Detailed syntax breakdown of Definition df-ovoln
| Step | Hyp | Ref
| Expression |
| 1 | | covoln 46532 |
. 2
class
voln* |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cfn 8964 |
. . 3
class
Fin |
| 4 | | vy |
. . . 4
setvar 𝑦 |
| 5 | | cr 11133 |
. . . . . 6
class
ℝ |
| 6 | 2 | cv 1539 |
. . . . . 6
class 𝑥 |
| 7 | | cmap 8845 |
. . . . . 6
class
↑m |
| 8 | 5, 6, 7 | co 7410 |
. . . . 5
class (ℝ
↑m 𝑥) |
| 9 | 8 | cpw 4580 |
. . . 4
class 𝒫
(ℝ ↑m 𝑥) |
| 10 | | c0 4313 |
. . . . . 6
class
∅ |
| 11 | 6, 10 | wceq 1540 |
. . . . 5
wff 𝑥 = ∅ |
| 12 | | cc0 11134 |
. . . . 5
class
0 |
| 13 | 4 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 14 | | vj |
. . . . . . . . . . 11
setvar 𝑗 |
| 15 | | cn 12245 |
. . . . . . . . . . 11
class
ℕ |
| 16 | | vk |
. . . . . . . . . . . 12
setvar 𝑘 |
| 17 | 16 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑘 |
| 18 | | cico 13369 |
. . . . . . . . . . . . . 14
class
[,) |
| 19 | 14 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑗 |
| 20 | | vi |
. . . . . . . . . . . . . . . 16
setvar 𝑖 |
| 21 | 20 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑖 |
| 22 | 19, 21 | cfv 6536 |
. . . . . . . . . . . . . 14
class (𝑖‘𝑗) |
| 23 | 18, 22 | ccom 5663 |
. . . . . . . . . . . . 13
class ([,)
∘ (𝑖‘𝑗)) |
| 24 | 17, 23 | cfv 6536 |
. . . . . . . . . . . 12
class (([,)
∘ (𝑖‘𝑗))‘𝑘) |
| 25 | 16, 6, 24 | cixp 8916 |
. . . . . . . . . . 11
class X𝑘 ∈
𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) |
| 26 | 14, 15, 25 | ciun 4972 |
. . . . . . . . . 10
class ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) |
| 27 | 13, 26 | wss 3931 |
. . . . . . . . 9
wff 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) |
| 28 | | vz |
. . . . . . . . . . 11
setvar 𝑧 |
| 29 | 28 | cv 1539 |
. . . . . . . . . 10
class 𝑧 |
| 30 | | cvol 25421 |
. . . . . . . . . . . . . 14
class
vol |
| 31 | 24, 30 | cfv 6536 |
. . . . . . . . . . . . 13
class
(vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) |
| 32 | 6, 31, 16 | cprod 15924 |
. . . . . . . . . . . 12
class
∏𝑘 ∈
𝑥 (vol‘(([,) ∘
(𝑖‘𝑗))‘𝑘)) |
| 33 | 14, 15, 32 | cmpt 5206 |
. . . . . . . . . . 11
class (𝑗 ∈ ℕ ↦
∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) |
| 34 | | csumge0 46358 |
. . . . . . . . . . 11
class
Σ^ |
| 35 | 33, 34 | cfv 6536 |
. . . . . . . . . 10
class
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) |
| 36 | 29, 35 | wceq 1540 |
. . . . . . . . 9
wff 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) |
| 37 | 27, 36 | wa 395 |
. . . . . . . 8
wff (𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) |
| 38 | 5, 5 | cxp 5657 |
. . . . . . . . . 10
class (ℝ
× ℝ) |
| 39 | 38, 6, 7 | co 7410 |
. . . . . . . . 9
class ((ℝ
× ℝ) ↑m 𝑥) |
| 40 | 39, 15, 7 | co 7410 |
. . . . . . . 8
class
(((ℝ × ℝ) ↑m 𝑥) ↑m
ℕ) |
| 41 | 37, 20, 40 | wrex 3061 |
. . . . . . 7
wff
∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) |
| 42 | | cxr 11273 |
. . . . . . 7
class
ℝ* |
| 43 | 41, 28, 42 | crab 3420 |
. . . . . 6
class {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
| 44 | | clt 11274 |
. . . . . 6
class
< |
| 45 | 43, 42, 44 | cinf 9458 |
. . . . 5
class
inf({𝑧 ∈
ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑥)
↑m ℕ)(𝑦 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
) |
| 46 | 11, 12, 45 | cif 4505 |
. . . 4
class if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
)) |
| 47 | 4, 9, 46 | cmpt 5206 |
. . 3
class (𝑦 ∈ 𝒫 (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
inf({𝑧 ∈
ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑥)
↑m ℕ)(𝑦 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
))) |
| 48 | 2, 3, 47 | cmpt 5206 |
. 2
class (𝑥 ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ
↑m 𝑥)
↦ if(𝑥 = ∅, 0,
inf({𝑧 ∈
ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑥)
↑m ℕ)(𝑦 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
)))) |
| 49 | 1, 48 | wceq 1540 |
1
wff voln* =
(𝑥 ∈ Fin ↦
(𝑦 ∈ 𝒫
(ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
)))) |