| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprval | Structured version Visualization version GIF version | ||
| Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprval | ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.3 | . 2 ⊢ 𝑂 = (oppr‘𝑅) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
| 3 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑥 = 𝑅 → (.r‘𝑥) = (.r‘𝑅)) | |
| 4 | opprval.2 | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
| 5 | 3, 4 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑥 = 𝑅 → (.r‘𝑥) = · ) |
| 6 | 5 | tposeqd 8162 | . . . . . 6 ⊢ (𝑥 = 𝑅 → tpos (.r‘𝑥) = tpos · ) |
| 7 | 6 | opeq2d 4831 | . . . . 5 ⊢ (𝑥 = 𝑅 → 〈(.r‘ndx), tpos (.r‘𝑥)〉 = 〈(.r‘ndx), tpos · 〉) |
| 8 | 2, 7 | oveq12d 7367 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑥 sSet 〈(.r‘ndx), tpos (.r‘𝑥)〉) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 9 | df-oppr 20222 | . . . 4 ⊢ oppr = (𝑥 ∈ V ↦ (𝑥 sSet 〈(.r‘ndx), tpos (.r‘𝑥)〉)) | |
| 10 | ovex 7382 | . . . 4 ⊢ (𝑅 sSet 〈(.r‘ndx), tpos · 〉) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6930 | . . 3 ⊢ (𝑅 ∈ V → (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 12 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
| 13 | reldmsets 17076 | . . . . 5 ⊢ Rel dom sSet | |
| 14 | 13 | ovprc1 7388 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(.r‘ndx), tpos · 〉) = ∅) |
| 15 | 12, 14 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
| 16 | 11, 15 | pm2.61i 182 | . 2 ⊢ (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
| 17 | 1, 16 | eqtri 2752 | 1 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 〈cop 4583 ‘cfv 6482 (class class class)co 7349 tpos ctpos 8158 sSet csts 17074 ndxcnx 17104 Basecbs 17120 .rcmulr 17162 opprcoppr 20221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-tpos 8159 df-sets 17075 df-oppr 20222 |
| This theorem is referenced by: opprmulfval 20224 opprlem 20227 opprabs 33419 |
| Copyright terms: Public domain | W3C validator |