Detailed syntax breakdown of Definition df-ovoln
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | covoln 46556 | . 2
class
voln* | 
| 2 |  | vx | . . 3
setvar 𝑥 | 
| 3 |  | cfn 8986 | . . 3
class
Fin | 
| 4 |  | vy | . . . 4
setvar 𝑦 | 
| 5 |  | cr 11155 | . . . . . 6
class
ℝ | 
| 6 | 2 | cv 1538 | . . . . . 6
class 𝑥 | 
| 7 |  | cmap 8867 | . . . . . 6
class 
↑m | 
| 8 | 5, 6, 7 | co 7432 | . . . . 5
class (ℝ
↑m 𝑥) | 
| 9 | 8 | cpw 4599 | . . . 4
class 𝒫
(ℝ ↑m 𝑥) | 
| 10 |  | c0 4332 | . . . . . 6
class
∅ | 
| 11 | 6, 10 | wceq 1539 | . . . . 5
wff 𝑥 = ∅ | 
| 12 |  | cc0 11156 | . . . . 5
class
0 | 
| 13 | 4 | cv 1538 | . . . . . . . . . 10
class 𝑦 | 
| 14 |  | vj | . . . . . . . . . . 11
setvar 𝑗 | 
| 15 |  | cn 12267 | . . . . . . . . . . 11
class
ℕ | 
| 16 |  | vk | . . . . . . . . . . . 12
setvar 𝑘 | 
| 17 | 16 | cv 1538 | . . . . . . . . . . . . 13
class 𝑘 | 
| 18 |  | cico 13390 | . . . . . . . . . . . . . 14
class
[,) | 
| 19 | 14 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑗 | 
| 20 |  | vi | . . . . . . . . . . . . . . . 16
setvar 𝑖 | 
| 21 | 20 | cv 1538 | . . . . . . . . . . . . . . 15
class 𝑖 | 
| 22 | 19, 21 | cfv 6560 | . . . . . . . . . . . . . 14
class (𝑖‘𝑗) | 
| 23 | 18, 22 | ccom 5688 | . . . . . . . . . . . . 13
class ([,)
∘ (𝑖‘𝑗)) | 
| 24 | 17, 23 | cfv 6560 | . . . . . . . . . . . 12
class (([,)
∘ (𝑖‘𝑗))‘𝑘) | 
| 25 | 16, 6, 24 | cixp 8938 | . . . . . . . . . . 11
class X𝑘 ∈
𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) | 
| 26 | 14, 15, 25 | ciun 4990 | . . . . . . . . . 10
class ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) | 
| 27 | 13, 26 | wss 3950 | . . . . . . . . 9
wff 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) | 
| 28 |  | vz | . . . . . . . . . . 11
setvar 𝑧 | 
| 29 | 28 | cv 1538 | . . . . . . . . . 10
class 𝑧 | 
| 30 |  | cvol 25499 | . . . . . . . . . . . . . 14
class
vol | 
| 31 | 24, 30 | cfv 6560 | . . . . . . . . . . . . 13
class
(vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) | 
| 32 | 6, 31, 16 | cprod 15940 | . . . . . . . . . . . 12
class
∏𝑘 ∈
𝑥 (vol‘(([,) ∘
(𝑖‘𝑗))‘𝑘)) | 
| 33 | 14, 15, 32 | cmpt 5224 | . . . . . . . . . . 11
class (𝑗 ∈ ℕ ↦
∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) | 
| 34 |  | csumge0 46382 | . . . . . . . . . . 11
class
Σ^ | 
| 35 | 33, 34 | cfv 6560 | . . . . . . . . . 10
class
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) | 
| 36 | 29, 35 | wceq 1539 | . . . . . . . . 9
wff 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) | 
| 37 | 27, 36 | wa 395 | . . . . . . . 8
wff (𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) | 
| 38 | 5, 5 | cxp 5682 | . . . . . . . . . 10
class (ℝ
× ℝ) | 
| 39 | 38, 6, 7 | co 7432 | . . . . . . . . 9
class ((ℝ
× ℝ) ↑m 𝑥) | 
| 40 | 39, 15, 7 | co 7432 | . . . . . . . 8
class
(((ℝ × ℝ) ↑m 𝑥) ↑m
ℕ) | 
| 41 | 37, 20, 40 | wrex 3069 | . . . . . . 7
wff
∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) | 
| 42 |  | cxr 11295 | . . . . . . 7
class
ℝ* | 
| 43 | 41, 28, 42 | crab 3435 | . . . . . 6
class {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | 
| 44 |  | clt 11296 | . . . . . 6
class 
< | 
| 45 | 43, 42, 44 | cinf 9482 | . . . . 5
class
inf({𝑧 ∈
ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑥)
↑m ℕ)(𝑦 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
) | 
| 46 | 11, 12, 45 | cif 4524 | . . . 4
class if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
)) | 
| 47 | 4, 9, 46 | cmpt 5224 | . . 3
class (𝑦 ∈ 𝒫 (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
inf({𝑧 ∈
ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑥)
↑m ℕ)(𝑦 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
))) | 
| 48 | 2, 3, 47 | cmpt 5224 | . 2
class (𝑥 ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
inf({𝑧 ∈
ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑥)
↑m ℕ)(𝑦 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
)))) | 
| 49 | 1, 48 | wceq 1539 | 1
wff voln* =
(𝑥 ∈ Fin ↦
(𝑦 ∈ 𝒫
(ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
)))) |