| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-p0 | Structured version Visualization version GIF version | ||
| Description: Define poset zero. (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| df-p0 | ⊢ 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cp0 18468 | . 2 class 0. | |
| 2 | vp | . . 3 setvar 𝑝 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑝 |
| 5 | cbs 17247 | . . . . 5 class Base | |
| 6 | 4, 5 | cfv 6561 | . . . 4 class (Base‘𝑝) |
| 7 | cglb 18356 | . . . . 5 class glb | |
| 8 | 4, 7 | cfv 6561 | . . . 4 class (glb‘𝑝) |
| 9 | 6, 8 | cfv 6561 | . . 3 class ((glb‘𝑝)‘(Base‘𝑝)) |
| 10 | 2, 3, 9 | cmpt 5225 | . 2 class (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) |
| 11 | 1, 10 | wceq 1540 | 1 wff 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: p0val 18472 |
| Copyright terms: Public domain | W3C validator |