Home | Metamath
Proof Explorer Theorem List (p. 454 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | isomgrtrlem 45301* | Lemma for isomgrtr 45302. (Contributed by AV, 5-Dec-2022.) |
⊢ (((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) → ∀𝑗 ∈ dom (iEdg‘𝐴)((𝑣 ∘ 𝑓) “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐶)‘((𝑤 ∘ 𝑔)‘𝑗))) | ||
Theorem | isomgrtr 45302 | The isomorphy relation is transitive for hypergraphs. (Contributed by AV, 5-Dec-2022.) |
⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶 ∈ 𝑋) → ((𝐴 IsomGr 𝐵 ∧ 𝐵 IsomGr 𝐶) → 𝐴 IsomGr 𝐶)) | ||
Theorem | strisomgrop 45303 | A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022.) |
⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐻 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 IsomGr 𝐻) | ||
Theorem | ushrisomgr 45304 | A simple hypergraph (with arbitrarily indexed edges) is isomorphic to a graph with the same vertices and the same edges, indexed by the edges themselves. (Contributed by AV, 11-Nov-2022.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐻 = 〈𝑉, ( I ↾ 𝐸)〉 ⇒ ⊢ (𝐺 ∈ USHGraph → 𝐺 IsomGr 𝐻) | ||
Theorem | 1hegrlfgr 45305* | A graph 𝐺 with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) & ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) ⇒ ⊢ (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) | ||
Syntax | cupwlks 45306 | Extend class notation with walks (of a pseudograph). |
class UPWalks | ||
Definition | df-upwlks 45307* |
Define the set of all walks (in a pseudograph), called "simple walks"
in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) | ||
Theorem | upwlksfval 45308* | The set of simple walks (in an undirected graph). (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (UPWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) | ||
Theorem | isupwlk 45309* | Properties of a pair of functions to be a simple walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
Theorem | isupwlkg 45310* | Generalization of isupwlk 45309: Conditions for two classes to represent a simple walk. (Contributed by AV, 5-Nov-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
Theorem | upwlkbprop 45311 | Basic properties of a simple walk. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 29-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | ||
Theorem | upwlkwlk 45312 | A simple walk is a walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 27-Feb-2021.) |
⊢ (𝐹(UPWalks‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
Theorem | upgrwlkupwlk 45313 | In a pseudograph, a walk is a simple walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 2-Jan-2021.) |
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → 𝐹(UPWalks‘𝐺)𝑃) | ||
Theorem | upgrwlkupwlkb 45314 | In a pseudograph, the definitions for a walk and a simple walk are equivalent. (Contributed by AV, 30-Dec-2020.) |
⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ 𝐹(UPWalks‘𝐺)𝑃)) | ||
Theorem | upgrisupwlkALT 45315* | Alternate proof of upgriswlk 28017 using the definition of UPGraph and related theorems. (Contributed by AV, 2-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
Theorem | upgredgssspr 45316 | The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 24-Nov-2021.) |
⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ (Pairs‘(Vtx‘𝐺))) | ||
Theorem | uspgropssxp 45317* | The set 𝐺 of "simple pseudographs" for a fixed set 𝑉 of vertices is a subset of a Cartesian product. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 45327. (Contributed by AV, 24-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ⊆ (𝑊 × 𝑃)) | ||
Theorem | uspgrsprfv 45318* | The value of the function 𝐹 which maps a "simple pseudograph" for a fixed set 𝑉 of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for 𝐺 as defined here, the function 𝐹 is a bijection between the "simple pseudographs" and the subsets of the set of pairs 𝑃 over the fixed set 𝑉 of vertices, see uspgrbispr 45324. (Contributed by AV, 24-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ (𝑋 ∈ 𝐺 → (𝐹‘𝑋) = (2nd ‘𝑋)) | ||
Theorem | uspgrsprf 45319* | The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 24-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ 𝐹:𝐺⟶𝑃 | ||
Theorem | uspgrsprf1 45320* | The mapping 𝐹 is a one-to-one function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ 𝐹:𝐺–1-1→𝑃 | ||
Theorem | uspgrsprfo 45321* | The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 onto the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝐺–onto→𝑃) | ||
Theorem | uspgrsprf1o 45322* | The mapping 𝐹 is a bijection between the "simple pseudographs" with a fixed set of vertices 𝑉 and the subsets of the set of pairs over the set 𝑉. See also the comments on uspgrbisymrel 45327. (Contributed by AV, 25-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝐺–1-1-onto→𝑃) | ||
Theorem | uspgrex 45323* | The class 𝐺 of all "simple pseudographs" with a fixed set of vertices 𝑉 is a set. (Contributed by AV, 26-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) | ||
Theorem | uspgrbispr 45324* | There is a bijection between the "simple pseudographs" with a fixed set of vertices 𝑉 and the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 26-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑃) | ||
Theorem | uspgrspren 45325* | The set 𝐺 of the "simple pseudographs" with a fixed set of vertices 𝑉 and the class 𝑃 of subsets of the set of pairs over the fixed set 𝑉 are equinumerous. (Contributed by AV, 27-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ≈ 𝑃) | ||
Theorem | uspgrymrelen 45326* | The set 𝐺 of the "simple pseudographs" with a fixed set of vertices 𝑉 and the class 𝑅 of the symmetric relations on the fixed set 𝑉 are equinumerous. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 45327. (Contributed by AV, 27-Nov-2021.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ≈ 𝑅) | ||
Theorem | uspgrbisymrel 45327* |
There is a bijection between the "simple pseudographs" for a fixed
set
𝑉 of vertices and the class 𝑅 of the
symmetric relations on the
fixed set 𝑉. The simple pseudographs, which are
graphs without
hyper- or multiedges, but which may contain loops, are expressed as
ordered pairs of the vertices and the edges (as proper or improper
unordered pairs of vertices, not as indexed edges!) in this theorem.
That class 𝐺 of such simple pseudographs is a set
(if 𝑉 is a
set, see uspgrex 45323) of equivalence classes of graphs
abstracting from
the index sets of their edge functions.
Solely for this abstraction, there is a bijection between the "simple pseudographs" as members of 𝐺 and the symmetric relations 𝑅 on the fixed set 𝑉 of vertices. This theorem would not hold for 𝐺 = {𝑔 ∈ USPGraph ∣ (Vtx‘𝑔) = 𝑉} and even not for 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ 〈𝑣, 𝑒〉 ∈ USPGraph)}, because these are much bigger classes. (Proposed by Gerard Lang, 16-Nov-2021.) (Contributed by AV, 27-Nov-2021.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) | ||
Theorem | uspgrbisymrelALT 45328* | Alternate proof of uspgrbisymrel 45327 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) | ||
Theorem | ovn0dmfun 45329 | If a class operation value for two operands is not the empty set, then the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6821. (Contributed by AV, 27-Jan-2020.) |
⊢ ((𝐴𝐹𝐵) ≠ ∅ → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}))) | ||
Theorem | xpsnopab 45330* | A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020.) |
⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} | ||
Theorem | xpiun 45331* | A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020.) |
⊢ (𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐵 {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} | ||
Theorem | ovn0ssdmfun 45332* | If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6821. (Contributed by AV, 27-Jan-2020.) |
⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) | ||
Theorem | fnxpdmdm 45333 | The domain of the domain of a function over a Cartesian square. (Contributed by AV, 13-Jan-2020.) |
⊢ (𝐹 Fn (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴) | ||
Theorem | cnfldsrngbas 45334 | The base set of a subring of the field of complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝑅 = (ℂfld ↾s 𝑆) ⇒ ⊢ (𝑆 ⊆ ℂ → 𝑆 = (Base‘𝑅)) | ||
Theorem | cnfldsrngadd 45335 | The group addition operation of a subring of the field of complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝑅 = (ℂfld ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ 𝑉 → + = (+g‘𝑅)) | ||
Theorem | cnfldsrngmul 45336 | The ring multiplication operation of a subring of the field of complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝑅 = (ℂfld ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ 𝑉 → · = (.r‘𝑅)) | ||
Theorem | plusfreseq 45337 | If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ⨣ = (+𝑓‘𝑀) ⇒ ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) | ||
Theorem | mgmplusfreseq 45338 | If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ⨣ = (+𝑓‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) | ||
Theorem | 0mgm 45339 | A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020.) |
⊢ (Base‘𝑀) = ∅ ⇒ ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm) | ||
Theorem | mgmpropd 45340* | If two structures have the same (nonempty) base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a magma iff the other one is. (Contributed by AV, 25-Feb-2020.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm)) | ||
Theorem | ismgmd 45341* | Deduce a magma from its properties. (Contributed by AV, 25-Feb-2020.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → + = (+g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ Mgm) | ||
Syntax | cmgmhm 45342 | Hom-set generator class for magmas. |
class MgmHom | ||
Syntax | csubmgm 45343 | Class function taking a magma to its lattice of submagmas. |
class SubMgm | ||
Definition | df-mgmhm 45344* | A magma homomorphism is a function on the base sets which preserves the binary operation. (Contributed by AV, 24-Feb-2020.) |
⊢ MgmHom = (𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦))}) | ||
Definition | df-submgm 45345* | A submagma is a subset of a magma which is closed under the operation. Such subsets are themselves magmas. (Contributed by AV, 24-Feb-2020.) |
⊢ SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡}) | ||
Theorem | mgmhmrcl 45346 | Reverse closure of a magma homomorphism. (Contributed by AV, 24-Feb-2020.) |
⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) | ||
Theorem | submgmrcl 45347 | Reverse closure for submagmas. (Contributed by AV, 24-Feb-2020.) |
⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm) | ||
Theorem | ismgmhm 45348* | Property of a magma homomorphism. (Contributed by AV, 25-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵⟶𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) | ||
Theorem | mgmhmf 45349 | A magma homomorphism is a function. (Contributed by AV, 25-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MgmHom 𝑇) → 𝐹:𝐵⟶𝐶) | ||
Theorem | mgmhmpropd 45350* | Magma homomorphism depends only on the operation of structures. (Contributed by AV, 25-Feb-2020.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → 𝐶 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 MgmHom 𝐾) = (𝐿 MgmHom 𝑀)) | ||
Theorem | mgmhmlin 45351 | A magma homomorphism preserves the binary operation. (Contributed by AV, 25-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) | ||
Theorem | mgmhmf1o 45352 | A magma homomorphism is bijective iff its converse is also a magma homomorphism. (Contributed by AV, 25-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 MgmHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 MgmHom 𝑅))) | ||
Theorem | idmgmhm 45353 | The identity homomorphism on a magma. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑀 ∈ Mgm → ( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀)) | ||
Theorem | issubmgm 45354* | Expand definition of a submagma. (Contributed by AV, 25-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) | ||
Theorem | issubmgm2 45355 | Submagmas are subsets that are also magmas. (Contributed by AV, 25-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 𝐻 ∈ Mgm))) | ||
Theorem | rabsubmgmd 45356* | Deduction for proving that a restricted class abstraction is a submagma. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Mgm) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) → 𝜂) & ⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜃)) & ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜏)) & ⊢ (𝑧 = (𝑥 + 𝑦) → (𝜓 ↔ 𝜂)) ⇒ ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMgm‘𝑀)) | ||
Theorem | submgmss 45357 | Submagmas are subsets of the base set. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑆 ⊆ 𝐵) | ||
Theorem | submgmid 45358 | Every magma is trivially a submagma of itself. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (𝑀 ∈ Mgm → 𝐵 ∈ (SubMgm‘𝑀)) | ||
Theorem | submgmcl 45359 | Submagmas are closed under the monoid operation. (Contributed by AV, 26-Feb-2020.) |
⊢ + = (+g‘𝑀) ⇒ ⊢ ((𝑆 ∈ (SubMgm‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | ||
Theorem | submgmmgm 45360 | Submagmas are themselves magmas under the given operation. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝐻 ∈ Mgm) | ||
Theorem | submgmbas 45361 | The base set of a submagma. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝐻 = (𝑀 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑆 = (Base‘𝐻)) | ||
Theorem | subsubmgm 45362 | A submagma of a submagma is a submagma. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubMgm‘𝐺) → (𝐴 ∈ (SubMgm‘𝐻) ↔ (𝐴 ∈ (SubMgm‘𝐺) ∧ 𝐴 ⊆ 𝑆))) | ||
Theorem | resmgmhm 45363 | Restriction of a magma homomorphism to a submagma is a homomorphism. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑋 ∈ (SubMgm‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 MgmHom 𝑇)) | ||
Theorem | resmgmhm2 45364 | One direction of resmgmhm2b 45365. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑈) ∧ 𝑋 ∈ (SubMgm‘𝑇)) → 𝐹 ∈ (𝑆 MgmHom 𝑇)) | ||
Theorem | resmgmhm2b 45365 | Restriction of the codomain of a homomorphism. (Contributed by AV, 26-Feb-2020.) |
⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubMgm‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ (𝑆 MgmHom 𝑈))) | ||
Theorem | mgmhmco 45366 | The composition of magma homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020.) |
⊢ ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 MgmHom 𝑈)) | ||
Theorem | mgmhmima 45367 | The homomorphic image of a submagma is a submagma. (Contributed by AV, 27-Feb-2020.) |
⊢ ((𝐹 ∈ (𝑀 MgmHom 𝑁) ∧ 𝑋 ∈ (SubMgm‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMgm‘𝑁)) | ||
Theorem | mgmhmeql 45368 | The equalizer of two magma homomorphisms is a submagma. (Contributed by AV, 27-Feb-2020.) |
⊢ ((𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubMgm‘𝑆)) | ||
Theorem | submgmacs 45369 | Submagmas are an algebraic closure system. (Contributed by AV, 27-Feb-2020.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Mgm → (SubMgm‘𝐺) ∈ (ACS‘𝐵)) | ||
Theorem | ismhm0 45370 | Property of a monoid homomorphism, expressed by a magma homomorphism. (Contributed by AV, 17-Apr-2020.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑌 = (0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹 ∈ (𝑆 MgmHom 𝑇) ∧ (𝐹‘ 0 ) = 𝑌))) | ||
Theorem | mhmismgmhm 45371 | Each monoid homomorphism is a magma homomorphism. (Contributed by AV, 29-Feb-2020.) |
⊢ (𝐹 ∈ (𝑅 MndHom 𝑆) → 𝐹 ∈ (𝑅 MgmHom 𝑆)) | ||
Theorem | opmpoismgm 45372* | A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑀 ∈ Mgm) | ||
Theorem | copissgrp 45373* | A structure with a constant group addition operation is a semigroup if the constant is contained in the base set. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑀 ∈ Smgrp) | ||
Theorem | copisnmnd 45374* | A structure with a constant group addition operation and at least two elements is not a monoid. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 1 < (♯‘𝐵)) ⇒ ⊢ (𝜑 → 𝑀 ∉ Mnd) | ||
Theorem | 0nodd 45375* | 0 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 0 ∉ 𝑂 | ||
Theorem | 1odd 45376* | 1 is an odd integer. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 1 ∈ 𝑂 | ||
Theorem | 2nodd 45377* | 2 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 2 ∉ 𝑂 | ||
Theorem | oddibas 45378* | Lemma 1 for oddinmgm 45380: The base set of M is the set of all odd integers. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ 𝑂 = (Base‘𝑀) | ||
Theorem | oddiadd 45379* | Lemma 2 for oddinmgm 45380: The group addition operation of M is the addition of complex numbers. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ + = (+g‘𝑀) | ||
Theorem | oddinmgm 45380* | The structure of all odd integers together with the addition of complex numbers is not a magma. Remark: the structure of the complementary subset of the set of integers, the even integers, is a magma, actually an abelian group, see 2zrngaabl 45513, and even a non-unital ring, see 2zrng 45504. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ 𝑀 ∉ Mgm | ||
Theorem | nnsgrpmgm 45381 | The structure of positive integers together with the addition of complex numbers is a magma. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝑀 = (ℂfld ↾s ℕ) ⇒ ⊢ 𝑀 ∈ Mgm | ||
Theorem | nnsgrp 45382 | The structure of positive integers together with the addition of complex numbers is a semigroup. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝑀 = (ℂfld ↾s ℕ) ⇒ ⊢ 𝑀 ∈ Smgrp | ||
Theorem | nnsgrpnmnd 45383 | The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝑀 = (ℂfld ↾s ℕ) ⇒ ⊢ 𝑀 ∉ Mnd | ||
Theorem | nn0mnd 45384 | The set of nonnegative integers under (complex) addition is a monoid. Example in [Lang] p. 6. Remark: 𝑀 could have also been written as (ℂfld ↾s ℕ0). (Contributed by AV, 27-Dec-2023.) |
⊢ 𝑀 = {〈(Base‘ndx), ℕ0〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝑀 ∈ Mnd | ||
Theorem | gsumsplit2f 45385* | Split a group sum into two parts. (Contributed by AV, 4-Sep-2019.) |
⊢ Ⅎ𝑘𝜑 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) & ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) & ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) | ||
Theorem | gsumdifsndf 45386* | Extract a summand from a finitely supported group sum. (Contributed by AV, 4-Sep-2019.) |
⊢ Ⅎ𝑘𝑌 & ⊢ Ⅎ𝑘𝜑 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp (0g‘𝐺)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ (𝐴 ∖ {𝑀}) ↦ 𝑋)) + 𝑌)) | ||
Theorem | gsumfsupp 45387 | A group sum of a family can be restricted to the support of that family without changing its value, provided that that support is finite. This corresponds to the definition of an (infinite) product in [Lang] p. 5, last two formulas. (Contributed by AV, 27-Dec-2023.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐼 = (𝐹 supp 0 ) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐼)) = (𝐺 Σg 𝐹)) | ||
With df-mpo 7289, binary operations are defined by a rule, and with df-ov 7287, the value of a binary operation applied to two operands can be expressed. In both cases, the two operands can belong to different sets, and the result can be an element of a third set. However, according to Wikipedia "Binary operation", see https://en.wikipedia.org/wiki/Binary_operation (19-Jan-2020), "... a binary operation on a set 𝑆 is a mapping of the elements of the Cartesian product 𝑆 × 𝑆 to S: 𝑓:𝑆 × 𝑆⟶𝑆. Because the result of performing the operation on a pair of elements of S is again an element of S, the operation is called a closed binary operation on S (or sometimes expressed as having the property of closure).". To distinguish this more restrictive definition (in Wikipedia and most of the literature) from the general case, we call binary operations mapping the elements of the Cartesian product 𝑆 × 𝑆 internal binary operations, see df-intop 45404. If, in addition, the result is also contained in the set 𝑆, the operation is called closed internal binary operation, see df-clintop 45405. Therefore, a "binary operation on a set 𝑆 " according to Wikipedia is a "closed internal binary operation" in our terminology. If the sets are different, the operation is explicitly called external binary operation (see Wikipedia https://en.wikipedia.org/wiki/Binary_operation#External_binary_operations 45405 ). Taking a step back, we define "laws" applicable for "binary operations" (which even need not to be functions), according to the definition in [Hall] p. 1 and [BourbakiAlg1] p. 1, p. 4 and p. 7. These laws are used, on the one hand, to specialize internal binary operations (see df-clintop 45405 and df-assintop 45406), and on the other hand to define the common algebraic structures like magmas, groups, rings, etc. Internal binary operations, which obey these laws, are defined afterwards. Notice that in [BourbakiAlg1] p. 1, p. 4 and p. 7, these operations are called "laws" by themselves. In the following, an alternate definition df-cllaw 45391 for an internal binary operation is provided, which does not require function-ness, but only closure. Therefore, this definition could be used as binary operation (Slot 2) defined for a magma as extensible structure, see mgmplusgiopALT 45399, or for an alternate definition df-mgm2 45424 for a magma as extensible structure. Similar results are obtained for an associative operation (defining semigroups). | ||
In this subsection, the "laws" applicable for "binary operations" according to the definition in [Hall] p. 1 and [BourbakiAlg1] p. 1, p. 4 and p. 7 are defined. These laws are called "internal laws" in [BourbakiAlg1] p. xxi. | ||
Syntax | ccllaw 45388 | Extend class notation for the closure law. |
class clLaw | ||
Syntax | casslaw 45389 | Extend class notation for the associative law. |
class assLaw | ||
Syntax | ccomlaw 45390 | Extend class notation for the commutative law. |
class comLaw | ||
Definition | df-cllaw 45391* | The closure law for binary operations, see definitions of laws A0. and M0. in section 1.1 of [Hall] p. 1, or definition 1 in [BourbakiAlg1] p. 1: the value of a binary operation applied to two operands of a given sets is an element of this set. By this definition, the closure law is expressed as binary relation: a binary operation is related to a set by clLaw if the closure law holds for this binary operation regarding this set. Note that the binary operation needs not to be a function. (Contributed by AV, 7-Jan-2020.) |
⊢ clLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚} | ||
Definition | df-comlaw 45392* | The commutative law for binary operations, see definitions of laws A2. and M2. in section 1.1 of [Hall] p. 1, or definition 8 in [BourbakiAlg1] p. 7: the value of a binary operation applied to two operands equals the value of a binary operation applied to the two operands in reversed order. By this definition, the commutative law is expressed as binary relation: a binary operation is related to a set by comLaw if the commutative law holds for this binary operation regarding this set. Note that the binary operation needs neither to be closed nor to be a function. (Contributed by AV, 7-Jan-2020.) |
⊢ comLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥)} | ||
Definition | df-asslaw 45393* | The associative law for binary operations, see definitions of laws A1. and M1. in section 1.1 of [Hall] p. 1, or definition 5 in [BourbakiAlg1] p. 4: the value of a binary operation applied the value of the binary operation applied to two operands and a third operand equals the value of the binary operation applied to the first operand and the value of the binary operation applied to the second and third operand. By this definition, the associative law is expressed as binary relation: a binary operation is related to a set by assLaw if the associative law holds for this binary operation regarding this set. Note that the binary operation needs neither to be closed nor to be a function. (Contributed by FL, 1-Nov-2009.) (Revised by AV, 13-Jan-2020.) |
⊢ assLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 ∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} | ||
Theorem | iscllaw 45394* | The predicate "is a closed operation". (Contributed by AV, 13-Jan-2020.) |
⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ clLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) ∈ 𝑀)) | ||
Theorem | iscomlaw 45395* | The predicate "is a commutative operation". (Contributed by AV, 20-Jan-2020.) |
⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ comLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥 ⚬ 𝑦) = (𝑦 ⚬ 𝑥))) | ||
Theorem | clcllaw 45396 | Closure of a closed operation. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 21-Jan-2020.) |
⊢ (( ⚬ clLaw 𝑀 ∧ 𝑋 ∈ 𝑀 ∧ 𝑌 ∈ 𝑀) → (𝑋 ⚬ 𝑌) ∈ 𝑀) | ||
Theorem | isasslaw 45397* | The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (Revised by AV, 13-Jan-2020.) |
⊢ (( ⚬ ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → ( ⚬ assLaw 𝑀 ↔ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧)))) | ||
Theorem | asslawass 45398* | Associativity of an associative operation. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 21-Jan-2020.) |
⊢ ( ⚬ assLaw 𝑀 → ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 ∀𝑧 ∈ 𝑀 ((𝑥 ⚬ 𝑦) ⚬ 𝑧) = (𝑥 ⚬ (𝑦 ⚬ 𝑧))) | ||
Theorem | mgmplusgiopALT 45399 | Slot 2 (group operation) of a magma as extensible structure is a closed operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑀 ∈ Mgm → (+g‘𝑀) clLaw (Base‘𝑀)) | ||
Theorem | sgrpplusgaopALT 45400 | Slot 2 (group operation) of a semigroup as extensible structure is an associative operation on the base set. (Contributed by AV, 13-Jan-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ Smgrp → (+g‘𝐺) assLaw (Base‘𝐺)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |