| Metamath
Proof Explorer Theorem List (p. 454 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | uzfissfz 45301* | For any finite subset of the upper integers, there is a finite set of sequential integers that includes it. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 𝐴 ⊆ (𝑀...𝑘)) | ||
| Theorem | xleadd2d 45302 | Addition of extended reals preserves the "less than or equal to" relation, in the right slot. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 +𝑒 𝐴) ≤ (𝐶 +𝑒 𝐵)) | ||
| Theorem | suprltrp 45303* | The supremum of a nonempty bounded set of reals can be approximated from below by elements of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝐴 (sup(𝐴, ℝ, < ) − 𝑋) < 𝑧) | ||
| Theorem | xleadd1d 45304 | Addition of extended reals preserves the "less than or equal to" relation, in the left slot. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | ||
| Theorem | xreqled 45305 | Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | xrgepnfd 45306 | An extended real greater than or equal to +∞ is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → +∞ ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = +∞) | ||
| Theorem | xrge0nemnfd 45307 | A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → 𝐴 ≠ -∞) | ||
| Theorem | supxrgere 45308* | If a real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ 𝐴 (𝐵 − 𝑥) < 𝑦) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ*, < )) | ||
| Theorem | iuneqfzuzlem 45309* | Lemma for iuneqfzuz 45310: here, inclusion is proven; aiuneqfzuz uses this lemma twice, to prove equality. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝑍 = (ℤ≥‘𝑁) ⇒ ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 ⊆ ∪ 𝑛 ∈ 𝑍 𝐵) | ||
| Theorem | iuneqfzuz 45310* | If two unions indexed by upper integers are equal if they agree on any partial indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝑍 = (ℤ≥‘𝑁) ⇒ ⊢ (∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)𝐴 = ∪ 𝑛 ∈ (𝑁...𝑚)𝐵 → ∪ 𝑛 ∈ 𝑍 𝐴 = ∪ 𝑛 ∈ 𝑍 𝐵) | ||
| Theorem | xle2addd 45311 | Adding both side of two inequalities. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 ≤ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐷)) | ||
| Theorem | supxrgelem 45312* | If an extended real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ 𝐴 𝐵 < (𝑦 +𝑒 𝑥)) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ*, < )) | ||
| Theorem | supxrge 45313* | If an extended real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ 𝐴 𝐵 ≤ (𝑦 +𝑒 𝑥)) ⇒ ⊢ (𝜑 → 𝐵 ≤ sup(𝐴, ℝ*, < )) | ||
| Theorem | suplesup 45314* | If any element of 𝐴 can be approximated from below by members of 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ⊆ ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ 𝐵 (𝑥 − 𝑦) < 𝑧) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) | ||
| Theorem | infxrglb 45315* | The infimum of a set of extended reals is less than an extended real if and only if the set contains a smaller number. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (inf(𝐴, ℝ*, < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) | ||
| Theorem | xadd0ge2 45316 | A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → 𝐴 ≤ (𝐵 +𝑒 𝐴)) | ||
| Theorem | nepnfltpnf 45317 | An extended real that is not +∞ is less than +∞. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ≠ +∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → 𝐴 < +∞) | ||
| Theorem | ltadd12dd 45318 | Addition to both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
| Theorem | nemnftgtmnft 45319 | An extended real that is not minus infinity, is larger than minus infinity. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → -∞ < 𝐴) | ||
| Theorem | xrgtso 45320 | 'Greater than' is a strict ordering on the extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ ◡ < Or ℝ* | ||
| Theorem | rpex 45321 | The positive reals form a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ ℝ+ ∈ V | ||
| Theorem | xrge0ge0 45322 | A nonnegative extended real is nonnegative. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝐴 ∈ (0[,]+∞) → 0 ≤ 𝐴) | ||
| Theorem | xrssre 45323 | A subset of extended reals that does not contain +∞ and -∞ is a subset of the reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → ¬ +∞ ∈ 𝐴) & ⊢ (𝜑 → ¬ -∞ ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ℝ) | ||
| Theorem | ssuzfz 45324 | A finite subset of the upper integers is a subset of a finite set of sequential integers. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → 𝐴 ⊆ (𝑀...sup(𝐴, ℝ, < ))) | ||
| Theorem | absfun 45325 | The absolute value is a function. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Fun abs | ||
| Theorem | infrpge 45326* | The infimum of a nonempty, bounded subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝐴 𝑧 ≤ (inf(𝐴, ℝ*, < ) +𝑒 𝐵)) | ||
| Theorem | xrlexaddrp 45327* | If an extended real number 𝐴 can be approximated from above, adding positive reals to 𝐵, then 𝐴 is less than or equal to 𝐵. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 +𝑒 𝑥)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | supsubc 45328* | The supremum function distributes over subtraction in a sense similar to that in supaddc 12207. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 − 𝐵)} ⇒ ⊢ (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < )) | ||
| Theorem | xralrple2 45329* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. A variant on xralrple 13219. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ ((1 + 𝑥) · 𝐵))) | ||
| Theorem | nnuzdisj 45330 | The first 𝑁 elements of the set of nonnegative integers are distinct from any later members. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ ((1...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ | ||
| Theorem | ltdivgt1 45331 | Divsion by a number greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (1 < 𝐵 ↔ (𝐴 / 𝐵) < 𝐴)) | ||
| Theorem | xrltned 45332 | 'Less than' implies not equal. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
| Theorem | nnsplit 45333 | Express the set of positive integers as the disjoint (see nnuzdisj 45330) union of the first 𝑁 values and the rest. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝑁 ∈ ℕ → ℕ = ((1...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | ||
| Theorem | divdiv3d 45334 | Division into a fraction. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐶 · 𝐵))) | ||
| Theorem | abslt2sqd 45335 | Comparison of the square of two numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐴) < (abs‘𝐵)) ⇒ ⊢ (𝜑 → (𝐴↑2) < (𝐵↑2)) | ||
| Theorem | qenom 45336 | The set of rational numbers is equinumerous to omega (the set of finite ordinal numbers). (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ ℚ ≈ ω | ||
| Theorem | qct 45337 | The set of rational numbers is countable. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| ⊢ ℚ ≼ ω | ||
| Theorem | xrltnled 45338 | 'Less than' in terms of 'less than or equal to'. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
| Theorem | lenlteq 45339 | 'less than or equal to' but not 'less than' implies 'equal' . (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → ¬ 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | xrred 45340 | An extended real that is neither minus infinity, nor plus infinity, is real. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 ≠ -∞) & ⊢ (𝜑 → 𝐴 ≠ +∞) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | rr2sscn2 45341 | The cartesian square of ℝ is a subset of the cartesian square of ℂ. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) | ||
| Theorem | infxr 45342* | The infimum of a set of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦 ∈ 𝐴 𝑦 < 𝑥)) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) = 𝐵) | ||
| Theorem | infxrunb2 45343* | The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞)) | ||
| Theorem | infxrbnd2 45344* | The infimum of a bounded-below set of extended reals is greater than minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ -∞ < inf(𝐴, ℝ*, < ))) | ||
| Theorem | infleinflem1 45345 | Lemma for infleinf 45347, case 𝐵 ≠ ∅ ∧ -∞ < inf(𝐵, ℝ*, < ). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ⊆ ℝ*) & ⊢ (𝜑 → 𝑊 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2))) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ (𝜑 → 𝑍 ≤ (𝑋 +𝑒 (𝑊 / 2))) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊)) | ||
| Theorem | infleinflem2 45346 | Lemma for infleinf 45347, when inf(𝐵, ℝ*, < ) = -∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ⊆ ℝ*) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 < (𝑅 − 2)) & ⊢ (𝜑 → 𝑍 ∈ 𝐴) & ⊢ (𝜑 → 𝑍 ≤ (𝑋 +𝑒 1)) ⇒ ⊢ (𝜑 → 𝑍 < 𝑅) | ||
| Theorem | infleinf 45347* | If any element of 𝐵 can be approximated from above by members of 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ⊆ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ 𝐴 𝑧 ≤ (𝑥 +𝑒 𝑦)) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < )) | ||
| Theorem | xralrple4 45348* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁)))) | ||
| Theorem | xralrple3 45349* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝐶 · 𝑥)))) | ||
| Theorem | eluzelzd 45350 | A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℤ) | ||
| Theorem | suplesup2 45351* | If any element of 𝐴 is less than or equal to an element in 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ⊆ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) | ||
| Theorem | recnnltrp 45352 | 𝑁 is a natural number large enough that its reciprocal is smaller than the given positive 𝐸. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ 𝑁 = ((⌊‘(1 / 𝐸)) + 1) ⇒ ⊢ (𝐸 ∈ ℝ+ → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸)) | ||
| Theorem | nnn0 45353 | The set of positive integers is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ ℕ ≠ ∅ | ||
| Theorem | fzct 45354 | A finite set of sequential integer is countable. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝑁...𝑀) ≼ ω | ||
| Theorem | rpgtrecnn 45355* | Any positive real number is greater than the reciprocal of a positive integer. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝐴 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴) | ||
| Theorem | fzossuz 45356 | A half-open integer interval is a subset of an upper set of integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝑀..^𝑁) ⊆ (ℤ≥‘𝑀) | ||
| Theorem | infxrrefi 45357 | The real and extended real infima match when the set is finite. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < )) | ||
| Theorem | xrralrecnnle 45358* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))) | ||
| Theorem | fzoct 45359 | A finite set of sequential integer is countable. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝑁..^𝑀) ≼ ω | ||
| Theorem | frexr 45360 | A function taking real values, is a function taking extended real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | ||
| Theorem | nnrecrp 45361 | The reciprocal of a positive natural number is a positive real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ+) | ||
| Theorem | reclt0d 45362 | The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) < 0) | ||
| Theorem | lt0neg1dd 45363 | If a number is negative, its negative is positive. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → 0 < -𝐴) | ||
| Theorem | infxrcld 45364 | The infimum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ*) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*) | ||
| Theorem | xrralrecnnge 45365* | Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (𝐴 − (1 / 𝑛)) ≤ 𝐵)) | ||
| Theorem | reclt0 45366 | The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 < 0 ↔ (1 / 𝐴) < 0)) | ||
| Theorem | ltmulneg 45367 | Multiplying by a negative number, swaps the order. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 0) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶))) | ||
| Theorem | allbutfi 45368* | For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin 45071 and eliuniin2 45092 (here, the precondition can be dropped; see eliuniincex 45081). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 ⇒ ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑛 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵) | ||
| Theorem | ltdiv23neg 45369 | Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 0) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) | ||
| Theorem | xreqnltd 45370 | A consequence of trichotomy. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 < 𝐵) | ||
| Theorem | mnfnre2 45371 | Minus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ ¬ -∞ ∈ ℝ | ||
| Theorem | zssxr 45372 | The integers are a subset of the extended reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ ℤ ⊆ ℝ* | ||
| Theorem | fisupclrnmpt 45373* | A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐵 ↦ 𝐶), 𝐴, 𝑅) ∈ 𝐴) | ||
| Theorem | supxrunb3 45374* | The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞)) | ||
| Theorem | elfzod 45375 | Membership in a half-open integer interval. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 < 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝑀..^𝑁)) | ||
| Theorem | fimaxre4 45376* | A nonempty finite set of real numbers is bounded (image set version). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | ||
| Theorem | ren0 45377 | The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ ℝ ≠ ∅ | ||
| Theorem | eluzelz2 45378 | A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) | ||
| Theorem | resabs2d 45379 | Absorption law for restriction. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐵)) | ||
| Theorem | uzid2 45380 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝑀 ∈ (ℤ≥‘𝑁) → 𝑀 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | supxrleubrnmpt 45381* | The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) | ||
| Theorem | uzssre2 45382 | An upper set of integers is a subset of the Reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ 𝑍 ⊆ ℝ | ||
| Theorem | uzssd 45383 | Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | ||
| Theorem | eluzd 45384 | Membership in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑍) | ||
| Theorem | infxrlbrnmpt2 45385* | A member of a nonempty indexed set of reals is greater than or equal to the set's lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐷) | ||
| Theorem | xrre4 45386 | An extended real is real iff it is not an infinty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (𝐴 ≠ -∞ ∧ 𝐴 ≠ +∞))) | ||
| Theorem | uz0 45387 | The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) | ||
| Theorem | eluzelz2d 45388 | A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℤ) | ||
| Theorem | infleinf2 45389* | If any element in 𝐵 is greater than or equal to an element in 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ⊆ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ⇒ ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < )) | ||
| Theorem | unb2ltle 45390* | "Unbounded below" expressed with < and with ≤. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) | ||
| Theorem | uzidd2 45391 | Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑍) | ||
| Theorem | uzssd2 45392 | Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) ⇒ ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) | ||
| Theorem | rexabslelem 45393* | An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) | ||
| Theorem | rexabsle 45394* | An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑧 ≤ 𝐵))) | ||
| Theorem | allbutfiinf 45395* | Given a "for all but finitely many" condition, the condition holds from 𝑁 on. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐵 & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝑁 = inf({𝑛 ∈ 𝑍 ∣ ∀𝑚 ∈ (ℤ≥‘𝑛)𝑋 ∈ 𝐵}, ℝ, < ) ⇒ ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ ∀𝑚 ∈ (ℤ≥‘𝑁)𝑋 ∈ 𝐵)) | ||
| Theorem | supxrrernmpt 45396* | The real and extended real indexed suprema match when the indexed real supremum exists. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ⇒ ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) | ||
| Theorem | suprleubrnmpt 45397* | The supremum of a nonempty bounded indexed set of reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) | ||
| Theorem | infrnmptle 45398* | An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐶), ℝ*, < )) | ||
| Theorem | infxrunb3 45399* | The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ inf(𝐴, ℝ*, < ) = -∞)) | ||
| Theorem | uzn0d 45400 | The upper integers are all nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝜑 → 𝑍 ≠ ∅) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |