Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprval | Structured version Visualization version GIF version |
Description: Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprval | ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprval.3 | . 2 ⊢ 𝑂 = (oppr‘𝑅) | |
2 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
3 | fveq2 6804 | . . . . . . . 8 ⊢ (𝑥 = 𝑅 → (.r‘𝑥) = (.r‘𝑅)) | |
4 | opprval.2 | . . . . . . . 8 ⊢ · = (.r‘𝑅) | |
5 | 3, 4 | eqtr4di 2794 | . . . . . . 7 ⊢ (𝑥 = 𝑅 → (.r‘𝑥) = · ) |
6 | 5 | tposeqd 8076 | . . . . . 6 ⊢ (𝑥 = 𝑅 → tpos (.r‘𝑥) = tpos · ) |
7 | 6 | opeq2d 4816 | . . . . 5 ⊢ (𝑥 = 𝑅 → 〈(.r‘ndx), tpos (.r‘𝑥)〉 = 〈(.r‘ndx), tpos · 〉) |
8 | 2, 7 | oveq12d 7325 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑥 sSet 〈(.r‘ndx), tpos (.r‘𝑥)〉) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
9 | df-oppr 19907 | . . . 4 ⊢ oppr = (𝑥 ∈ V ↦ (𝑥 sSet 〈(.r‘ndx), tpos (.r‘𝑥)〉)) | |
10 | ovex 7340 | . . . 4 ⊢ (𝑅 sSet 〈(.r‘ndx), tpos · 〉) ∈ V | |
11 | 8, 9, 10 | fvmpt 6907 | . . 3 ⊢ (𝑅 ∈ V → (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
12 | fvprc 6796 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
13 | reldmsets 16911 | . . . . 5 ⊢ Rel dom sSet | |
14 | 13 | ovprc1 7346 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(.r‘ndx), tpos · 〉) = ∅) |
15 | 12, 14 | eqtr4d 2779 | . . 3 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
16 | 11, 15 | pm2.61i 182 | . 2 ⊢ (oppr‘𝑅) = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
17 | 1, 16 | eqtri 2764 | 1 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∅c0 4262 〈cop 4571 ‘cfv 6458 (class class class)co 7307 tpos ctpos 8072 sSet csts 16909 ndxcnx 16939 Basecbs 16957 .rcmulr 17008 opprcoppr 19906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-res 5612 df-iota 6410 df-fun 6460 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-tpos 8073 df-sets 16910 df-oppr 19907 |
This theorem is referenced by: opprmulfval 19909 opprlem 19912 opprlemOLD 19913 |
Copyright terms: Public domain | W3C validator |