Home | Metamath
Proof Explorer Theorem List (p. 454 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-mgm2 45301 | A magma is a set equipped with a closed operation. Definition 1 of [BourbakiAlg1] p. 1, or definition of a groupoid in section I.1 of [Bruck] p. 1. Note: The term "groupoid" is now widely used to refer to other objects: (small) categories all of whose morphisms are invertible, or groups with a partial function replacing the binary operation. Therefore, we will only use the term "magma" for the present notion in set.mm. (Contributed by AV, 6-Jan-2020.) |
⊢ MgmALT = {𝑚 ∣ (+g‘𝑚) clLaw (Base‘𝑚)} | ||
Definition | df-cmgm2 45302 | A commutative magma is a magma with a commutative operation. Definition 8 of [BourbakiAlg1] p. 7. (Contributed by AV, 20-Jan-2020.) |
⊢ CMgmALT = {𝑚 ∈ MgmALT ∣ (+g‘𝑚) comLaw (Base‘𝑚)} | ||
Definition | df-sgrp2 45303 | A semigroup is a magma with an associative operation. Definition in section II.1 of [Bruck] p. 23, or of an "associative magma" in definition 5 of [BourbakiAlg1] p. 4, or of a semigroup in section 1.3 of [Hall] p. 7. (Contributed by AV, 6-Jan-2020.) |
⊢ SGrpALT = {𝑔 ∈ MgmALT ∣ (+g‘𝑔) assLaw (Base‘𝑔)} | ||
Definition | df-csgrp2 45304 | A commutative semigroup is a semigroup with a commutative operation. (Contributed by AV, 20-Jan-2020.) |
⊢ CSGrpALT = {𝑔 ∈ SGrpALT ∣ (+g‘𝑔) comLaw (Base‘𝑔)} | ||
Theorem | ismgmALT 45305 | The predicate "is a magma". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ 𝑉 → (𝑀 ∈ MgmALT ↔ ⚬ clLaw 𝐵)) | ||
Theorem | iscmgmALT 45306 | The predicate "is a commutative magma". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ CMgmALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ comLaw 𝐵)) | ||
Theorem | issgrpALT 45307 | The predicate "is a semigroup". (Contributed by AV, 16-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ SGrpALT ↔ (𝑀 ∈ MgmALT ∧ ⚬ assLaw 𝐵)) | ||
Theorem | iscsgrpALT 45308 | The predicate "is a commutative semigroup". (Contributed by AV, 20-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ ⚬ = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ CSGrpALT ↔ (𝑀 ∈ SGrpALT ∧ ⚬ comLaw 𝐵)) | ||
Theorem | mgm2mgm 45309 | Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020.) |
⊢ (𝑀 ∈ MgmALT ↔ 𝑀 ∈ Mgm) | ||
Theorem | sgrp2sgrp 45310 | Equivalence of the two definitions of a semigroup. (Contributed by AV, 16-Jan-2020.) |
⊢ (𝑀 ∈ SGrpALT ↔ 𝑀 ∈ Smgrp) | ||
Theorem | idfusubc0 45311* | The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.) |
⊢ 𝑆 = (𝐶 ↾cat 𝐽) & ⊢ 𝐼 = (idfunc‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥(Hom ‘𝑆)𝑦)))〉) | ||
Theorem | idfusubc 45312* | The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020.) |
⊢ 𝑆 = (𝐶 ↾cat 𝐽) & ⊢ 𝐼 = (idfunc‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐼 = 〈( I ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))〉) | ||
Theorem | inclfusubc 45313* | The "inclusion functor" from a subcategory of a category into the category itself. (Contributed by AV, 30-Mar-2020.) |
⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) & ⊢ 𝑆 = (𝐶 ↾cat 𝐽) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = ( I ↾ 𝐵)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥𝐽𝑦)))) ⇒ ⊢ (𝜑 → 𝐹(𝑆 Func 𝐶)𝐺) | ||
Theorem | lmod0rng 45314 | If the scalar ring of a module is the zero ring, the module is the zero module, i.e. the base set of the module is the singleton consisting of the identity element only. (Contributed by AV, 17-Apr-2019.) |
⊢ ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing) → (Base‘𝑀) = {(0g‘𝑀)}) | ||
Theorem | nzrneg1ne0 45315 | The additive inverse of the 1 in a nonzero ring is not zero ( -1 =/= 0 ). (Contributed by AV, 29-Apr-2019.) |
⊢ (𝑅 ∈ NzRing → ((invg‘𝑅)‘(1r‘𝑅)) ≠ (0g‘𝑅)) | ||
Theorem | 0ringdif 45316 | A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) | ||
Theorem | 0ringbas 45317 | The base set of a zero ring, a ring which is not a nonzero ring, is the singleton of the zero element. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ (Ring ∖ NzRing) → 𝐵 = { 0 }) | ||
Theorem | 0ring1eq0 45318 | In a zero ring, a ring which is not a nonzero ring, the unit equals the zero element. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ (Ring ∖ NzRing) → 1 = 0 ) | ||
Theorem | nrhmzr 45319 | There is no ring homomorphism from the zero ring into a nonzero ring. (Contributed by AV, 18-Apr-2020.) |
⊢ ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (𝑍 RingHom 𝑅) = ∅) | ||
According to Wikipedia, "... in abstract algebra, a rng (or pseudo-ring or non-unital ring) is an algebraic structure satisfying the same properties as a [unital] ring, without assuming the existence of a multiplicative identity. The term "rng" (pronounced rung) is meant to suggest that it is a "ring" without "i", i.e. without the requirement for an "identity element"." (see https://en.wikipedia.org/wiki/Rng_(algebra), 6-Jan-2020). | ||
Syntax | crng 45320 | Extend class notation with class of all non-unital rings. |
class Rng | ||
Definition | df-rng0 45321* | Define class of all (non-unital) rings. A non-unital ring (or rng, or pseudoring) is a set equipped with two everywhere-defined internal operations, whose first one is an additive abelian group operation and the second one is a multiplicative semigroup operation, and where the addition is left- and right-distributive for the multiplication. Definition of a pseudo-ring in section I.8.1 of [BourbakiAlg1] p. 93 or the definition of a ring in part Preliminaries of [Roman] p. 18. As almost always in mathematics, "non-unital" means "not necessarily unital". Therefore, by talking about a ring (in general) or a non-unital ring the "unital" case is always included. In contrast to a unital ring, the commutativity of addition must be postulated and cannot be proven from the other conditions. (Contributed by AV, 6-Jan-2020.) |
⊢ Rng = {𝑓 ∈ Abel ∣ ((mulGrp‘𝑓) ∈ Smgrp ∧ [(Base‘𝑓) / 𝑏][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} | ||
Theorem | isrng 45322* | The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = (mulGrp‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) | ||
Theorem | rngabl 45323 | A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.) |
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | ||
Theorem | rngmgp 45324 | A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) | ||
Theorem | ringrng 45325 | A unital ring is a (non-unital) ring. (Contributed by AV, 6-Jan-2020.) |
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) | ||
Theorem | ringssrng 45326 | The unital rings are (non-unital) rings. (Contributed by AV, 20-Mar-2020.) |
⊢ Ring ⊆ Rng | ||
Theorem | isringrng 45327* | The predicate "is a unital ring" as extension of the predicate "is a non-unital ring". (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) | ||
Theorem | rngdir 45328 | Distributive law for the multiplication operation of a nonunital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))) | ||
Theorem | rngcl 45329 | Closure of the multiplication operation of a nonunital ring. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) | ||
Theorem | rnglz 45330 | The zero of a nonunital ring is a left-absorbing element. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) | ||
Syntax | crngh 45331 | non-unital ring homomorphisms. |
class RngHomo | ||
Syntax | crngs 45332 | non-unital ring isomorphisms. |
class RngIsom | ||
Definition | df-rnghomo 45333* | Define the set of non-unital ring homomorphisms from 𝑟 to 𝑠. (Contributed by AV, 20-Feb-2020.) |
⊢ RngHomo = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ ⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) | ||
Definition | df-rngisom 45334* | Define the set of non-unital ring isomorphisms from 𝑟 to 𝑠. (Contributed by AV, 20-Feb-2020.) |
⊢ RngIsom = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHomo 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHomo 𝑟)}) | ||
Theorem | rnghmrcl 45335 | Reverse closure of a non-unital ring homomorphism. (Contributed by AV, 22-Feb-2020.) |
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng)) | ||
Theorem | rnghmfn 45336 | The mapping of two non-unital rings to the non-unital ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.) |
⊢ RngHomo Fn (Rng × Rng) | ||
Theorem | rnghmval 45337* | The set of the non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 22-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∗ = (.r‘𝑆) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑆) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHomo 𝑆) = {𝑓 ∈ (𝐶 ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥 + 𝑦)) = ((𝑓‘𝑥) ✚ (𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))}) | ||
Theorem | isrnghm 45338* | A function is a non-unital ring homomorphism iff it is a group homomorphism and preserves multiplication. (Contributed by AV, 22-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∗ = (.r‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | ||
Theorem | isrnghmmul 45339 | A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) | ||
Theorem | rnghmmgmhm 45340 | A non-unital ring homomorphism is a homomorphism of multiplicative magmas. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 ∈ (𝑀 MgmHom 𝑁)) | ||
Theorem | rnghmval2 45341 | The non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 1-Mar-2020.) |
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHomo 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)))) | ||
Theorem | isrngisom 45342 | An isomorphism of non-unital rings is a homomorphism whose converse is also a homomorphism. (Contributed by AV, 22-Feb-2020.) |
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIsom 𝑆) ↔ (𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHomo 𝑅)))) | ||
Theorem | rngimrcl 45343 | Reverse closure for an isomorphism of non-unital rings. (Contributed by AV, 22-Feb-2020.) |
⊢ (𝐹 ∈ (𝑅 RngIsom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | ||
Theorem | rnghmghm 45344 | A non-unital ring homomorphism is an additive group homomorphism. (Contributed by AV, 23-Feb-2020.) |
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
Theorem | rnghmf 45345 | A ring homomorphism is a function. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹:𝐵⟶𝐶) | ||
Theorem | rnghmmul 45346 | A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝑋 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) | ||
Theorem | isrnghm2d 45347* | Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑆 ∈ Rng) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHomo 𝑆)) | ||
Theorem | isrnghmd 45348* | Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Rng) & ⊢ (𝜑 → 𝑆 ∈ Rng) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ⨣ = (+g‘𝑆) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHomo 𝑆)) | ||
Theorem | rnghmf1o 45349 | A non-unital ring homomorphism is bijective iff its converse is also a non-unital ring homomorphism. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RngHomo 𝑅))) | ||
Theorem | isrngim 45350 | An isomorphism of non-unital rings is a bijective homomorphism. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐹 ∈ (𝑅 RngIsom 𝑆) ↔ (𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶))) | ||
Theorem | rngimf1o 45351 | An isomorphism of non-unital rings is a bijection. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngIsom 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
Theorem | rngimrnghm 45352 | An isomorphism of non-unital rings is a homomorphism. (Contributed by AV, 23-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RngIsom 𝑆) → 𝐹 ∈ (𝑅 RngHomo 𝑆)) | ||
Theorem | rnghmco 45353 | The composition of non-unital ring homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020.) |
⊢ ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RngHomo 𝑈)) | ||
Theorem | idrnghm 45354 | The identity homomorphism on a non-unital ring. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → ( I ↾ 𝐵) ∈ (𝑅 RngHomo 𝑅)) | ||
Theorem | c0mgm 45355* | The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MgmHom 𝑇)) | ||
Theorem | c0mhm 45356* | The constant mapping to zero is a monoid homomorphism. (Contributed by AV, 16-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇)) | ||
Theorem | c0ghm 45357* | The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) | ||
Theorem | c0rhm 45358* | The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RingHom 𝑇)) | ||
Theorem | c0rnghm 45359* | The constant mapping to zero is a nonunital ring homomorphism from any nonunital ring to the zero ring. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇)) | ||
Theorem | c0snmgmhm 45360* | The constant mapping to zero is a magma homomorphism from a magma with one element to any monoid. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆)) | ||
Theorem | c0snmhm 45361* | The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) & ⊢ 𝑍 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆)) | ||
Theorem | c0snghm 45362* | The constant mapping to zero is a group homomorphism from the trivial group (consisting of the zero only) to any group. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) & ⊢ 𝑍 = (0g‘𝑇) ⇒ ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 GrpHom 𝑆)) | ||
Theorem | zrrnghm 45363* | The constant mapping to zero is a nonunital ring homomorphism from the zero ring to any nonunital ring. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 RngHomo 𝑆)) | ||
Theorem | rhmfn 45364 | The mapping of two rings to the ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.) |
⊢ RingHom Fn (Ring × Ring) | ||
Theorem | rhmval 45365 | The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020.) |
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) | ||
Theorem | rhmisrnghm 45366 | Each unital ring homomorphism is a non-unital ring homomorphism. (Contributed by AV, 29-Feb-2020.) |
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 RngHomo 𝑆)) | ||
Theorem | lidldomn1 45367* | If a (left) ideal (which is not the zero ideal) of a domain has a multiplicative identity element, the identity element is the identity of the domain. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 }) ∧ 𝐼 ∈ 𝑈) → (∀𝑥 ∈ 𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 )) | ||
Theorem | lidlssbas 45368 | The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) | ||
Theorem | lidlbas 45369 | A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) | ||
Theorem | lidlabl 45370 | A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Abel) | ||
Theorem | lidlmmgm 45371 | The multiplicative group of a (left) ideal of a ring is a magma. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Mgm) | ||
Theorem | lidlmsgrp 45372 | The multiplicative group of a (left) ideal of a ring is a semigroup. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → (mulGrp‘𝐼) ∈ Smgrp) | ||
Theorem | lidlrng 45373 | A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐿) → 𝐼 ∈ Rng) | ||
Theorem | zlidlring 45374 | The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring) | ||
Theorem | uzlidlring 45375 | Only the zero (left) ideal or the unit (left) ideal of a domain is a unital ring. (Contributed by AV, 18-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ 𝑈 ∈ 𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵))) | ||
Theorem | lidldomnnring 45376 | A (left) ideal of a domain which is neither the zero ideal nor the unit ideal is not a unital ring. (Contributed by AV, 18-Feb-2020.) |
⊢ 𝐿 = (LIdeal‘𝑅) & ⊢ 𝐼 = (𝑅 ↾s 𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Domn ∧ (𝑈 ∈ 𝐿 ∧ 𝑈 ≠ { 0 } ∧ 𝑈 ≠ 𝐵)) → 𝐼 ∉ Ring) | ||
Theorem | 0even 45377* | 0 is an even integer. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⇒ ⊢ 0 ∈ 𝐸 | ||
Theorem | 1neven 45378* | 1 is not an even integer. (Contributed by AV, 12-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⇒ ⊢ 1 ∉ 𝐸 | ||
Theorem | 2even 45379* | 2 is an even integer. (Contributed by AV, 12-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⇒ ⊢ 2 ∈ 𝐸 | ||
Theorem | 2zlidl 45380* | The even integers are a (left) ideal of the ring of integers. (Contributed by AV, 20-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑈 = (LIdeal‘ℤring) ⇒ ⊢ 𝐸 ∈ 𝑈 | ||
Theorem | 2zrng 45381* | The ring of integers restricted to the even integers is a (non-unital) ring, the "ring of even integers". Remark: the structure of the complementary subset of the set of integers, the odd integers, is not even a magma, see oddinmgm 45257. (Contributed by AV, 20-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑈 = (LIdeal‘ℤring) & ⊢ 𝑅 = (ℤring ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Rng | ||
Theorem | 2zrngbas 45382* | The base set of R is the set of all even integers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝐸 = (Base‘𝑅) | ||
Theorem | 2zrngadd 45383* | The group addition operation of R is the addition of complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ + = (+g‘𝑅) | ||
Theorem | 2zrng0 45384* | The additive identity of R is the complex number 0. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 0 = (0g‘𝑅) | ||
Theorem | 2zrngamgm 45385* | R is an (additive) magma. (Contributed by AV, 6-Jan-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Mgm | ||
Theorem | 2zrngasgrp 45386* | R is an (additive) semigroup. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Smgrp | ||
Theorem | 2zrngamnd 45387* | R is an (additive) monoid. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Mnd | ||
Theorem | 2zrngacmnd 45388* | R is a commutative (additive) monoid. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ CMnd | ||
Theorem | 2zrngagrp 45389* | R is an (additive) group. (Contributed by AV, 6-Jan-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Grp | ||
Theorem | 2zrngaabl 45390* | R is an (additive) abelian group. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ 𝑅 ∈ Abel | ||
Theorem | 2zrngmul 45391* | The ring multiplication operation of R is the multiplication on complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) ⇒ ⊢ · = (.r‘𝑅) | ||
Theorem | 2zrngmmgm 45392* | R is a (multiplicative) magma. (Contributed by AV, 11-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ 𝑀 ∈ Mgm | ||
Theorem | 2zrngmsgrp 45393* | R is a (multiplicative) semigroup. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ 𝑀 ∈ Smgrp | ||
Theorem | 2zrngALT 45394* | The ring of integers restricted to the even integers is a (non-unital) ring, the "ring of even integers". Alternate version of 2zrng 45381, based on a restriction of the field of the complex numbers. The proof is based on the facts that the ring of even integers is an additive abelian group (see 2zrngaabl 45390) and a multiplicative semigroup (see 2zrngmsgrp 45393). (Contributed by AV, 11-Feb-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ 𝑅 ∈ Rng | ||
Theorem | 2zrngnmlid 45395* | R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ ∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 | ||
Theorem | 2zrngnmrid 45396* | R has no multiplicative (right) identity. (Contributed by AV, 12-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 | ||
Theorem | 2zrngnmlid2 45397* | R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 | ||
Theorem | 2zrngnring 45398* | R is not a unital ring. (Contributed by AV, 6-Jan-2020.) |
⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} & ⊢ 𝑅 = (ℂfld ↾s 𝐸) & ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ 𝑅 ∉ Ring | ||
Theorem | cznrnglem 45399 | Lemma for cznrng 45401: The base set of the ring constructed from a ℤ/nℤ structure by replacing the (multiplicative) ring operation by a constant operation is the base set of the ℤ/nℤ structure. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) ⇒ ⊢ 𝐵 = (Base‘𝑋) | ||
Theorem | cznabel 45400 | The ring constructed from a ℤ/nℤ structure by replacing the (multiplicative) ring operation by a constant operation is an abelian group. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝑌 = (ℤ/nℤ‘𝑁) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑋 = (𝑌 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶)〉) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐶 ∈ 𝐵) → 𝑋 ∈ Abel) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |