![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprval | Structured version Visualization version GIF version |
Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | β’ π΅ = (Baseβπ ) |
opprval.2 | β’ Β· = (.rβπ ) |
opprval.3 | β’ π = (opprβπ ) |
Ref | Expression |
---|---|
opprval | β’ π = (π sSet β¨(.rβndx), tpos Β· β©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprval.3 | . 2 β’ π = (opprβπ ) | |
2 | id 22 | . . . . 5 β’ (π₯ = π β π₯ = π ) | |
3 | fveq2 6891 | . . . . . . . 8 β’ (π₯ = π β (.rβπ₯) = (.rβπ )) | |
4 | opprval.2 | . . . . . . . 8 β’ Β· = (.rβπ ) | |
5 | 3, 4 | eqtr4di 2789 | . . . . . . 7 β’ (π₯ = π β (.rβπ₯) = Β· ) |
6 | 5 | tposeqd 8220 | . . . . . 6 β’ (π₯ = π β tpos (.rβπ₯) = tpos Β· ) |
7 | 6 | opeq2d 4880 | . . . . 5 β’ (π₯ = π β β¨(.rβndx), tpos (.rβπ₯)β© = β¨(.rβndx), tpos Β· β©) |
8 | 2, 7 | oveq12d 7430 | . . . 4 β’ (π₯ = π β (π₯ sSet β¨(.rβndx), tpos (.rβπ₯)β©) = (π sSet β¨(.rβndx), tpos Β· β©)) |
9 | df-oppr 20232 | . . . 4 β’ oppr = (π₯ β V β¦ (π₯ sSet β¨(.rβndx), tpos (.rβπ₯)β©)) | |
10 | ovex 7445 | . . . 4 β’ (π sSet β¨(.rβndx), tpos Β· β©) β V | |
11 | 8, 9, 10 | fvmpt 6998 | . . 3 β’ (π β V β (opprβπ ) = (π sSet β¨(.rβndx), tpos Β· β©)) |
12 | fvprc 6883 | . . . 4 β’ (Β¬ π β V β (opprβπ ) = β ) | |
13 | reldmsets 17105 | . . . . 5 β’ Rel dom sSet | |
14 | 13 | ovprc1 7451 | . . . 4 β’ (Β¬ π β V β (π sSet β¨(.rβndx), tpos Β· β©) = β ) |
15 | 12, 14 | eqtr4d 2774 | . . 3 β’ (Β¬ π β V β (opprβπ ) = (π sSet β¨(.rβndx), tpos Β· β©)) |
16 | 11, 15 | pm2.61i 182 | . 2 β’ (opprβπ ) = (π sSet β¨(.rβndx), tpos Β· β©) |
17 | 1, 16 | eqtri 2759 | 1 β’ π = (π sSet β¨(.rβndx), tpos Β· β©) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1540 β wcel 2105 Vcvv 3473 β c0 4322 β¨cop 4634 βcfv 6543 (class class class)co 7412 tpos ctpos 8216 sSet csts 17103 ndxcnx 17133 Basecbs 17151 .rcmulr 17205 opprcoppr 20231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-tpos 8217 df-sets 17104 df-oppr 20232 |
This theorem is referenced by: opprmulfval 20234 opprlem 20237 opprlemOLD 20238 opprabs 33038 |
Copyright terms: Public domain | W3C validator |