![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprval | Structured version Visualization version GIF version |
Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprval | ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprval.3 | . 2 ⊢ 𝑂 = (oppr‘𝑅) | |
2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
3 | fveq2 6922 | . . . . . . . 8 ⊢ (𝑥 = 𝑅 → (.r‘𝑥) = (.r‘𝑅)) | |
4 | opprval.2 | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
5 | 3, 4 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑥 = 𝑅 → (.r‘𝑥) = · ) |
6 | 5 | tposeqd 8272 | . . . . . 6 ⊢ (𝑥 = 𝑅 → tpos (.r‘𝑥) = tpos · ) |
7 | 6 | opeq2d 4904 | . . . . 5 ⊢ (𝑥 = 𝑅 → 〈(.r‘ndx), tpos (.r‘𝑥)〉 = 〈(.r‘ndx), tpos · 〉) |
8 | 2, 7 | oveq12d 7468 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑥 sSet 〈(.r‘ndx), tpos (.r‘𝑥)〉) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
9 | df-oppr 20362 | . . . 4 ⊢ oppr = (𝑥 ∈ V ↦ (𝑥 sSet 〈(.r‘ndx), tpos (.r‘𝑥)〉)) | |
10 | ovex 7483 | . . . 4 ⊢ (𝑅 sSet 〈(.r‘ndx), tpos · 〉) ∈ V | |
11 | 8, 9, 10 | fvmpt 7031 | . . 3 ⊢ (𝑅 ∈ V → (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
12 | fvprc 6914 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
13 | reldmsets 17214 | . . . . 5 ⊢ Rel dom sSet | |
14 | 13 | ovprc1 7489 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(.r‘ndx), tpos · 〉) = ∅) |
15 | 12, 14 | eqtr4d 2783 | . . 3 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
16 | 11, 15 | pm2.61i 182 | . 2 ⊢ (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
17 | 1, 16 | eqtri 2768 | 1 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 ‘cfv 6575 (class class class)co 7450 tpos ctpos 8268 sSet csts 17212 ndxcnx 17242 Basecbs 17260 .rcmulr 17314 opprcoppr 20361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-tpos 8269 df-sets 17213 df-oppr 20362 |
This theorem is referenced by: opprmulfval 20364 opprlem 20367 opprlemOLD 20368 opprabs 33477 |
Copyright terms: Public domain | W3C validator |