HomeHome Metamath Proof Explorer
Theorem List (p. 454 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30171)
  Hilbert Space Explorer  Hilbert Space Explorer
(30172-31694)
  Users' Mathboxes  Users' Mathboxes
(31695-47852)
 

Theorem List for Metamath Proof Explorer - 45301-45400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhsphoidmvle2 45301* The dimensional volume of a half-open interval intersected with a two half-spaces. Used in the last inequality of step (c) of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘‹ = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   (πœ‘ β†’ 𝐷 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ≀ 𝐷)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)((π»β€˜πΆ)β€˜π΅)) ≀ (𝐴(πΏβ€˜π‘‹)((π»β€˜π·)β€˜π΅)))
 
Theoremhsphoidmvle 45302* The dimensional volume of a half-open interval intersected with a half-space, is less than or equal to the dimensional volume of the original half-open interval. Used in the last inequality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘‹ = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑗 ∈ 𝑋 ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)((π»β€˜πΆ)β€˜π΅)) ≀ (𝐴(πΏβ€˜π‘‹)𝐡))
 
Theoremhoidmvval0 45303* The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
β„²π‘—πœ‘    &   πΏ = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ βˆƒπ‘— ∈ 𝑋 (π΅β€˜π‘—) ≀ (π΄β€˜π‘—))    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐡) = 0)
 
Theoremhoiprodp1 45304* The dimensional volume of a half-open interval with dimension 𝑛 + 1. Used in the first equality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ π‘Œ ∈ Fin)    &   (πœ‘ β†’ 𝑍 ∈ 𝑉)    &   (πœ‘ β†’ Β¬ 𝑍 ∈ π‘Œ)    &   π‘‹ = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   πΊ = βˆπ‘˜ ∈ π‘Œ (volβ€˜((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)))    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐡) = (𝐺 Β· (volβ€˜((π΄β€˜π‘)[,)(π΅β€˜π‘)))))
 
Theoremsge0hsphoire 45305* If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ π‘Œ ∈ Fin)    &   (πœ‘ β†’ 𝑍 ∈ (π‘Š βˆ– π‘Œ))    &   π‘Š = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   (πœ‘ β†’ 𝑆 ∈ ℝ)    β‡’   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))) ∈ ℝ)
 
Theoremhoidmvval0b 45306* The dimensional volume of the (half-open interval) empty set. Definition 115A (c) of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐴) = 0)
 
Theoremhoidmv1lelem1 45307* The supremum of π‘ˆ belongs to π‘ˆ. This is the last part of step (a) and the whole step (b) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 < 𝐡)    &   (πœ‘ β†’ 𝐢:β„•βŸΆβ„)    &   (πœ‘ β†’ 𝐷:β„•βŸΆβ„)    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))) ∈ ℝ)    &   π‘ˆ = {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))))}    &   π‘† = sup(π‘ˆ, ℝ, < )    β‡’   (πœ‘ β†’ (𝑆 ∈ π‘ˆ ∧ 𝐴 ∈ π‘ˆ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ π‘ˆ 𝑦 ≀ π‘₯))
 
Theoremhoidmv1lelem2 45308* This is the contradiction proven in step (c) in the proof of Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢:β„•βŸΆβ„)    &   (πœ‘ β†’ 𝐷:β„•βŸΆβ„)    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))) ∈ ℝ)    &   π‘ˆ = {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))))}    &   (πœ‘ β†’ 𝑆 ∈ π‘ˆ)    &   (πœ‘ β†’ 𝐴 ≀ 𝑆)    &   (πœ‘ β†’ 𝑆 < 𝐡)    &   (πœ‘ β†’ 𝐾 ∈ β„•)    &   (πœ‘ β†’ 𝑆 ∈ ((πΆβ€˜πΎ)[,)(π·β€˜πΎ)))    &   π‘€ = if((π·β€˜πΎ) ≀ 𝐡, (π·β€˜πΎ), 𝐡)    β‡’   (πœ‘ β†’ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)
 
Theoremhoidmv1lelem3 45309* The dimensional volume of a 1-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is the nonempty, finite generalized sum, sub case in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 < 𝐡)    &   (πœ‘ β†’ 𝐢:β„•βŸΆβ„)    &   (πœ‘ β†’ 𝐷:β„•βŸΆβ„)    &   (πœ‘ β†’ (𝐴[,)𝐡) βŠ† βˆͺ 𝑗 ∈ β„• ((πΆβ€˜π‘—)[,)(π·β€˜π‘—)))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))) ∈ ℝ)    &   π‘ˆ = {𝑧 ∈ (𝐴[,]𝐡) ∣ (𝑧 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)if((π·β€˜π‘—) ≀ 𝑧, (π·β€˜π‘—), 𝑧)))))}    &   π‘† = sup(π‘ˆ, ℝ, < )    β‡’   (πœ‘ β†’ (𝐡 βˆ’ 𝐴) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (volβ€˜((πΆβ€˜π‘—)[,)(π·β€˜π‘—))))))
 
Theoremhoidmv1le 45310* The dimensional volume of a 1-dimensional half-open interval is less than or equal to the generalized sum of the dimensional volumes of countable half-open intervals that cover it. This is one of the two base cases of the induction of Lemma 115B of [Fremlin1] p. 29 (the other base case is the 0-dimensional case). This proof of the 1-dimensional case is given in Lemma 114B of [Fremlin1] p. 23. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑍 ∈ 𝑉)    &   π‘‹ = {𝑍}    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m 𝑋))    &   (πœ‘ β†’ Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (((πΆβ€˜π‘—)β€˜π‘˜)[,)((π·β€˜π‘—)β€˜π‘˜)))    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐡) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘‹)(π·β€˜π‘—)))))
 
Theoremhoidmvlelem1 45311* The supremum of π‘ˆ belongs to π‘ˆ. Step (c) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑋)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘Š = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐴:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   πΊ = ((𝐴 β†Ύ π‘Œ)(πΏβ€˜π‘Œ)(𝐡 β†Ύ π‘Œ))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   π‘ˆ = {𝑧 ∈ ((π΄β€˜π‘)[,](π΅β€˜π‘)) ∣ (𝐺 Β· (𝑧 βˆ’ (π΄β€˜π‘))) ≀ ((1 + 𝐸) Β· (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘§)β€˜(π·β€˜π‘—))))))}    &   π‘† = sup(π‘ˆ, ℝ, < )    &   (πœ‘ β†’ (π΄β€˜π‘) < (π΅β€˜π‘))    β‡’   (πœ‘ β†’ 𝑆 ∈ π‘ˆ)
 
Theoremhoidmvlelem2 45312* This is the contradiction proven in step (d) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑋)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘Š = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐴:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))    &   πΉ = (𝑦 ∈ π‘Œ ↦ 0)    &   π½ = (𝑗 ∈ β„• ↦ if(𝑆 ∈ (((πΆβ€˜π‘—)β€˜π‘)[,)((π·β€˜π‘—)β€˜π‘)), ((πΆβ€˜π‘—) β†Ύ π‘Œ), 𝐹))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))    &   πΎ = (𝑗 ∈ β„• ↦ if(𝑆 ∈ (((πΆβ€˜π‘—)β€˜π‘)[,)((π·β€˜π‘—)β€˜π‘)), ((π·β€˜π‘—) β†Ύ π‘Œ), 𝐹))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   πΊ = ((𝐴 β†Ύ π‘Œ)(πΏβ€˜π‘Œ)(𝐡 β†Ύ π‘Œ))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   π‘ˆ = {𝑧 ∈ ((π΄β€˜π‘)[,](π΅β€˜π‘)) ∣ (𝐺 Β· (𝑧 βˆ’ (π΄β€˜π‘))) ≀ ((1 + 𝐸) Β· (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘§)β€˜(π·β€˜π‘—))))))}    &   (πœ‘ β†’ 𝑆 ∈ π‘ˆ)    &   (πœ‘ β†’ 𝑆 < (π΅β€˜π‘))    &   π‘ƒ = (𝑗 ∈ β„• ↦ ((π½β€˜π‘—)(πΏβ€˜π‘Œ)(πΎβ€˜π‘—)))    &   (πœ‘ β†’ 𝑀 ∈ β„•)    &   (πœ‘ β†’ 𝐺 ≀ ((1 + 𝐸) Β· Σ𝑗 ∈ (1...𝑀)(π‘ƒβ€˜π‘—)))    &   π‘‚ = ran (𝑖 ∈ {𝑗 ∈ (1...𝑀) ∣ 𝑆 ∈ (((πΆβ€˜π‘—)β€˜π‘)[,)((π·β€˜π‘—)β€˜π‘))} ↦ ((π·β€˜π‘–)β€˜π‘))    &   π‘‰ = ({(π΅β€˜π‘)} βˆͺ 𝑂)    &   π‘„ = inf(𝑉, ℝ, < )    β‡’   (πœ‘ β†’ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)
 
Theoremhoidmvlelem3 45313* This is the contradiction proven in step (d) in the proof of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑋)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘Š = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐴:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘ŠβŸΆβ„)    &   ((πœ‘ ∧ π‘˜ ∈ π‘Š) β†’ (π΄β€˜π‘˜) < (π΅β€˜π‘˜))    &   πΉ = (𝑦 ∈ π‘Œ ↦ 0)    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))    &   π½ = (𝑗 ∈ β„• ↦ if(𝑆 ∈ (((πΆβ€˜π‘—)β€˜π‘)[,)((π·β€˜π‘—)β€˜π‘)), ((πΆβ€˜π‘—) β†Ύ π‘Œ), 𝐹))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))    &   πΎ = (𝑗 ∈ β„• ↦ if(𝑆 ∈ (((πΆβ€˜π‘—)β€˜π‘)[,)((π·β€˜π‘—)β€˜π‘)), ((π·β€˜π‘—) β†Ύ π‘Œ), 𝐹))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   πΊ = ((𝐴 β†Ύ π‘Œ)(πΏβ€˜π‘Œ)(𝐡 β†Ύ π‘Œ))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   π‘ˆ = {𝑧 ∈ ((π΄β€˜π‘)[,](π΅β€˜π‘)) ∣ (𝐺 Β· (𝑧 βˆ’ (π΄β€˜π‘))) ≀ ((1 + 𝐸) Β· (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘§)β€˜(π·β€˜π‘—))))))}    &   (πœ‘ β†’ 𝑆 ∈ π‘ˆ)    &   (πœ‘ β†’ 𝑆 < (π΅β€˜π‘))    &   π‘ƒ = (𝑗 ∈ β„• ↦ ((π½β€˜π‘—)(πΏβ€˜π‘Œ)(πΎβ€˜π‘—)))    &   (πœ‘ β†’ βˆ€π‘’ ∈ (ℝ ↑m π‘Œ)βˆ€π‘“ ∈ (ℝ ↑m π‘Œ)βˆ€π‘” ∈ ((ℝ ↑m π‘Œ) ↑m β„•)βˆ€β„Ž ∈ ((ℝ ↑m π‘Œ) ↑m β„•)(Xπ‘˜ ∈ π‘Œ ((π‘’β€˜π‘˜)[,)(π‘“β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ π‘Œ (((π‘”β€˜π‘—)β€˜π‘˜)[,)((β„Žβ€˜π‘—)β€˜π‘˜)) β†’ (𝑒(πΏβ€˜π‘Œ)𝑓) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((π‘”β€˜π‘—)(πΏβ€˜π‘Œ)(β„Žβ€˜π‘—))))))    &   (πœ‘ β†’ Xπ‘˜ ∈ π‘Š ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ π‘Š (((πΆβ€˜π‘—)β€˜π‘˜)[,)((π·β€˜π‘—)β€˜π‘˜)))    &   π‘‚ = (π‘₯ ∈ Xπ‘˜ ∈ π‘Œ ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)) ↦ (π‘˜ ∈ π‘Š ↦ if(π‘˜ ∈ π‘Œ, (π‘₯β€˜π‘˜), 𝑆)))    β‡’   (πœ‘ β†’ βˆƒπ‘’ ∈ π‘ˆ 𝑆 < 𝑒)
 
Theoremhoidmvlelem4 45314* The dimensional volume of a multidimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Induction step of Lemma 115B of [Fremlin1] p. 29, case nonempty interval and dimension of the space greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑋)    &   (πœ‘ β†’ π‘Œ β‰  βˆ…)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘Š = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐴:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘ŠβŸΆβ„)    &   ((πœ‘ ∧ π‘˜ ∈ π‘Š) β†’ (π΄β€˜π‘˜) < (π΅β€˜π‘˜))    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ)    &   π» = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))    &   πΊ = ((𝐴 β†Ύ π‘Œ)(πΏβ€˜π‘Œ)(𝐡 β†Ύ π‘Œ))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   π‘ˆ = {𝑧 ∈ ((π΄β€˜π‘)[,](π΅β€˜π‘)) ∣ (𝐺 Β· (𝑧 βˆ’ (π΄β€˜π‘))) ≀ ((1 + 𝐸) Β· (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘§)β€˜(π·β€˜π‘—))))))}    &   π‘† = sup(π‘ˆ, ℝ, < )    &   (πœ‘ β†’ βˆ€π‘’ ∈ (ℝ ↑m π‘Œ)βˆ€π‘“ ∈ (ℝ ↑m π‘Œ)βˆ€π‘” ∈ ((ℝ ↑m π‘Œ) ↑m β„•)βˆ€β„Ž ∈ ((ℝ ↑m π‘Œ) ↑m β„•)(Xπ‘˜ ∈ π‘Œ ((π‘’β€˜π‘˜)[,)(π‘“β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ π‘Œ (((π‘”β€˜π‘—)β€˜π‘˜)[,)((β„Žβ€˜π‘—)β€˜π‘˜)) β†’ (𝑒(πΏβ€˜π‘Œ)𝑓) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((π‘”β€˜π‘—)(πΏβ€˜π‘Œ)(β„Žβ€˜π‘—))))))    &   (πœ‘ β†’ Xπ‘˜ ∈ π‘Š ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ π‘Š (((πΆβ€˜π‘—)β€˜π‘˜)[,)((π·β€˜π‘—)β€˜π‘˜)))    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘Š)𝐡) ≀ ((1 + 𝐸) Β· (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—))))))
 
Theoremhoidmvlelem5 45315* The dimensional volume of a multidimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Induction step of Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ π‘Œ βŠ† 𝑋)    &   (πœ‘ β†’ 𝑍 ∈ (𝑋 βˆ– π‘Œ))    &   π‘Š = (π‘Œ βˆͺ {𝑍})    &   (πœ‘ β†’ 𝐴:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘ŠβŸΆβ„)    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))    &   (πœ‘ β†’ βˆ€π‘’ ∈ (ℝ ↑m π‘Œ)βˆ€π‘“ ∈ (ℝ ↑m π‘Œ)βˆ€π‘” ∈ ((ℝ ↑m π‘Œ) ↑m β„•)βˆ€β„Ž ∈ ((ℝ ↑m π‘Œ) ↑m β„•)(Xπ‘˜ ∈ π‘Œ ((π‘’β€˜π‘˜)[,)(π‘“β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ π‘Œ (((π‘”β€˜π‘—)β€˜π‘˜)[,)((β„Žβ€˜π‘—)β€˜π‘˜)) β†’ (𝑒(πΏβ€˜π‘Œ)𝑓) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((π‘”β€˜π‘—)(πΏβ€˜π‘Œ)(β„Žβ€˜π‘—))))))    &   (πœ‘ β†’ Xπ‘˜ ∈ π‘Š ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ π‘Š (((πΆβ€˜π‘—)β€˜π‘˜)[,)((π·β€˜π‘—)β€˜π‘˜)))    &   (πœ‘ β†’ π‘Œ β‰  βˆ…)    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘Š)𝐡) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))))
 
Theoremhoidmvle 45316* The dimensional volume of a n-dimensional half-open interval is less than or equal the generalized sum of the dimensional volumes of countable half-open intervals that cover it. Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m 𝑋))    &   (πœ‘ β†’ Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (((πΆβ€˜π‘—)β€˜π‘˜)[,)((π·β€˜π‘—)β€˜π‘˜)))    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐡) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘‹)(π·β€˜π‘—)))))
 
Theoremovnhoilem1 45317* The Lebesgue outer measure of a multidimensional half-open interval is less than or equal to the product of its length in each dimension. First part of the proof of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   πΌ = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜))    &   π‘€ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(𝐼 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}    &   π» = (𝑗 ∈ β„• ↦ (π‘˜ ∈ 𝑋 ↦ if(𝑗 = 1, ⟨(π΄β€˜π‘˜), (π΅β€˜π‘˜)⟩, ⟨0, 0⟩)))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜πΌ) ≀ βˆπ‘˜ ∈ 𝑋 (volβ€˜((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜))))
 
Theoremovnhoilem2 45318* The Lebesgue outer measure of a multidimensional half-open interval is less than or equal to the product of its length in each dimension. Second part of the proof of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   πΌ = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜))    &   πΏ = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   π‘€ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•)(𝐼 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}    &   πΉ = (𝑖 ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•) ↦ (𝑛 ∈ β„• ↦ (𝑙 ∈ 𝑋 ↦ (1st β€˜((π‘–β€˜π‘›)β€˜π‘™)))))    &   π‘† = (𝑖 ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•) ↦ (𝑛 ∈ β„• ↦ (𝑙 ∈ 𝑋 ↦ (2nd β€˜((π‘–β€˜π‘›)β€˜π‘™)))))    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐡) ≀ ((voln*β€˜π‘‹)β€˜πΌ))
 
Theoremovnhoi 45319* The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   πΌ = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜))    &   πΏ = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜πΌ) = (𝐴(πΏβ€˜π‘‹)𝐡))
 
Theoremdmovn 45320 The domain of the Lebesgue outer measure is the power set of the n-dimensional Real numbers. Step (a)(i) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ dom (voln*β€˜π‘‹) = 𝒫 (ℝ ↑m 𝑋))
 
Theoremhoicoto2 45321* The half-open interval expressed using a composition of a function into (ℝ Γ— ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝐼:π‘‹βŸΆ(ℝ Γ— ℝ))    &   π΄ = (π‘˜ ∈ 𝑋 ↦ (1st β€˜(πΌβ€˜π‘˜)))    &   π΅ = (π‘˜ ∈ 𝑋 ↦ (2nd β€˜(πΌβ€˜π‘˜)))    β‡’   (πœ‘ β†’ Xπ‘˜ ∈ 𝑋 (([,) ∘ 𝐼)β€˜π‘˜) = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)))
 
Theoremdmvon 45322 Lebesgue measurable n-dimensional subsets of Reals. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ dom (volnβ€˜π‘‹) = (CaraGenβ€˜(voln*β€˜π‘‹)))
 
Theoremhoi2toco 45323* The half-open interval expressed using a composition of a function into (ℝ Γ— ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
β„²π‘˜πœ‘    &   πΌ = (π‘˜ ∈ 𝑋 ↦ ⟨(π΄β€˜π‘˜), (π΅β€˜π‘˜)⟩)    β‡’   (πœ‘ β†’ Xπ‘˜ ∈ 𝑋 (([,) ∘ 𝐼)β€˜π‘˜) = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜)))
 
Theoremhoidifhspval 45324* 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐷 = (π‘₯ ∈ ℝ ↦ (π‘Ž ∈ (ℝ ↑m 𝑋) ↦ (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘₯ ≀ (π‘Žβ€˜π‘˜), (π‘Žβ€˜π‘˜), π‘₯), (π‘Žβ€˜π‘˜)))))    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    β‡’   (πœ‘ β†’ (π·β€˜π‘Œ) = (π‘Ž ∈ (ℝ ↑m 𝑋) ↦ (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘Œ ≀ (π‘Žβ€˜π‘˜), (π‘Žβ€˜π‘˜), π‘Œ), (π‘Žβ€˜π‘˜)))))
 
Theoremhspval 45325* The value of the half-space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐻 = (π‘₯ ∈ Fin ↦ (𝑖 ∈ π‘₯, 𝑦 ∈ ℝ ↦ Xπ‘˜ ∈ π‘₯ if(π‘˜ = 𝑖, (-∞(,)𝑦), ℝ)))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐼 ∈ 𝑋)    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    β‡’   (πœ‘ β†’ (𝐼(π»β€˜π‘‹)π‘Œ) = Xπ‘˜ ∈ 𝑋 if(π‘˜ = 𝐼, (-∞(,)π‘Œ), ℝ))
 
Theoremovnlecvr2 45326* Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐴 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (((πΆβ€˜π‘—)β€˜π‘˜)[,)((π·β€˜π‘—)β€˜π‘˜)))    &   πΏ = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜π΄) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘‹)(π·β€˜π‘—)))))
 
Theoremovncvr2 45327* 𝐡 and 𝑇 are the left and right side of a cover of 𝐴. This cover is made of n-dimensional half-open intervals and approximates the n-dimensional Lebesgue outer volume of 𝐴. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   πΆ = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•) ∣ π‘Ž βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘™β€˜π‘—))β€˜π‘˜)})    &   πΏ = (β„Ž ∈ ((ℝ Γ— ℝ) ↑m 𝑋) ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ β„Ž)β€˜π‘˜)))    &   π· = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (π‘Ÿ ∈ ℝ+ ↦ {𝑖 ∈ (πΆβ€˜π‘Ž) ∣ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (πΏβ€˜(π‘–β€˜π‘—)))) ≀ (((voln*β€˜π‘‹)β€˜π‘Ž) +𝑒 π‘Ÿ)}))    &   (πœ‘ β†’ 𝐼 ∈ ((π·β€˜π΄)β€˜πΈ))    &   π΅ = (𝑗 ∈ β„• ↦ (π‘˜ ∈ 𝑋 ↦ (1st β€˜((πΌβ€˜π‘—)β€˜π‘˜))))    &   π‘‡ = (𝑗 ∈ β„• ↦ (π‘˜ ∈ 𝑋 ↦ (2nd β€˜((πΌβ€˜π‘—)β€˜π‘˜))))    β‡’   (πœ‘ β†’ (((𝐡:β„•βŸΆ(ℝ ↑m 𝑋) ∧ 𝑇:β„•βŸΆ(ℝ ↑m 𝑋)) ∧ 𝐴 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (((π΅β€˜π‘—)β€˜π‘˜)[,)((π‘‡β€˜π‘—)β€˜π‘˜))) ∧ (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(((π΅β€˜π‘—)β€˜π‘˜)[,)((π‘‡β€˜π‘—)β€˜π‘˜))))) ≀ (((voln*β€˜π‘‹)β€˜π΄) +𝑒 𝐸)))
 
Theoremdmovnsal 45328 The domain of the Lebesgue measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    β‡’   (πœ‘ β†’ 𝑆 ∈ SAlg)
 
Theoremunidmovn 45329 Base set of the n-dimensional Lebesgue outer measure. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ βˆͺ dom (voln*β€˜π‘‹) = (ℝ ↑m 𝑋))
 
Theoremrrnmbl 45330 The set of n-dimensional Real numbers is Lebesgue measurable. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ (ℝ ↑m 𝑋) ∈ dom (volnβ€˜π‘‹))
 
Theoremhoidifhspval2 45331* 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐷 = (π‘₯ ∈ ℝ ↦ (π‘Ž ∈ (ℝ ↑m 𝑋) ↦ (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘₯ ≀ (π‘Žβ€˜π‘˜), (π‘Žβ€˜π‘˜), π‘₯), (π‘Žβ€˜π‘˜)))))    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ ((π·β€˜π‘Œ)β€˜π΄) = (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘Œ ≀ (π΄β€˜π‘˜), (π΄β€˜π‘˜), π‘Œ), (π΄β€˜π‘˜))))
 
Theoremhspdifhsp 45332* A n-dimensional half-open interval is the intersection of the difference of half spaces. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   π» = (π‘₯ ∈ Fin ↦ (𝑙 ∈ π‘₯, 𝑦 ∈ ℝ ↦ X𝑖 ∈ π‘₯ if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))    β‡’   (πœ‘ β†’ X𝑖 ∈ 𝑋 ((π΄β€˜π‘–)[,)(π΅β€˜π‘–)) = ∩ 𝑖 ∈ 𝑋 ((𝑖(π»β€˜π‘‹)(π΅β€˜π‘–)) βˆ– (𝑖(π»β€˜π‘‹)(π΄β€˜π‘–))))
 
Theoremunidmvon 45333 Base set of the n-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    β‡’   (πœ‘ β†’ βˆͺ 𝑆 = (ℝ ↑m 𝑋))
 
Theoremhoidifhspf 45334* 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐷 = (π‘₯ ∈ ℝ ↦ (π‘Ž ∈ (ℝ ↑m 𝑋) ↦ (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘₯ ≀ (π‘Žβ€˜π‘˜), (π‘Žβ€˜π‘˜), π‘₯), (π‘Žβ€˜π‘˜)))))    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ ((π·β€˜π‘Œ)β€˜π΄):π‘‹βŸΆβ„)
 
Theoremhoidifhspval3 45335* 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐷 = (π‘₯ ∈ ℝ ↦ (π‘Ž ∈ (ℝ ↑m 𝑋) ↦ (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘₯ ≀ (π‘Žβ€˜π‘˜), (π‘Žβ€˜π‘˜), π‘₯), (π‘Žβ€˜π‘˜)))))    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐽 ∈ 𝑋)    β‡’   (πœ‘ β†’ (((π·β€˜π‘Œ)β€˜π΄)β€˜π½) = if(𝐽 = 𝐾, if(π‘Œ ≀ (π΄β€˜π½), (π΄β€˜π½), π‘Œ), (π΄β€˜π½)))
 
Theoremhoidifhspdmvle 45336* The dimensional volume of the difference of a half-open interval and a half-space is less than or equal to the dimensional volume of the whole half-open interval. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐾 ∈ 𝑋)    &   π· = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (β„Ž ∈ 𝑋 ↦ if(β„Ž = 𝐾, if(π‘₯ ≀ (π‘β€˜β„Ž), (π‘β€˜β„Ž), π‘₯), (π‘β€˜β„Ž)))))    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    β‡’   (πœ‘ β†’ (((π·β€˜π‘Œ)β€˜π΄)(πΏβ€˜π‘‹)𝐡) ≀ (𝐴(πΏβ€˜π‘‹)𝐡))
 
Theoremvoncmpl 45337 The Lebesgue measure is complete. See Definition 112Df of [Fremlin1] p. 19. This is an observation written after Definition 115E of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    &   (πœ‘ β†’ 𝐸 ∈ dom (volnβ€˜π‘‹))    &   (πœ‘ β†’ ((volnβ€˜π‘‹)β€˜πΈ) = 0)    &   (πœ‘ β†’ 𝐹 βŠ† 𝐸)    β‡’   (πœ‘ β†’ 𝐹 ∈ 𝑆)
 
Theoremhoiqssbllem1 45338* The center of the n-dimensional ball belongs to the half-open interval. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
β„²π‘–πœ‘    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ π‘Œ ∈ (ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐢:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐷:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   ((πœ‘ ∧ 𝑖 ∈ 𝑋) β†’ (πΆβ€˜π‘–) ∈ (((π‘Œβ€˜π‘–) βˆ’ (𝐸 / (2 Β· (βˆšβ€˜(β™―β€˜π‘‹)))))(,)(π‘Œβ€˜π‘–)))    &   ((πœ‘ ∧ 𝑖 ∈ 𝑋) β†’ (π·β€˜π‘–) ∈ ((π‘Œβ€˜π‘–)(,)((π‘Œβ€˜π‘–) + (𝐸 / (2 Β· (βˆšβ€˜(β™―β€˜π‘‹)))))))    β‡’   (πœ‘ β†’ π‘Œ ∈ X𝑖 ∈ 𝑋 ((πΆβ€˜π‘–)[,)(π·β€˜π‘–)))
 
Theoremhoiqssbllem2 45339* The center of the n-dimensional ball belongs to the half-open interval. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
β„²π‘–πœ‘    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ π‘Œ ∈ (ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐢:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐷:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   ((πœ‘ ∧ 𝑖 ∈ 𝑋) β†’ (πΆβ€˜π‘–) ∈ (((π‘Œβ€˜π‘–) βˆ’ (𝐸 / (2 Β· (βˆšβ€˜(β™―β€˜π‘‹)))))(,)(π‘Œβ€˜π‘–)))    &   ((πœ‘ ∧ 𝑖 ∈ 𝑋) β†’ (π·β€˜π‘–) ∈ ((π‘Œβ€˜π‘–)(,)((π‘Œβ€˜π‘–) + (𝐸 / (2 Β· (βˆšβ€˜(β™―β€˜π‘‹)))))))    β‡’   (πœ‘ β†’ X𝑖 ∈ 𝑋 ((πΆβ€˜π‘–)[,)(π·β€˜π‘–)) βŠ† (π‘Œ(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝐸))
 
Theoremhoiqssbllem3 45340* A n-dimensional ball contains a nonempty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ π‘Œ ∈ (ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    β‡’   (πœ‘ β†’ βˆƒπ‘ ∈ (β„š ↑m 𝑋)βˆƒπ‘‘ ∈ (β„š ↑m 𝑋)(π‘Œ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘Œ(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝐸)))
 
Theoremhoiqssbl 45341* A n-dimensional ball contains a nonempty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ π‘Œ ∈ (ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    β‡’   (πœ‘ β†’ βˆƒπ‘ ∈ (β„š ↑m 𝑋)βˆƒπ‘‘ ∈ (β„š ↑m 𝑋)(π‘Œ ∈ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) ∧ X𝑖 ∈ 𝑋 ((π‘β€˜π‘–)[,)(π‘‘β€˜π‘–)) βŠ† (π‘Œ(ballβ€˜(distβ€˜(ℝ^β€˜π‘‹)))𝐸)))
 
Theoremhspmbllem1 45342* Any half-space of the n-dimensional Real numbers is Lebesgue measurable. This is Step (a) of Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐾 ∈ 𝑋)    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   πΏ = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   π‘‡ = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (β„Ž ∈ 𝑋 ↦ if(β„Ž ∈ (𝑋 βˆ– {𝐾}), (π‘β€˜β„Ž), if((π‘β€˜β„Ž) ≀ 𝑦, (π‘β€˜β„Ž), 𝑦)))))    &   π‘† = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (β„Ž ∈ 𝑋 ↦ if(β„Ž = 𝐾, if(π‘₯ ≀ (π‘β€˜β„Ž), (π‘β€˜β„Ž), π‘₯), (π‘β€˜β„Ž)))))    β‡’   (πœ‘ β†’ (𝐴(πΏβ€˜π‘‹)𝐡) = ((𝐴(πΏβ€˜π‘‹)((π‘‡β€˜π‘Œ)β€˜π΅)) +𝑒 (((π‘†β€˜π‘Œ)β€˜π΄)(πΏβ€˜π‘‹)𝐡)))
 
Theoremhspmbllem2 45343* Any half-space of the n-dimensional Real numbers is Lebesgue measurable. This is Step (b) of Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐻 = (π‘₯ ∈ Fin ↦ (𝑙 ∈ π‘₯, 𝑦 ∈ ℝ ↦ Xπ‘˜ ∈ π‘₯ if(π‘˜ = 𝑙, (-∞(,)𝑦), ℝ)))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐾 ∈ 𝑋)    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    &   (πœ‘ β†’ 𝐸 ∈ ℝ+)    &   (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐴 βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (((πΆβ€˜π‘—)β€˜π‘˜)[,)((π·β€˜π‘—)β€˜π‘˜)))    &   (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(((πΆβ€˜π‘—)β€˜π‘˜)[,)((π·β€˜π‘—)β€˜π‘˜))))) ≀ (((voln*β€˜π‘‹)β€˜π΄) + 𝐸))    &   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜π΄) ∈ ℝ)    &   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜(𝐴 ∩ (𝐾(π»β€˜π‘‹)π‘Œ))) ∈ ℝ)    &   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜(𝐴 βˆ– (𝐾(π»β€˜π‘‹)π‘Œ))) ∈ ℝ)    &   πΏ = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    &   π‘‡ = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (β„Ž ∈ 𝑋 ↦ if(β„Ž ∈ (𝑋 βˆ– {𝐾}), (π‘β€˜β„Ž), if((π‘β€˜β„Ž) ≀ 𝑦, (π‘β€˜β„Ž), 𝑦)))))    &   π‘† = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (β„Ž ∈ 𝑋 ↦ if(β„Ž = 𝐾, if(π‘₯ ≀ (π‘β€˜β„Ž), (π‘β€˜β„Ž), π‘₯), (π‘β€˜β„Ž)))))    β‡’   (πœ‘ β†’ (((voln*β€˜π‘‹)β€˜(𝐴 ∩ (𝐾(π»β€˜π‘‹)π‘Œ))) + ((voln*β€˜π‘‹)β€˜(𝐴 βˆ– (𝐾(π»β€˜π‘‹)π‘Œ)))) ≀ (((voln*β€˜π‘‹)β€˜π΄) + 𝐸))
 
Theoremhspmbllem3 45344* Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. This proof handles the non-trivial cases (nonzero dimension and finite outer measure). (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐻 = (π‘₯ ∈ Fin ↦ (𝑙 ∈ π‘₯, 𝑦 ∈ ℝ ↦ Xπ‘˜ ∈ π‘₯ if(π‘˜ = 𝑙, (-∞(,)𝑦), ℝ)))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐾 ∈ 𝑋)    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    &   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜π΄) ∈ ℝ)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    &   πΆ = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ {𝑙 ∈ (((ℝ Γ— ℝ) ↑m 𝑋) ↑m β„•) ∣ π‘Ž βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ 𝑋 (([,) ∘ (π‘™β€˜π‘—))β€˜π‘˜)})    &   πΏ = (β„Ž ∈ ((ℝ Γ— ℝ) ↑m 𝑋) ↦ βˆπ‘˜ ∈ 𝑋 (volβ€˜(([,) ∘ β„Ž)β€˜π‘˜)))    &   π· = (π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋) ↦ (π‘Ÿ ∈ ℝ+ ↦ {𝑖 ∈ (πΆβ€˜π‘Ž) ∣ (Ξ£^β€˜(𝑗 ∈ β„• ↦ (πΏβ€˜(π‘–β€˜π‘—)))) ≀ (((voln*β€˜π‘‹)β€˜π‘Ž) +𝑒 π‘Ÿ)}))    &   π΅ = (𝑗 ∈ β„• ↦ (π‘˜ ∈ 𝑋 ↦ (1st β€˜((π‘–β€˜π‘—)β€˜π‘˜))))    &   π‘‡ = (𝑗 ∈ β„• ↦ (π‘˜ ∈ 𝑋 ↦ (2nd β€˜((π‘–β€˜π‘—)β€˜π‘˜))))    β‡’   (πœ‘ β†’ (((voln*β€˜π‘‹)β€˜(𝐴 ∩ (𝐾(π»β€˜π‘‹)π‘Œ))) +𝑒 ((voln*β€˜π‘‹)β€˜(𝐴 βˆ– (𝐾(π»β€˜π‘‹)π‘Œ)))) ≀ ((voln*β€˜π‘‹)β€˜π΄))
 
Theoremhspmbl 45345* Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐻 = (π‘₯ ∈ Fin ↦ (𝑙 ∈ π‘₯, 𝑦 ∈ ℝ ↦ Xπ‘˜ ∈ π‘₯ if(π‘˜ = 𝑙, (-∞(,)𝑦), ℝ)))    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐾 ∈ 𝑋)    &   (πœ‘ β†’ π‘Œ ∈ ℝ)    β‡’   (πœ‘ β†’ (𝐾(π»β€˜π‘‹)π‘Œ) ∈ dom (volnβ€˜π‘‹))
 
Theoremhoimbllem 45346* Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   π‘† = dom (volnβ€˜π‘‹)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   π» = (π‘₯ ∈ Fin ↦ (𝑙 ∈ π‘₯, 𝑦 ∈ ℝ ↦ X𝑖 ∈ π‘₯ if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))    β‡’   (πœ‘ β†’ X𝑖 ∈ 𝑋 ((π΄β€˜π‘–)[,)(π΅β€˜π‘–)) ∈ 𝑆)
 
Theoremhoimbl 45347* Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ X𝑖 ∈ 𝑋 ((π΄β€˜π‘–)[,)(π΅β€˜π‘–)) ∈ 𝑆)
 
Theoremopnvonmbllem1 45348* The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020.)
β„²π‘–πœ‘    &   (πœ‘ β†’ 𝑋 ∈ 𝑉)    &   (πœ‘ β†’ 𝐢:π‘‹βŸΆβ„š)    &   (πœ‘ β†’ 𝐷:π‘‹βŸΆβ„š)    &   (πœ‘ β†’ X𝑖 ∈ 𝑋 ((πΆβ€˜π‘–)[,)(π·β€˜π‘–)) βŠ† 𝐡)    &   (πœ‘ β†’ 𝐡 βŠ† 𝐺)    &   (πœ‘ β†’ π‘Œ ∈ X𝑖 ∈ 𝑋 ((πΆβ€˜π‘–)[,)(π·β€˜π‘–)))    &   πΎ = {β„Ž ∈ ((β„š Γ— β„š) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺}    &   π» = (𝑖 ∈ 𝑋 ↦ ⟨(πΆβ€˜π‘–), (π·β€˜π‘–)⟩)    β‡’   (πœ‘ β†’ βˆƒβ„Ž ∈ 𝐾 π‘Œ ∈ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–))
 
Theoremopnvonmbllem2 45349* An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    &   (πœ‘ β†’ 𝐺 ∈ (TopOpenβ€˜(ℝ^β€˜π‘‹)))    &   πΎ = {β„Ž ∈ ((β„š Γ— β„š) ↑m 𝑋) ∣ X𝑖 ∈ 𝑋 (([,) ∘ β„Ž)β€˜π‘–) βŠ† 𝐺}    β‡’   (πœ‘ β†’ 𝐺 ∈ 𝑆)
 
Theoremopnvonmbl 45350 An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    &   (πœ‘ β†’ 𝐺 ∈ (TopOpenβ€˜(ℝ^β€˜π‘‹)))    β‡’   (πœ‘ β†’ 𝐺 ∈ 𝑆)
 
Theoremopnssborel 45351 Open sets of a generalized real Euclidean space are Borel sets (notice that this theorem is even more general, because 𝑋 is not required to be a set). (Contributed by Glauco Siliprandi, 3-Jan-2021.)
𝐴 = (TopOpenβ€˜(ℝ^β€˜π‘‹))    &   π΅ = (SalGenβ€˜π΄)    β‡’   π΄ βŠ† 𝐡
 
Theoremborelmbl 45352 All Borel subsets of the n-dimensional Real numbers are Lebesgue measurable. This is Proposition 115G (b) of [Fremlin1] p. 32. See also Definition 111G (d) of [Fremlin1] p. 13. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    &   π΅ = (SalGenβ€˜(TopOpenβ€˜(ℝ^β€˜π‘‹)))    β‡’   (πœ‘ β†’ 𝐡 βŠ† 𝑆)
 
Theoremvolicorege0 45353 The Lebesgue measure of a left-closed right-open interval with real bounds, is a nonnegative real number. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (volβ€˜(𝐴[,)𝐡)) ∈ (0[,)+∞))
 
Theoremisvonmbl 45354* The predicate "𝐴 is measurable w.r.t. the n-dimensional Lebesgue measure". A set is measurable if it splits every other set π‘₯ in a "nice" way, that is, if the measure of the pieces π‘₯ ∩ 𝐴 and π‘₯ βˆ– 𝐴 sum up to the measure of π‘₯. Definition 114E of [Fremlin1] p. 25. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ (𝐸 ∈ dom (volnβ€˜π‘‹) ↔ (𝐸 βŠ† (ℝ ↑m 𝑋) ∧ βˆ€π‘Ž ∈ 𝒫 (ℝ ↑m 𝑋)(((voln*β€˜π‘‹)β€˜(π‘Ž ∩ 𝐸)) +𝑒 ((voln*β€˜π‘‹)β€˜(π‘Ž βˆ– 𝐸))) = ((voln*β€˜π‘‹)β€˜π‘Ž))))
 
Theoremmblvon 45355 The n-dimensional Lebesgue measure of a measurable set is the same as its n-dimensional Lebesgue outer measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴 ∈ dom (volnβ€˜π‘‹))    β‡’   (πœ‘ β†’ ((volnβ€˜π‘‹)β€˜π΄) = ((voln*β€˜π‘‹)β€˜π΄))
 
Theoremvonmblss 45356 n-dimensional Lebesgue measurable sets are subsets of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    β‡’   (πœ‘ β†’ dom (volnβ€˜π‘‹) βŠ† 𝒫 (ℝ ↑m 𝑋))
 
Theoremvolico2 45357 The measure of left-closed right-open interval. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) β†’ (volβ€˜(𝐴[,)𝐡)) = if(𝐴 ≀ 𝐡, (𝐡 βˆ’ 𝐴), 0))
 
Theoremvonmblss2 45358 n-dimensional Lebesgue measurable sets are subsets of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ π‘Œ ∈ dom (volnβ€˜π‘‹))    β‡’   (πœ‘ β†’ π‘Œ βŠ† (ℝ ↑m 𝑋))
 
Theoremovolval2lem 45359* The value of the Lebesgue outer measure for subsets of the reals, expressed using Ξ£^. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))    β‡’   (πœ‘ β†’ ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝐹)) = ran (𝑛 ∈ β„• ↦ Ξ£π‘˜ ∈ (1...𝑛)(volβ€˜(([,) ∘ 𝐹)β€˜π‘˜))))
 
Theoremovolval2 45360* The value of the Lebesgue outer measure for subsets of the reals, expressed using Ξ£^. See ovolval 24990 for an alternative expression. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 βŠ† ℝ)    &   π‘€ = {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((abs ∘ βˆ’ ) ∘ 𝑓)))}    β‡’   (πœ‘ β†’ (vol*β€˜π΄) = inf(𝑀, ℝ*, < ))
 
Theoremovnsubadd2lem 45361* (voln*β€˜π‘‹) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐡 βŠ† (ℝ ↑m 𝑋))    &   πΆ = (𝑛 ∈ β„• ↦ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐡, βˆ…)))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜(𝐴 βˆͺ 𝐡)) ≀ (((voln*β€˜π‘‹)β€˜π΄) +𝑒 ((voln*β€˜π‘‹)β€˜π΅)))
 
Theoremovnsubadd2 45362 (voln*β€˜π‘‹) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    &   (πœ‘ β†’ 𝐡 βŠ† (ℝ ↑m 𝑋))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜(𝐴 βˆͺ 𝐡)) ≀ (((voln*β€˜π‘‹)β€˜π΄) +𝑒 ((voln*β€˜π‘‹)β€˜π΅)))
 
Theoremovolval3 45363* The value of the Lebesgue outer measure for subsets of the reals, expressed using Ξ£^ and vol ∘ (,). See ovolval 24990 and ovolval2 45360 for alternative expressions. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 βŠ† ℝ)    &   π‘€ = {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((vol ∘ (,)) ∘ 𝑓)))}    β‡’   (πœ‘ β†’ (vol*β€˜π΄) = inf(𝑀, ℝ*, < ))
 
Theoremovnsplit 45364 The n-dimensional Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴 βŠ† (ℝ ↑m 𝑋))    β‡’   (πœ‘ β†’ ((voln*β€˜π‘‹)β€˜π΄) ≀ (((voln*β€˜π‘‹)β€˜(𝐴 ∩ 𝐡)) +𝑒 ((voln*β€˜π‘‹)β€˜(𝐴 βˆ– 𝐡))))
 
Theoremovolval4lem1 45365* |- ( ( ph /\ n e. A ) -> ( ( (,) o. G ) 𝑛) = (((,) ∘ 𝐹) n ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐹:β„•βŸΆ(ℝ* Γ— ℝ*))    &   πΊ = (𝑛 ∈ β„• ↦ ⟨(1st β€˜(πΉβ€˜π‘›)), if((1st β€˜(πΉβ€˜π‘›)) ≀ (2nd β€˜(πΉβ€˜π‘›)), (2nd β€˜(πΉβ€˜π‘›)), (1st β€˜(πΉβ€˜π‘›)))⟩)    &   π΄ = {𝑛 ∈ β„• ∣ (1st β€˜(πΉβ€˜π‘›)) ≀ (2nd β€˜(πΉβ€˜π‘›))}    β‡’   (πœ‘ β†’ (βˆͺ ran ((,) ∘ 𝐹) = βˆͺ ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝐹)) = (vol ∘ ((,) ∘ 𝐺))))
 
Theoremovolval4lem2 45366* The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 45363, but here 𝑓 is may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 βŠ† ℝ)    &   π‘€ = {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ ((ℝ Γ— ℝ) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((vol ∘ (,)) ∘ 𝑓)))}    &   πΊ = (𝑛 ∈ β„• ↦ ⟨(1st β€˜(π‘“β€˜π‘›)), if((1st β€˜(π‘“β€˜π‘›)) ≀ (2nd β€˜(π‘“β€˜π‘›)), (2nd β€˜(π‘“β€˜π‘›)), (1st β€˜(π‘“β€˜π‘›)))⟩)    β‡’   (πœ‘ β†’ (vol*β€˜π΄) = inf(𝑀, ℝ*, < ))
 
Theoremovolval4 45367* The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 45363, but here 𝑓 may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 βŠ† ℝ)    &   π‘€ = {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ ((ℝ Γ— ℝ) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((vol ∘ (,)) ∘ 𝑓)))}    β‡’   (πœ‘ β†’ (vol*β€˜π΄) = inf(𝑀, ℝ*, < ))
 
Theoremovolval5lem1 45368* (πœ‘ β†’ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (volβ€˜((𝐴 βˆ’ (π‘Š / (2↑𝑛) ))(,)𝐡)))) ≀ ((Ξ£^β€˜(𝑛 ∈ β„• ↦ (volβ€˜(𝐴[,)𝐡) ))) +𝑒 π‘Š)). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝐴 ∈ ℝ)    &   ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ π‘Š ∈ ℝ+)    &   πΆ = {𝑛 ∈ β„• ∣ 𝐴 < 𝐡}    β‡’   (πœ‘ β†’ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (volβ€˜((𝐴 βˆ’ (π‘Š / (2↑𝑛)))(,)𝐡)))) ≀ ((Ξ£^β€˜(𝑛 ∈ β„• ↦ (volβ€˜(𝐴[,)𝐡)))) +𝑒 π‘Š))
 
Theoremovolval5lem2 45369* ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ⟨((1st β€˜(πΉβ€˜π‘›)) βˆ’ (π‘Š / (2↑𝑛))), (2nd β€˜(πΉβ€˜π‘›))⟩ ∈ (ℝ Γ— ℝ)). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝑄 = {𝑧 ∈ ℝ* ∣ βˆƒπ‘“ ∈ ((ℝ Γ— ℝ) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (Ξ£^β€˜((vol ∘ (,)) ∘ 𝑓)))}    &   (πœ‘ β†’ π‘Œ = (Ξ£^β€˜((vol ∘ [,)) ∘ 𝐹)))    &   π‘ = (Ξ£^β€˜((vol ∘ (,)) ∘ 𝐺))    &   (πœ‘ β†’ 𝐹:β„•βŸΆ(ℝ Γ— ℝ))    &   (πœ‘ β†’ 𝐴 βŠ† βˆͺ ran ([,) ∘ 𝐹))    &   (πœ‘ β†’ π‘Š ∈ ℝ+)    &   πΊ = (𝑛 ∈ β„• ↦ ⟨((1st β€˜(πΉβ€˜π‘›)) βˆ’ (π‘Š / (2↑𝑛))), (2nd β€˜(πΉβ€˜π‘›))⟩)    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ 𝑄 𝑧 ≀ (π‘Œ +𝑒 π‘Š))
 
Theoremovolval5lem3 45370* The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
𝑀 = {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ ((ℝ Γ— ℝ) ↑m β„•)(𝐴 βŠ† βˆͺ ran ([,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((vol ∘ [,)) ∘ 𝑓)))}    &   π‘„ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘“ ∈ ((ℝ Γ— ℝ) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (Ξ£^β€˜((vol ∘ (,)) ∘ 𝑓)))}    β‡’   inf(𝑄, ℝ*, < ) = inf(𝑀, ℝ*, < )
 
Theoremovolval5 45371* The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 βŠ† ℝ)    &   π‘€ = {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ ((ℝ Γ— ℝ) ↑m β„•)(𝐴 βŠ† βˆͺ ran ([,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((vol ∘ [,)) ∘ 𝑓)))}    β‡’   (πœ‘ β†’ (vol*β€˜π΄) = inf(𝑀, ℝ*, < ))
 
Theoremovnovollem1 45372* if 𝐹 is a cover of 𝐡 in ℝ, then 𝐼 is the corresponding cover in the space of 1-dimensional reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹 ∈ ((ℝ Γ— ℝ) ↑m β„•))    &   πΌ = (𝑗 ∈ β„• ↦ {⟨𝐴, (πΉβ€˜π‘—)⟩})    &   (πœ‘ β†’ 𝐡 βŠ† βˆͺ ran ([,) ∘ 𝐹))    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (πœ‘ β†’ 𝑍 = (Ξ£^β€˜((vol ∘ [,)) ∘ 𝐹)))    β‡’   (πœ‘ β†’ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m {𝐴}) ↑m β„•)((𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑍 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜))))))
 
Theoremovnovollem2 45373* if 𝐼 is a cover of (𝐡 ↑m {𝐴}) in ℝ^1, then 𝐹 is the corresponding cover in the reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ π‘Š)    &   (πœ‘ β†’ 𝐼 ∈ (((ℝ Γ— ℝ) ↑m {𝐴}) ↑m β„•))    &   (πœ‘ β†’ (𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜))    &   (πœ‘ β†’ 𝑍 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (πΌβ€˜π‘—))β€˜π‘˜)))))    &   πΉ = (𝑗 ∈ β„• ↦ ((πΌβ€˜π‘—)β€˜π΄))    β‡’   (πœ‘ β†’ βˆƒπ‘“ ∈ ((ℝ Γ— ℝ) ↑m β„•)(𝐡 βŠ† βˆͺ ran ([,) ∘ 𝑓) ∧ 𝑍 = (Ξ£^β€˜((vol ∘ [,)) ∘ 𝑓))))
 
Theoremovnovollem3 45374* The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 βŠ† ℝ)    &   π‘€ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘– ∈ (((ℝ Γ— ℝ) ↑m {𝐴}) ↑m β„•)((𝐡 ↑m {𝐴}) βŠ† βˆͺ 𝑗 ∈ β„• Xπ‘˜ ∈ {𝐴} (([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜) ∧ 𝑧 = (Ξ£^β€˜(𝑗 ∈ β„• ↦ βˆπ‘˜ ∈ {𝐴} (volβ€˜(([,) ∘ (π‘–β€˜π‘—))β€˜π‘˜)))))}    &   π‘ = {𝑧 ∈ ℝ* ∣ βˆƒπ‘“ ∈ ((ℝ Γ— ℝ) ↑m β„•)(𝐡 βŠ† βˆͺ ran ([,) ∘ 𝑓) ∧ 𝑧 = (Ξ£^β€˜((vol ∘ [,)) ∘ 𝑓)))}    β‡’   (πœ‘ β†’ ((voln*β€˜{𝐴})β€˜(𝐡 ↑m {𝐴})) = (vol*β€˜π΅))
 
Theoremovnovol 45375 The 1-dimensional Lebesgue outer measure agrees with the Lebesgue outer measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 βŠ† ℝ)    β‡’   (πœ‘ β†’ ((voln*β€˜{𝐴})β€˜(𝐡 ↑m {𝐴})) = (vol*β€˜π΅))
 
Theoremvonvolmbllem 45376* If a subset 𝐡 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 βŠ† ℝ)    &   (πœ‘ β†’ βˆ€π‘¦ ∈ 𝒫 ℝ(vol*β€˜π‘¦) = ((vol*β€˜(𝑦 ∩ 𝐡)) +𝑒 (vol*β€˜(𝑦 βˆ– 𝐡))))    &   (πœ‘ β†’ 𝑋 βŠ† (ℝ ↑m {𝐴}))    &   π‘Œ = βˆͺ 𝑓 ∈ 𝑋 ran 𝑓    β‡’   (πœ‘ β†’ (((voln*β€˜{𝐴})β€˜(𝑋 ∩ (𝐡 ↑m {𝐴}))) +𝑒 ((voln*β€˜{𝐴})β€˜(𝑋 βˆ– (𝐡 ↑m {𝐴})))) = ((voln*β€˜{𝐴})β€˜π‘‹))
 
Theoremvonvolmbl 45377 A subset of Real numbers is Lebesgue measurable if and only if its corresponding 1-dimensional set is measurable w.r.t. the 1-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 βŠ† ℝ)    β‡’   (πœ‘ β†’ ((𝐡 ↑m {𝐴}) ∈ dom (volnβ€˜{𝐴}) ↔ 𝐡 ∈ dom vol))
 
Theoremvonvol 45378 The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝐡 ∈ dom vol)    β‡’   (πœ‘ β†’ ((volnβ€˜{𝐴})β€˜(𝐡 ↑m {𝐴})) = (volβ€˜π΅))
 
Theoremvonvolmbl2 45379* A subset 𝑋 of the space of 1-dimensional Real numbers is Lebesgue measurable if and only if its projection π‘Œ on the Real numbers is Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
β„²π‘“π‘Œ    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝑋 βŠ† (ℝ ↑m {𝐴}))    &   π‘Œ = βˆͺ 𝑓 ∈ 𝑋 ran 𝑓    β‡’   (πœ‘ β†’ (𝑋 ∈ dom (volnβ€˜{𝐴}) ↔ π‘Œ ∈ dom vol))
 
Theoremvonvol2 45380* The 1-dimensional Lebesgue measure agrees with the Lebesgue measure on subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
β„²π‘“π‘Œ    &   (πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝑋 ∈ dom (volnβ€˜{𝐴}))    &   π‘Œ = βˆͺ 𝑓 ∈ 𝑋 ran 𝑓    β‡’   (πœ‘ β†’ ((volnβ€˜{𝐴})β€˜π‘‹) = (volβ€˜π‘Œ))
 
Theoremhoimbl2 45381* Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
β„²π‘˜πœ‘    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐴 ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐡 ∈ ℝ)    β‡’   (πœ‘ β†’ Xπ‘˜ ∈ 𝑋 (𝐴[,)𝐡) ∈ 𝑆)
 
Theoremvoncl 45382 The Lebesgue measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    &   (πœ‘ β†’ 𝐴 ∈ 𝑆)    β‡’   (πœ‘ β†’ ((volnβ€˜π‘‹)β€˜π΄) ∈ (0[,]+∞))
 
Theoremvonhoi 45383* The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). A direct consequence of Proposition 115D (b) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   πΌ = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜))    &   πΏ = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    β‡’   (πœ‘ β†’ ((volnβ€˜π‘‹)β€˜πΌ) = (𝐴(πΏβ€˜π‘‹)𝐡))
 
Theoremvonxrcl 45384 The Lebesgue measure of a set is an extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    &   (πœ‘ β†’ 𝐴 ∈ 𝑆)    β‡’   (πœ‘ β†’ ((volnβ€˜π‘‹)β€˜π΄) ∈ ℝ*)
 
Theoremioosshoi 45385 A n-dimensional open interval is a subset of the half-open interval with the same bounds. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Xπ‘˜ ∈ 𝑋 (𝐴(,)𝐡) βŠ† Xπ‘˜ ∈ 𝑋 (𝐴[,)𝐡)
 
Theoremvonn0hoi 45386* The Lebesgue outer measure of a multidimensional half-open interval when the dimension of the space is nonzero. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   πΌ = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜))    β‡’   (πœ‘ β†’ ((volnβ€˜π‘‹)β€˜πΌ) = βˆπ‘˜ ∈ 𝑋 (volβ€˜((π΄β€˜π‘˜)[,)(π΅β€˜π‘˜))))
 
Theoremvon0val 45387 The Lebesgue measure (for the zero dimensional space of reals) of every measurable set is zero. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝐴 ∈ dom (volnβ€˜βˆ…))    β‡’   (πœ‘ β†’ ((volnβ€˜βˆ…)β€˜π΄) = 0)
 
Theoremvonhoire 45388* The Lebesgue measure of a n-dimensional half-open interval is a real number. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
β„²π‘˜πœ‘    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐴 ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐡 ∈ ℝ)    β‡’   (πœ‘ β†’ ((volnβ€˜π‘‹)β€˜Xπ‘˜ ∈ 𝑋 (𝐴[,)𝐡)) ∈ ℝ)
 
Theoremiinhoiicclem 45389* A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
β„²π‘˜πœ‘    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐴 ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐹 ∈ ∩ 𝑛 ∈ β„• Xπ‘˜ ∈ 𝑋 (𝐴[,)(𝐡 + (1 / 𝑛))))    β‡’   (πœ‘ β†’ 𝐹 ∈ Xπ‘˜ ∈ 𝑋 (𝐴[,]𝐡))
 
Theoremiinhoiicc 45390* A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
β„²π‘˜πœ‘    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐴 ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐡 ∈ ℝ)    β‡’   (πœ‘ β†’ ∩ 𝑛 ∈ β„• Xπ‘˜ ∈ 𝑋 (𝐴[,)(𝐡 + (1 / 𝑛))) = Xπ‘˜ ∈ 𝑋 (𝐴[,]𝐡))
 
Theoremiunhoiioolem 45391* A n-dimensional open interval expressed as the indexed union of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
β„²π‘˜πœ‘    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐴 ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐹 ∈ Xπ‘˜ ∈ 𝑋 (𝐴(,)𝐡))    &   πΆ = inf(ran (π‘˜ ∈ 𝑋 ↦ ((πΉβ€˜π‘˜) βˆ’ 𝐴)), ℝ, < )    β‡’   (πœ‘ β†’ 𝐹 ∈ βˆͺ 𝑛 ∈ β„• Xπ‘˜ ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐡))
 
Theoremiunhoiioo 45392* A n-dimensional open interval expressed as the indexed union of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
β„²π‘˜πœ‘    &   (πœ‘ β†’ 𝑋 ∈ Fin)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐴 ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ 𝐡 ∈ ℝ*)    β‡’   (πœ‘ β†’ βˆͺ 𝑛 ∈ β„• Xπ‘˜ ∈ 𝑋 ((𝐴 + (1 / 𝑛))[,)𝐡) = Xπ‘˜ ∈ 𝑋 (𝐴(,)𝐡))
 
Theoremioovonmbl 45393* Any n-dimensional open interval is Lebesgue measurable. This is the first statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„*)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„*)    β‡’   (πœ‘ β†’ X𝑖 ∈ 𝑋 ((π΄β€˜π‘–)(,)(π΅β€˜π‘–)) ∈ 𝑆)
 
Theoremiccvonmbllem 45394* Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   πΆ = (𝑛 ∈ β„• ↦ (𝑖 ∈ 𝑋 ↦ ((π΄β€˜π‘–) βˆ’ (1 / 𝑛))))    &   π· = (𝑛 ∈ β„• ↦ (𝑖 ∈ 𝑋 ↦ ((π΅β€˜π‘–) + (1 / 𝑛))))    β‡’   (πœ‘ β†’ X𝑖 ∈ 𝑋 ((π΄β€˜π‘–)[,](π΅β€˜π‘–)) ∈ 𝑆)
 
Theoremiccvonmbl 45395* Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   π‘† = dom (volnβ€˜π‘‹)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    β‡’   (πœ‘ β†’ X𝑖 ∈ 𝑋 ((π΄β€˜π‘–)[,](π΅β€˜π‘–)) ∈ 𝑆)
 
Theoremvonioolem1 45396* The sequence of the measures of the half-open intervals converges to the measure of their union. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) < (π΅β€˜π‘˜))    &   πΆ = (𝑛 ∈ β„• ↦ (π‘˜ ∈ 𝑋 ↦ ((π΄β€˜π‘˜) + (1 / 𝑛))))    &   π· = (𝑛 ∈ β„• ↦ Xπ‘˜ ∈ 𝑋 (((πΆβ€˜π‘›)β€˜π‘˜)[,)(π΅β€˜π‘˜)))    &   π‘† = (𝑛 ∈ β„• ↦ ((volnβ€˜π‘‹)β€˜(π·β€˜π‘›)))    &   π‘‡ = (𝑛 ∈ β„• ↦ βˆπ‘˜ ∈ 𝑋 ((π΅β€˜π‘˜) βˆ’ ((πΆβ€˜π‘›)β€˜π‘˜)))    &   πΈ = inf(ran (π‘˜ ∈ 𝑋 ↦ ((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜))), ℝ, < )    &   π‘ = ((βŒŠβ€˜(1 / 𝐸)) + 1)    &   π‘ = (β„€β‰₯β€˜π‘)    β‡’   (πœ‘ β†’ 𝑆 ⇝ βˆπ‘˜ ∈ 𝑋 ((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)))
 
Theoremvonioolem2 45397* The n-dimensional Lebesgue measure of open intervals. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) < (π΅β€˜π‘˜))    &   πΌ = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)(,)(π΅β€˜π‘˜))    &   πΆ = (𝑛 ∈ β„• ↦ (π‘˜ ∈ 𝑋 ↦ ((π΄β€˜π‘˜) + (1 / 𝑛))))    &   π· = (𝑛 ∈ β„• ↦ Xπ‘˜ ∈ 𝑋 (((πΆβ€˜π‘›)β€˜π‘˜)[,)(π΅β€˜π‘˜)))    β‡’   (πœ‘ β†’ ((volnβ€˜π‘‹)β€˜πΌ) = βˆπ‘˜ ∈ 𝑋 ((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)))
 
Theoremvonioo 45398* The n-dimensional Lebesgue measure of an open interval. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   πΌ = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)(,)(π΅β€˜π‘˜))    &   πΏ = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))    β‡’   (πœ‘ β†’ ((volnβ€˜π‘‹)β€˜πΌ) = (𝐴(πΏβ€˜π‘‹)𝐡))
 
Theoremvonicclem1 45399* The sequence of the measures of the half-open intervals converges to the measure of their intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) ≀ (π΅β€˜π‘˜))    &   πΆ = (𝑛 ∈ β„• ↦ (π‘˜ ∈ 𝑋 ↦ ((π΅β€˜π‘˜) + (1 / 𝑛))))    &   π· = (𝑛 ∈ β„• ↦ Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜)))    &   π‘† = (𝑛 ∈ β„• ↦ ((volnβ€˜π‘‹)β€˜(π·β€˜π‘›)))    β‡’   (πœ‘ β†’ 𝑆 ⇝ βˆπ‘˜ ∈ 𝑋 ((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)))
 
Theoremvonicclem2 45400* The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑋 ∈ Fin)    &   (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝐡:π‘‹βŸΆβ„)    &   (πœ‘ β†’ 𝑋 β‰  βˆ…)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) ≀ (π΅β€˜π‘˜))    &   πΌ = Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,](π΅β€˜π‘˜))    &   πΆ = (𝑛 ∈ β„• ↦ (π‘˜ ∈ 𝑋 ↦ ((π΅β€˜π‘˜) + (1 / 𝑛))))    &   π· = (𝑛 ∈ β„• ↦ Xπ‘˜ ∈ 𝑋 ((π΄β€˜π‘˜)[,)((πΆβ€˜π‘›)β€˜π‘˜)))    β‡’   (πœ‘ β†’ ((volnβ€˜π‘‹)β€˜πΌ) = βˆπ‘˜ ∈ 𝑋 ((π΅β€˜π‘˜) βˆ’ (π΄β€˜π‘˜)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47852
  Copyright terms: Public domain < Previous  Next >