MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprval Structured version   Visualization version   GIF version

Theorem opprval 20233
Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprval.1 𝐡 = (Baseβ€˜π‘…)
opprval.2 Β· = (.rβ€˜π‘…)
opprval.3 𝑂 = (opprβ€˜π‘…)
Assertion
Ref Expression
opprval 𝑂 = (𝑅 sSet ⟨(.rβ€˜ndx), tpos Β· ⟩)

Proof of Theorem opprval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 opprval.3 . 2 𝑂 = (opprβ€˜π‘…)
2 id 22 . . . . 5 (π‘₯ = 𝑅 β†’ π‘₯ = 𝑅)
3 fveq2 6891 . . . . . . . 8 (π‘₯ = 𝑅 β†’ (.rβ€˜π‘₯) = (.rβ€˜π‘…))
4 opprval.2 . . . . . . . 8 Β· = (.rβ€˜π‘…)
53, 4eqtr4di 2789 . . . . . . 7 (π‘₯ = 𝑅 β†’ (.rβ€˜π‘₯) = Β· )
65tposeqd 8220 . . . . . 6 (π‘₯ = 𝑅 β†’ tpos (.rβ€˜π‘₯) = tpos Β· )
76opeq2d 4880 . . . . 5 (π‘₯ = 𝑅 β†’ ⟨(.rβ€˜ndx), tpos (.rβ€˜π‘₯)⟩ = ⟨(.rβ€˜ndx), tpos Β· ⟩)
82, 7oveq12d 7430 . . . 4 (π‘₯ = 𝑅 β†’ (π‘₯ sSet ⟨(.rβ€˜ndx), tpos (.rβ€˜π‘₯)⟩) = (𝑅 sSet ⟨(.rβ€˜ndx), tpos Β· ⟩))
9 df-oppr 20232 . . . 4 oppr = (π‘₯ ∈ V ↦ (π‘₯ sSet ⟨(.rβ€˜ndx), tpos (.rβ€˜π‘₯)⟩))
10 ovex 7445 . . . 4 (𝑅 sSet ⟨(.rβ€˜ndx), tpos Β· ⟩) ∈ V
118, 9, 10fvmpt 6998 . . 3 (𝑅 ∈ V β†’ (opprβ€˜π‘…) = (𝑅 sSet ⟨(.rβ€˜ndx), tpos Β· ⟩))
12 fvprc 6883 . . . 4 (Β¬ 𝑅 ∈ V β†’ (opprβ€˜π‘…) = βˆ…)
13 reldmsets 17105 . . . . 5 Rel dom sSet
1413ovprc1 7451 . . . 4 (Β¬ 𝑅 ∈ V β†’ (𝑅 sSet ⟨(.rβ€˜ndx), tpos Β· ⟩) = βˆ…)
1512, 14eqtr4d 2774 . . 3 (Β¬ 𝑅 ∈ V β†’ (opprβ€˜π‘…) = (𝑅 sSet ⟨(.rβ€˜ndx), tpos Β· ⟩))
1611, 15pm2.61i 182 . 2 (opprβ€˜π‘…) = (𝑅 sSet ⟨(.rβ€˜ndx), tpos Β· ⟩)
171, 16eqtri 2759 1 𝑂 = (𝑅 sSet ⟨(.rβ€˜ndx), tpos Β· ⟩)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1540   ∈ wcel 2105  Vcvv 3473  βˆ…c0 4322  βŸ¨cop 4634  β€˜cfv 6543  (class class class)co 7412  tpos ctpos 8216   sSet csts 17103  ndxcnx 17133  Basecbs 17151  .rcmulr 17205  opprcoppr 20231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-res 5688  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-tpos 8217  df-sets 17104  df-oppr 20232
This theorem is referenced by:  opprmulfval  20234  opprlem  20237  opprlemOLD  20238  opprabs  33038
  Copyright terms: Public domain W3C validator