on a left module maps subsets to subsets. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → 𝑁:𝒫 𝑉⟶𝑆) | ||
Theorem | lspval 20152* | The span of a set of vectors (in a left module). (spanval 29596 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡}) | ||
Theorem | lspcl 20153 | The span of a set of vectors is a subspace. (spancl 29599 analog.) (Contributed by NM, 9-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ∈ 𝑆) | ||
Theorem | lspsncl 20154 | The span of a singleton is a subspace (frequently used special case of lspcl 20153). (Contributed by NM, 17-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) | ||
Theorem | lspprcl 20155 | The span of a pair is a subspace (frequently used special case of lspcl 20153). (Contributed by NM, 11-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ 𝑆) | ||
Theorem | lsptpcl 20156 | The span of an unordered triple is a subspace (frequently used special case of lspcl 20153). (Contributed by NM, 22-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌, 𝑍}) ∈ 𝑆) | ||
Theorem | lspsnsubg 20157 | The span of a singleton is an additive subgroup (frequently used special case of lspcl 20153). (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) | ||
Theorem | 00lsp 20158 | fvco4i 6851 lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ ∅ = (LSpan‘∅) | ||
Theorem | lspid 20159 | The span of a subspace is itself. (spanid 29610 analog.) (Contributed by NM, 15-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) | ||
Theorem | lspssv 20160 | A span is a set of vectors. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ⊆ 𝑉) | ||
Theorem | lspss 20161 | Span preserves subset ordering. (spanss 29611 analog.) (Contributed by NM, 11-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) | ||
Theorem | lspssid 20162 | A set of vectors is a subset of its span. (spanss2 29608 analog.) (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) | ||
Theorem | lspidm 20163 | The span of a set of vectors is idempotent. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑁‘𝑈)) = (𝑁‘𝑈)) | ||
Theorem | lspun 20164 | The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) | ||
Theorem | lspssp 20165 | If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ 𝑈) | ||
Theorem | mrclsp 20166 | Moore closure generalizes module span. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝐹 = (mrCls‘𝑈) ⇒ ⊢ (𝑊 ∈ LMod → 𝐾 = 𝐹) | ||
Theorem | lspsnss 20167 | The span of the singleton of a subspace member is included in the subspace. (spansnss 29834 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 4-Sep-2014.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) | ||
Theorem | lspsnel3 20168 | A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 29835 analog.) (Contributed by NM, 4-Jul-2014.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) ⇒ ⊢ (𝜑 → 𝑌 ∈ 𝑈) | ||
Theorem | lspprss 20169 | The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) | ||
Theorem | lspsnid 20170 | A vector belongs to the span of its singleton. (spansnid 29826 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) | ||
Theorem | lspsnel6 20171 | Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) | ||
Theorem | lspsnel5 20172 | Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) | ||
Theorem | lspsnel5a 20173 | Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) | ||
Theorem | lspprid1 20174 | A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋, 𝑌})) | ||
Theorem | lspprid2 20175 | A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋, 𝑌})) | ||
Theorem | lspprvacl 20176 | The sum of two vectors belongs to their span. (Contributed by NM, 20-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑁‘{𝑋, 𝑌})) | ||
Theorem | lssats2 20177* | A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015.) |
⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 (𝑁‘{𝑥})) | ||
Theorem | lspsneli 20178 | A scalar product with a vector belongs to the span of its singleton. (spansnmul 29827 analog.) (Contributed by NM, 2-Jul-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋})) | ||
Theorem | lspsn 20179* | Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) | ||
Theorem | lspsnel 20180* | Member of span of the singleton of a vector. (elspansn 29829 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑈 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ 𝐾 𝑈 = (𝑘 · 𝑋))) | ||
Theorem | lspsnvsi 20181 | Span of a scalar product of a singleton. (Contributed by NM, 23-Apr-2014.) (Proof shortened by Mario Carneiro, 4-Sep-2014.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋})) | ||
Theorem | lspsnss2 20182* | Comparable spans of singletons must have proportional vectors. See lspsneq 20299 for equal span version. (Contributed by NM, 7-Jun-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) | ||
Theorem | lspsnneg 20183 | Negation does not change the span of a singleton. (Contributed by NM, 24-Apr-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑀 = (invg‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑀‘𝑋)}) = (𝑁‘{𝑋})) | ||
Theorem | lspsnsub 20184 | Swapping subtraction order does not change the span of a singleton. (Contributed by NM, 4-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{(𝑋 − 𝑌)}) = (𝑁‘{(𝑌 − 𝑋)})) | ||
Theorem | lspsn0 20185 | Span of the singleton of the zero vector. (spansn0 29804 analog.) (Contributed by NM, 15-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) | ||
Theorem | lsp0 20186 | Span of the empty set. (Contributed by Mario Carneiro, 5-Sep-2014.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝑁‘∅) = { 0 }) | ||
Theorem | lspuni0 20187 | Union of the span of the empty set. (Contributed by NM, 14-Mar-2015.) |
⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → ∪ (𝑁‘∅) = 0 ) | ||
Theorem | lspun0 20188 | The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘𝑋)) | ||
Theorem | lspsneq0 20189 | Span of the singleton is the zero subspace iff the vector is zero. (Contributed by NM, 27-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) | ||
Theorem | lspsneq0b 20190 | Equal singleton spans imply both arguments are zero or both are nonzero. (Contributed by NM, 21-Mar-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 = 0 ↔ 𝑌 = 0 )) | ||
Theorem | lmodindp1 20191 | Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) | ||
Theorem | lsslsp 20192 | Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) TODO: Shouldn't we swap 𝑀‘𝐺 and 𝑁‘𝐺 since we are computing a property of 𝑁‘𝐺? (Like we say sin 0 = 0 and not 0 = sin 0.) - NM 15-Mar-2015. |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑀 = (LSpan‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑋) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) = (𝑁‘𝐺)) | ||
Theorem | lss0v 20193 | The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑍 = (0g‘𝑋) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) | ||
Theorem | lsspropd 20194* | If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ⊆ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) & ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) ⇒ ⊢ (𝜑 → (LSubSp‘𝐾) = (LSubSp‘𝐿)) | ||
Theorem | lsppropd 20195* | If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ⊆ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) & ⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝐿 ∈ 𝑌) ⇒ ⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) | ||
Syntax | clmhm 20196 | Extend class notation with the generator of left module hom-sets. |
class LMHom | ||
Syntax | clmim 20197 | The class of left module isomorphism sets. |
class LMIso | ||
Syntax | clmic 20198 | The class of the left module isomorphism relation. |
class ≃𝑚 | ||
Definition | df-lmhm 20199* | A homomorphism of left modules is a group homomorphism which additionally preserves the scalar product. This requires both structures to be left modules over the same ring. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
⊢ LMHom = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠 ‘𝑠)𝑦)) = (𝑥( ·𝑠 ‘𝑡)(𝑓‘𝑦)))}) | ||
Definition | df-lmim 20200* | An isomorphism of modules is a homomorphism which is also a bijection, i.e. it preserves equality as well as the group and scalar operations. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ LMIso = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑔 ∈ (𝑠 LMHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |