Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnval Structured version   Visualization version   GIF version

Theorem ovnval 46522
Description: Value of the Lebesgue outer measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
ovnval.1 (𝜑𝑋 ∈ Fin)
Assertion
Ref Expression
ovnval (𝜑 → (voln*‘𝑋) = (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
Distinct variable group:   𝑖,𝑋,𝑗,𝑘,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ovoln 46518 . 2 voln* = (𝑥 ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
2 oveq2 7357 . . . 4 (𝑥 = 𝑋 → (ℝ ↑m 𝑥) = (ℝ ↑m 𝑋))
32pweqd 4568 . . 3 (𝑥 = 𝑋 → 𝒫 (ℝ ↑m 𝑥) = 𝒫 (ℝ ↑m 𝑋))
4 eqeq1 2733 . . . 4 (𝑥 = 𝑋 → (𝑥 = ∅ ↔ 𝑋 = ∅))
5 oveq2 7357 . . . . . . . 8 (𝑥 = 𝑋 → ((ℝ × ℝ) ↑m 𝑥) = ((ℝ × ℝ) ↑m 𝑋))
65oveq1d 7364 . . . . . . 7 (𝑥 = 𝑋 → (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ) = (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ))
7 ixpeq1 8835 . . . . . . . . . 10 (𝑥 = 𝑋X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
87iuneq2d 4972 . . . . . . . . 9 (𝑥 = 𝑋 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘))
98sseq2d 3968 . . . . . . . 8 (𝑥 = 𝑋 → (𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ↔ 𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘)))
10 simpl 482 . . . . . . . . . . . 12 ((𝑥 = 𝑋𝑗 ∈ ℕ) → 𝑥 = 𝑋)
1110prodeq1d 15827 . . . . . . . . . . 11 ((𝑥 = 𝑋𝑗 ∈ ℕ) → ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))
1211mpteq2dva 5185 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))
1312fveq2d 6826 . . . . . . . . 9 (𝑥 = 𝑋 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))
1413eqeq2d 2740 . . . . . . . 8 (𝑥 = 𝑋 → (𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
159, 14anbi12d 632 . . . . . . 7 (𝑥 = 𝑋 → ((𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ (𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
166, 15rexeqbidv 3310 . . . . . 6 (𝑥 = 𝑋 → (∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))))
1716rabbidv 3402 . . . . 5 (𝑥 = 𝑋 → {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))})
1817infeq1d 9368 . . . 4 (𝑥 = 𝑋 → inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ) = inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))
194, 18ifbieq2d 4503 . . 3 (𝑥 = 𝑋 → if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )) = if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )))
203, 19mpteq12dv 5179 . 2 (𝑥 = 𝑋 → (𝑦 ∈ 𝒫 (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))) = (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
21 ovnval.1 . 2 (𝜑𝑋 ∈ Fin)
22 ovex 7382 . . . . 5 (ℝ ↑m 𝑋) ∈ V
2322pwex 5319 . . . 4 𝒫 (ℝ ↑m 𝑋) ∈ V
2423mptex 7159 . . 3 (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))) ∈ V
2524a1i 11 . 2 (𝜑 → (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))) ∈ V)
261, 20, 21, 25fvmptd3 6953 1 (𝜑 → (voln*‘𝑋) = (𝑦 ∈ 𝒫 (ℝ ↑m 𝑋) ↦ if(𝑋 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  Vcvv 3436  wss 3903  c0 4284  ifcif 4476  𝒫 cpw 4551   ciun 4941  cmpt 5173   × cxp 5617  ccom 5623  cfv 6482  (class class class)co 7349  m cmap 8753  Xcixp 8824  Fincfn 8872  infcinf 9331  cr 11008  0cc0 11009  *cxr 11148   < clt 11149  cn 12128  [,)cico 13250  cprod 15810  volcvol 25362  Σ^csumge0 46343  voln*covoln 46517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-ixp 8825  df-sup 9332  df-inf 9333  df-seq 13909  df-prod 15811  df-ovoln 46518
This theorem is referenced by:  ovnval2  46526  ovnf  46544
  Copyright terms: Public domain W3C validator