| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprval | Structured version Visualization version GIF version | ||
| Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprval | ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.3 | . 2 ⊢ 𝑂 = (oppr‘𝑅) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
| 3 | fveq2 6886 | . . . . . . . 8 ⊢ (𝑥 = 𝑅 → (.r‘𝑥) = (.r‘𝑅)) | |
| 4 | opprval.2 | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2787 | . . . . . . 7 ⊢ (𝑥 = 𝑅 → (.r‘𝑥) = · ) |
| 6 | 5 | tposeqd 8236 | . . . . . 6 ⊢ (𝑥 = 𝑅 → tpos (.r‘𝑥) = tpos · ) |
| 7 | 6 | opeq2d 4860 | . . . . 5 ⊢ (𝑥 = 𝑅 → 〈(.r‘ndx), tpos (.r‘𝑥)〉 = 〈(.r‘ndx), tpos · 〉) |
| 8 | 2, 7 | oveq12d 7431 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑥 sSet 〈(.r‘ndx), tpos (.r‘𝑥)〉) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 9 | df-oppr 20302 | . . . 4 ⊢ oppr = (𝑥 ∈ V ↦ (𝑥 sSet 〈(.r‘ndx), tpos (.r‘𝑥)〉)) | |
| 10 | ovex 7446 | . . . 4 ⊢ (𝑅 sSet 〈(.r‘ndx), tpos · 〉) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6996 | . . 3 ⊢ (𝑅 ∈ V → (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 12 | fvprc 6878 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
| 13 | reldmsets 17184 | . . . . 5 ⊢ Rel dom sSet | |
| 14 | 13 | ovprc1 7452 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(.r‘ndx), tpos · 〉) = ∅) |
| 15 | 12, 14 | eqtr4d 2772 | . . 3 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 16 | 11, 15 | pm2.61i 182 | . 2 ⊢ (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
| 17 | 1, 16 | eqtri 2757 | 1 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 〈cop 4612 ‘cfv 6541 (class class class)co 7413 tpos ctpos 8232 sSet csts 17182 ndxcnx 17212 Basecbs 17229 .rcmulr 17274 opprcoppr 20301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-res 5677 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-tpos 8233 df-sets 17183 df-oppr 20302 |
| This theorem is referenced by: opprmulfval 20304 opprlem 20307 opprlemOLD 20308 opprabs 33445 |
| Copyright terms: Public domain | W3C validator |