| Metamath
Proof Explorer Theorem List (p. 202 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
In Wikipedia "Identity element", see https://en.wikipedia.org/wiki/Identity_element (18-Jan-2025): "... an identity with respect to multiplication is called a multiplicative identity (often denoted as 1). ... The distinction between additive and multiplicative identity is used most often for sets that support both binary operations, such as rings, integral domains, and fields. The multiplicative identity is often called unity in the latter context (a ring with unity). This should not be confused with a unit in ring theory, which is any element having a multiplicative inverse. By its own definition, unity itself is necessarily a unit." Calling the multiplicative identity of a ring a unity is taken from the definition of a ring with unity in section 17.3 of [BeauregardFraleigh] p. 135, "A ring ( R , + , . ) is a ring with unity if R is not the zero ring and ( R , . ) is a monoid. In this case, the identity element of ( R , . ) is denoted by 1 and is called the unity of R." This definition of a "ring with unity" corresponds to our definition of a unital ring (see df-ring 20155). Some authors call the multiplicative identity "unit" or "unit element" (for example in section I, 2.2 of [BourbakiAlg1] p. 14, definition in section 1.3 of [Hall] p. 4, or in section I, 1 of [Lang] p. 3), whereas other authors use the term "unit" for an element having a multiplicative inverse (for example in section 17.3 of [BeauregardFraleigh] p. 135, in definition in [Roman] p. 26, or even in section II, 1 of [Lang] p. 84). Sometimes, the multiplicative identity is simply called "one" (see, for example, chapter 8 in [Schechter] p. 180). To avoid this ambiguity of the term "unit", also mentioned in Wikipedia, we call the multiplicative identity of a structure with a multiplication (usually a ring) a "ring unity", or straightly "multiplicative identity". The term "unit" will be used for an element having a multiplicative inverse (see df-unit 20278), and we have "the ring unity is a unit", see 1unit 20294. | ||
| Syntax | cur 20101 | Extend class notation with ring unity. |
| class 1r | ||
| Definition | df-ur 20102 |
Define the multiplicative identity, i.e., the monoid identity (df-0g 17347)
of the multiplicative monoid (df-mgp 20061) of a ring-like structure. This
multiplicative identity is also called "ring unity" or
"unity element".
This definition works by transferring the multiplicative operation from the .r slot to the +g slot and then looking at the element which is then the 0g element, that is an identity with respect to the operation which started out in the .r slot. See also dfur2 20104, which derives the "traditional" definition as the unique element of a ring which is left- and right-neutral under multiplication. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 1r = (0g ∘ mulGrp) | ||
| Theorem | ringidval 20103 | The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ 1 = (0g‘𝐺) | ||
| Theorem | dfur2 20104* | The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ 1 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) | ||
| Theorem | ringurd 20105* | Deduce the unity element of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 1 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) ⇒ ⊢ (𝜑 → 1 = (1r‘𝑅)) | ||
| Syntax | csrg 20106 | Extend class notation with the class of all semirings. |
| class SRing | ||
| Definition | df-srg 20107* | Define class of all semirings. A semiring is a set equipped with two everywhere-defined internal operations, whose first one is an additive commutative monoid structure and the second one is a multiplicative monoid structure, and where multiplication is (left- and right-) distributive over addition. Like with rings (df-ring 20155), the additive identity is an absorbing element of the multiplicative law, but in the case of semirings, this has to be part of the definition, as it cannot be deduced from distributivity alone. Definition of [Golan] p. 1. Note that our semirings are unital. Such semirings are sometimes called "rigs", being "rings without negatives". (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| ⊢ SRing = {𝑓 ∈ CMnd ∣ ((mulGrp‘𝑓) ∈ Mnd ∧ [(Base‘𝑓) / 𝑟][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡][(0g‘𝑓) / 𝑛]∀𝑥 ∈ 𝑟 (∀𝑦 ∈ 𝑟 ∀𝑧 ∈ 𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))} | ||
| Theorem | issrg 20108* | The predicate "is a semiring". (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) ∧ (( 0 · 𝑥) = 0 ∧ (𝑥 · 0 ) = 0 )))) | ||
| Theorem | srgcmn 20109 | A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | ||
| Theorem | srgmnd 20110 | A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | ||
| Theorem | srgmgp 20111 | A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
| ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) | ||
| Theorem | srgdilem 20112 | Lemma for srgdi 20117 and srgdir 20118. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))) | ||
| Theorem | srgcl 20113 | Closure of the multiplication operation of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) | ||
| Theorem | srgass 20114 | Associative law for the multiplication operation of a semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) | ||
| Theorem | srgideu 20115* | The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ SRing → ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)) | ||
| Theorem | srgfcl 20116 | Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵) | ||
| Theorem | srgdi 20117 | Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) | ||
| Theorem | srgdir 20118 | Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) | ||
| Theorem | srgidcl 20119 | The unity element of a semiring belongs to the base set of the semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ SRing → 1 ∈ 𝐵) | ||
| Theorem | srg0cl 20120 | The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ SRing → 0 ∈ 𝐵) | ||
| Theorem | srgidmlem 20121 | Lemma for srglidm 20122 and srgridm 20123. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) | ||
| Theorem | srglidm 20122 | The unity element of a semiring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) | ||
| Theorem | srgridm 20123 | The unity element of a semiring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) | ||
| Theorem | issrgid 20124* | Properties showing that an element 𝐼 is the unity element of a semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ SRing → ((𝐼 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼)) | ||
| Theorem | srgacl 20125 | Closure of the addition operation of a semiring. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | srgcom 20126 | Commutativity of the additive group of a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | srgrz 20127 | The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) | ||
| Theorem | srglz 20128 | The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) | ||
| Theorem | srgisid 20129* | In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑍 · 𝑥) = 𝑍) ⇒ ⊢ (𝜑 → 𝑍 = 0 ) | ||
| Theorem | o2timesd 20130* | An element of a ring-like structure plus itself is two times the element. "Two" in such a structure is the sum of the unity element with itself. This (formerly) part of the proof for ringcom 20200 depends on the (right) distributivity and the existence of a (left) multiplicative identity only. (Contributed by Gérard Lang, 4-Dec-2014.) (Revised by AV, 1-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ (𝜑 → 1 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ( 1 · 𝑥) = 𝑥) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑋) = (( 1 + 1 ) · 𝑋)) | ||
| Theorem | rglcom4d 20131* | Restricted commutativity of the addition in a ring-like structure. This (formerly) part of the proof for ringcom 20200 depends on the closure of the addition, the (left and right) distributivity and the existence of a (left) multiplicative identity only. (Contributed by Gérard Lang, 4-Dec-2014.) (Revised by AV, 1-Feb-2025.) |
| ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ (𝜑 → 1 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ( 1 · 𝑥) = 𝑥) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) | ||
| Theorem | srgo2times 20132 | A semiring element plus itself is two times the element. "Two" in an arbitrary (unital) semiring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021.) Variant of o2timesd 20130 for semirings. (Revised by AV, 1-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝐴 ∈ 𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴)) | ||
| Theorem | srgcom4lem 20133 | Lemma for srgcom4 20134. This (formerly) part of the proof for ringcom 20200 is applicable for semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by Gérard Lang, 4-Dec-2014.) (Revised by AV, 1-Feb-2025.) (Proof modification is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) | ||
| Theorem | srgcom4 20134 | Restricted commutativity of the addition in semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by AV, 1-Feb-2025.) (Proof modification is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑋 + 𝑌)) + 𝑌) = ((𝑋 + (𝑌 + 𝑋)) + 𝑌)) | ||
| Theorem | srg1zr 20135 | The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ ∗ = (.r‘𝑅) ⇒ ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) | ||
| Theorem | srgen1zr 20136 | The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ ∗ = (.r‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → (𝐵 ≈ 1o ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) | ||
| Theorem | srgmulgass 20137 | An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ × = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))) | ||
| Theorem | srgpcomp 20138 | If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.) |
| ⊢ 𝑆 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) ⇒ ⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) = (𝐴 × (𝐾 ↑ 𝐵))) | ||
| Theorem | srgpcompp 20139 | If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.) |
| ⊢ 𝑆 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) | ||
| Theorem | srgpcomppsc 20140 | If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.) |
| ⊢ 𝑆 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ · = (.g‘𝑅) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) | ||
| Theorem | srglmhm 20141* | Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringlghm 20232. (Contributed by AV, 23-Aug-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅)) | ||
| Theorem | srgrmhm 20142* | Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringrghm 20233. (Contributed by AV, 23-Aug-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅)) | ||
| Theorem | srgsummulcr 20143* | A finite semiring sum multiplied by a constant, analogous to gsummulc1 20236. (Contributed by AV, 23-Aug-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | ||
| Theorem | sgsummulcl 20144* | A finite semiring sum multiplied by a constant, analogous to gsummulc2 20237. (Contributed by AV, 23-Aug-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) | ||
| Theorem | srg1expzeq1 20145 | The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z 19016. (Contributed by AV, 25-Nov-2019.) |
| ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ · = (.g‘𝐺) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → (𝑁 · 1 ) = 1 ) | ||
In this section, we prove the binomial theorem for semirings, srgbinom 20151, which is a generalization of the binomial theorem for complex numbers, binom 15739: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). Note that the binomial theorem also holds in the non-unital case (that is, in a "rg") and actually, the additive identity is not needed in its proof either. Therefore, it can be proven in even more general cases. An example is the "rg" (resp. "rg without a zero") of integrable nonnegative (resp. positive) functions on ℝ. Special cases of the binomial theorem are csrgbinom 20152 (binomial theorem for commutative semirings) and crngbinom 20255 (binomial theorem for commutative rings). | ||
| Theorem | srgbinomlem1 20146 | Lemma 1 for srgbinomlem 20150. (Contributed by AV, 23-Aug-2019.) |
| ⊢ 𝑆 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ (𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)) → ((𝐷 ↑ 𝐴) × (𝐸 ↑ 𝐵)) ∈ 𝑆) | ||
| Theorem | srgbinomlem2 20147 | Lemma 2 for srgbinomlem 20150. (Contributed by AV, 23-Aug-2019.) |
| ⊢ 𝑆 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ (𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0)) → (𝐶 · ((𝐷 ↑ 𝐴) × (𝐸 ↑ 𝐵))) ∈ 𝑆) | ||
| Theorem | srgbinomlem3 20148* | Lemma 3 for srgbinomlem 20150. (Contributed by AV, 23-Aug-2019.) (Proof shortened by AV, 27-Oct-2019.) |
| ⊢ 𝑆 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | ||
| Theorem | srgbinomlem4 20149* | Lemma 4 for srgbinomlem 20150. (Contributed by AV, 24-Aug-2019.) (Proof shortened by AV, 19-Nov-2019.) |
| ⊢ 𝑆 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | ||
| Theorem | srgbinomlem 20150* | Lemma for srgbinom 20151. Inductive step, analogous to binomlem 15738. (Contributed by AV, 24-Aug-2019.) |
| ⊢ 𝑆 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜓 → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝑁 + 1) ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | ||
| Theorem | srgbinom 20151* | The binomial theorem for commuting elements of a semiring: (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)) (generalization of binom 15739). (Contributed by AV, 24-Aug-2019.) |
| ⊢ 𝑆 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝐺) ⇒ ⊢ (((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | ||
| Theorem | csrgbinom 20152* | The binomial theorem for commutative semirings. (Contributed by AV, 24-Aug-2019.) |
| ⊢ 𝑆 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ ↑ = (.g‘𝐺) ⇒ ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) | ||
| Syntax | crg 20153 | Extend class notation with class of all (unital) rings. |
| class Ring | ||
| Syntax | ccrg 20154 | Extend class notation with class of all (unital) commutative rings. |
| class CRing | ||
| Definition | df-ring 20155* | Define class of all (unital) rings. A unital ring is a set equipped with two everywhere-defined internal operations, whose first one is an additive group structure and the second one is a multiplicative monoid structure, and where the addition is left- and right-distributive for the multiplication. Definition 1 in [BourbakiAlg1] p. 92 or definition of a ring with identity in part Preliminaries of [Roman] p. 19. So that the additive structure must be abelian (see ringcom 20200), care must be taken that in the case of a non-unital ring, the commutativity of addition must be postulated and cannot be proved from the other conditions. Therefore, it can be shown that a unital ring is a non-unital ring (ringrng 20205) only after ringabl 20201 was proven. (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ Ring = {𝑓 ∈ Grp ∣ ((mulGrp‘𝑓) ∈ Mnd ∧ [(Base‘𝑓) / 𝑟][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑟 ∀𝑧 ∈ 𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} | ||
| Definition | df-cring 20156 | Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd} | ||
| Theorem | isring 20157* | The predicate "is a (unital) ring". Definition of "ring with unit" in [Schechter] p. 187. (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) | ||
| Theorem | ringgrp 20158 | A ring is a group. (Contributed by NM, 15-Sep-2011.) |
| ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | ||
| Theorem | ringmgp 20159 | A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) | ||
| Theorem | iscrng 20160 | A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) | ||
| Theorem | crngmgp 20161 | A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) | ||
| Theorem | ringgrpd 20162 | A ring is a group. (Contributed by SN, 16-May-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑅 ∈ Grp) | ||
| Theorem | ringmnd 20163 | A ring is a monoid under addition. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | ||
| Theorem | ringmgm 20164 | A ring is a magma. (Contributed by AV, 31-Jan-2020.) |
| ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mgm) | ||
| Theorem | crngring 20165 | A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | ||
| Theorem | crngringd 20166 | A commutative ring is a ring. (Contributed by SN, 16-May-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → 𝑅 ∈ Ring) | ||
| Theorem | crnggrpd 20167 | A commutative ring is a group. (Contributed by SN, 16-May-2024.) |
| ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → 𝑅 ∈ Grp) | ||
| Theorem | mgpf 20168 | Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| ⊢ (mulGrp ↾ Ring):Ring⟶Mnd | ||
| Theorem | ringdilem 20169 | Properties of a unital ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))) | ||
| Theorem | ringcl 20170 | Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) | ||
| Theorem | crngcom 20171 | A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑌 · 𝑋)) | ||
| Theorem | iscrng2 20172* | A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))) | ||
| Theorem | ringass 20173 | Associative law for multiplication in a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) | ||
| Theorem | ringideu 20174* | The unity element of a ring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ∃!𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥)) | ||
| Theorem | crngcomd 20175 | Multiplication is commutative in a commutative ring. (Contributed by SN, 8-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑌 · 𝑋)) | ||
| Theorem | crngbascntr 20176 | The base set of a commutative ring is its center. (Contributed by SN, 21-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑍 = (Cntr‘(mulGrp‘𝐺)) ⇒ ⊢ (𝐺 ∈ CRing → 𝐵 = 𝑍) | ||
| Theorem | ringassd 20177 | Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) | ||
| Theorem | crng12d 20178 | Commutative/associative law that swaps the first two factors in a triple product in a commutative ring. See also mul12d 11329. (Contributed by SN, 8-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑌 · 𝑍)) = (𝑌 · (𝑋 · 𝑍))) | ||
| Theorem | crng32d 20179 | Commutative/associative law that swaps the last two factors in a triple product in a commutative ring. See also mul32d 11330. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) · 𝑍) = ((𝑋 · 𝑍) · 𝑌)) | ||
| Theorem | ringcld 20180 | Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) | ||
| Theorem | ringdi 20181 | Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) | ||
| Theorem | ringdir 20182 | Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) | ||
| Theorem | ringdid 20183 | Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍))) | ||
| Theorem | ringdird 20184 | Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) | ||
| Theorem | ringidcl 20185 | The unity element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) | ||
| Theorem | ringidcld 20186 | The unity element of a ring belongs to the base set of the ring, deduction version. (Contributed by SN, 16-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 1 ∈ 𝐵) | ||
| Theorem | ring0cl 20187 | The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) | ||
| Theorem | ringidmlem 20188 | Lemma for ringlidm 20189 and ringridm 20190. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) | ||
| Theorem | ringlidm 20189 | The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) | ||
| Theorem | ringridm 20190 | The unity element of a ring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) | ||
| Theorem | isringid 20191* | Properties showing that an element 𝐼 is the unity element of a ring. (Contributed by NM, 7-Aug-2013.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ((𝐼 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼)) | ||
| Theorem | ringlidmd 20192 | The unity element of a ring is a left multiplicative identity. (Contributed by SN, 14-Aug-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) | ||
| Theorem | ringridmd 20193 | The unity element of a ring is a right multiplicative identity. (Contributed by SN, 14-Aug-2024.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 1 ) = 𝑋) | ||
| Theorem | ringid 20194* | The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 ((𝑢 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑢) = 𝑋)) | ||
| Theorem | ringo2times 20195 | A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021.) Variant of o2timesd 20130 for rings. (Revised by AV, 5-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴)) | ||
| Theorem | ringadd2 20196* | A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.) (Proof shortened by AV, 1-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋)) | ||
| Theorem | ringidss 20197 | A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝑀 = ((mulGrp‘𝑅) ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴) → 1 = (0g‘𝑀)) | ||
| Theorem | ringacl 20198 | Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | ringcomlem 20199 | Lemma for ringcom 20200. This (formerly) part of the proof for ringcom 20200 is also applicable for semirings (without using the commutativity of the addition given per definition of a semiring), see srgcom4lem 20133. (Contributed by Gérard Lang, 4-Dec-2014.) Variant of rglcom4d 20131 for rings. (Revised by AV, 5-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) | ||
| Theorem | ringcom 20200 | Commutativity of the additive group of a ring. (See also lmodcom 20843.) This proof requires the existence of a multiplicative identity, and the existence of additive inverses. Therefore, this proof is not applicable for semirings. (Contributed by Gérard Lang, 4-Dec-2014.) (Proof shortened by AV, 1-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |