Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnval Structured version   Visualization version   GIF version

Theorem ovnval 42817
Description: Value of the Lebesgue outer measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
ovnval.1 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
ovnval (𝜑 → (voln*‘𝑋) = (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
Distinct variable group:   𝑖,𝑋,𝑗,𝑘,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ovoln 42813 . 2 voln* = (𝑥 ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
2 oveq2 7158 . . . 4 (𝑥 = 𝑋 → (ℝ ↑m 𝑥) = (ℝ ↑m 𝑋))
32pweqd 4543 . . 3 (𝑥 = 𝑋 → 𝒫 (ℝ ↑m 𝑥) = 𝒫 (ℝ ↑m 𝑋))
4 eqeq1 2825 . . . 4 (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅))
5 oveq2 7158 . . . . . . . 8 (𝑥 = 𝑋 → ((ℝ × ℝ) ↑m 𝑥) = ((ℝ × ℝ) ↑m 𝑋))
65oveq1d 7165 . . . . . . 7 (𝑥 = 𝑋 → (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ) = (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
7 ixpeq1 8466 . . . . . . . . . 10 (𝑥 = 𝑋X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
87iuneq2d 4940 . . . . . . . . 9 (𝑥 = 𝑋 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
98sseq2d 3998 . . . . . . . 8 (𝑥 = 𝑋 → (𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)))
10 simpl 485 . . . . . . . . . . . 12 ((𝑥 = 𝑋𝑗 ∈ ℕ) → 𝑥 = 𝑋)
1110prodeq1d 15269 . . . . . . . . . . 11 ((𝑥 = 𝑋𝑗 ∈ ℕ) → ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
1211mpteq2dva 5153 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))
1312fveq2d 6668 . . . . . . . . 9 (𝑥 = 𝑋 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
1413eqeq2d 2832 . . . . . . . 8 (𝑥 = 𝑋 → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
159, 14anbi12d 632 . . . . . . 7 (𝑥 = 𝑋 → ((𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
166, 15rexeqbidv 3402 . . . . . 6 (𝑥 = 𝑋 → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
1716rabbidv 3480 . . . . 5 (𝑥 = 𝑋 → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
1817infeq1d 8935 . . . 4 (𝑥 = 𝑋 → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) = inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))
194, 18ifbieq2d 4491 . . 3 (𝑥 = 𝑋 → if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )) = if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )))
203, 19mpteq12dv 5143 . 2 (𝑥 = 𝑋 → (𝑦 ∈ 𝒫 (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))) = (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
21 ovnval.1 . 2 (𝜑𝑋 ∈ Fin)
22 ovex 7183 . . . . 5 (ℝ ↑m 𝑋) ∈ V
2322pwex 5273 . . . 4 𝒫 (ℝ ↑m 𝑋) ∈ V
2423mptex 6980 . . 3 (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))) ∈ V
2524a1i 11 . 2 (𝜑 → (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))) ∈ V)
261, 20, 21, 25fvmptd3 6785 1 (𝜑 → (voln*‘𝑋) = (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  c0 4290  ifcif 4466  𝒫 cpw 4538   ciun 4911  cmpt 5138   × cxp 5547  ccom 5553  cfv 6349  (class class class)co 7150  m cmap 8400  Xcixp 8455  Fincfn 8503  infcinf 8899  cr 10530  0cc0 10531  *cxr 10668   < clt 10669  cn 11632  [,)cico 12734  cprod 15253  volcvol 24058  Σ^csumge0 42638  voln*covoln 42812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-ixp 8456  df-sup 8900  df-inf 8901  df-seq 13364  df-prod 15254  df-ovoln 42813
This theorem is referenced by:  ovnval2  42821  ovnf  42839
  Copyright terms: Public domain W3C validator