MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprval Structured version   Visualization version   GIF version

Theorem opprval 20303
Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprval.1 𝐵 = (Base‘𝑅)
opprval.2 · = (.r𝑅)
opprval.3 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprval 𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩)

Proof of Theorem opprval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opprval.3 . 2 𝑂 = (oppr𝑅)
2 id 22 . . . . 5 (𝑥 = 𝑅𝑥 = 𝑅)
3 fveq2 6886 . . . . . . . 8 (𝑥 = 𝑅 → (.r𝑥) = (.r𝑅))
4 opprval.2 . . . . . . . 8 · = (.r𝑅)
53, 4eqtr4di 2787 . . . . . . 7 (𝑥 = 𝑅 → (.r𝑥) = · )
65tposeqd 8236 . . . . . 6 (𝑥 = 𝑅 → tpos (.r𝑥) = tpos · )
76opeq2d 4860 . . . . 5 (𝑥 = 𝑅 → ⟨(.r‘ndx), tpos (.r𝑥)⟩ = ⟨(.r‘ndx), tpos · ⟩)
82, 7oveq12d 7431 . . . 4 (𝑥 = 𝑅 → (𝑥 sSet ⟨(.r‘ndx), tpos (.r𝑥)⟩) = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩))
9 df-oppr 20302 . . . 4 oppr = (𝑥 ∈ V ↦ (𝑥 sSet ⟨(.r‘ndx), tpos (.r𝑥)⟩))
10 ovex 7446 . . . 4 (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩) ∈ V
118, 9, 10fvmpt 6996 . . 3 (𝑅 ∈ V → (oppr𝑅) = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩))
12 fvprc 6878 . . . 4 𝑅 ∈ V → (oppr𝑅) = ∅)
13 reldmsets 17184 . . . . 5 Rel dom sSet
1413ovprc1 7452 . . . 4 𝑅 ∈ V → (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩) = ∅)
1512, 14eqtr4d 2772 . . 3 𝑅 ∈ V → (oppr𝑅) = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩))
1611, 15pm2.61i 182 . 2 (oppr𝑅) = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩)
171, 16eqtri 2757 1 𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2107  Vcvv 3463  c0 4313  cop 4612  cfv 6541  (class class class)co 7413  tpos ctpos 8232   sSet csts 17182  ndxcnx 17212  Basecbs 17229  .rcmulr 17274  opprcoppr 20301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-res 5677  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-tpos 8233  df-sets 17183  df-oppr 20302
This theorem is referenced by:  opprmulfval  20304  opprlem  20307  opprlemOLD  20308  opprabs  33445
  Copyright terms: Public domain W3C validator