MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprval Structured version   Visualization version   GIF version

Theorem opprval 20361
Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprval.1 𝐵 = (Base‘𝑅)
opprval.2 · = (.r𝑅)
opprval.3 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprval 𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩)

Proof of Theorem opprval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opprval.3 . 2 𝑂 = (oppr𝑅)
2 id 22 . . . . 5 (𝑥 = 𝑅𝑥 = 𝑅)
3 fveq2 6914 . . . . . . . 8 (𝑥 = 𝑅 → (.r𝑥) = (.r𝑅))
4 opprval.2 . . . . . . . 8 · = (.r𝑅)
53, 4eqtr4di 2795 . . . . . . 7 (𝑥 = 𝑅 → (.r𝑥) = · )
65tposeqd 8262 . . . . . 6 (𝑥 = 𝑅 → tpos (.r𝑥) = tpos · )
76opeq2d 4888 . . . . 5 (𝑥 = 𝑅 → ⟨(.r‘ndx), tpos (.r𝑥)⟩ = ⟨(.r‘ndx), tpos · ⟩)
82, 7oveq12d 7456 . . . 4 (𝑥 = 𝑅 → (𝑥 sSet ⟨(.r‘ndx), tpos (.r𝑥)⟩) = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩))
9 df-oppr 20360 . . . 4 oppr = (𝑥 ∈ V ↦ (𝑥 sSet ⟨(.r‘ndx), tpos (.r𝑥)⟩))
10 ovex 7471 . . . 4 (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩) ∈ V
118, 9, 10fvmpt 7023 . . 3 (𝑅 ∈ V → (oppr𝑅) = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩))
12 fvprc 6906 . . . 4 𝑅 ∈ V → (oppr𝑅) = ∅)
13 reldmsets 17208 . . . . 5 Rel dom sSet
1413ovprc1 7477 . . . 4 𝑅 ∈ V → (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩) = ∅)
1512, 14eqtr4d 2780 . . 3 𝑅 ∈ V → (oppr𝑅) = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩))
1611, 15pm2.61i 182 . 2 (oppr𝑅) = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩)
171, 16eqtri 2765 1 𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3481  c0 4342  cop 4640  cfv 6569  (class class class)co 7438  tpos ctpos 8258   sSet csts 17206  ndxcnx 17236  Basecbs 17254  .rcmulr 17308  opprcoppr 20359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-res 5705  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-tpos 8259  df-sets 17207  df-oppr 20360
This theorem is referenced by:  opprmulfval  20362  opprlem  20365  opprlemOLD  20366  opprabs  33522
  Copyright terms: Public domain W3C validator