Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-p0 | Structured version Visualization version GIF version |
Description: Define poset zero. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
df-p0 | ⊢ 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cp0 18150 | . 2 class 0. | |
2 | vp | . . 3 setvar 𝑝 | |
3 | cvv 3433 | . . 3 class V | |
4 | 2 | cv 1538 | . . . . 5 class 𝑝 |
5 | cbs 16921 | . . . . 5 class Base | |
6 | 4, 5 | cfv 6437 | . . . 4 class (Base‘𝑝) |
7 | cglb 18037 | . . . . 5 class glb | |
8 | 4, 7 | cfv 6437 | . . . 4 class (glb‘𝑝) |
9 | 6, 8 | cfv 6437 | . . 3 class ((glb‘𝑝)‘(Base‘𝑝)) |
10 | 2, 3, 9 | cmpt 5158 | . 2 class (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) |
11 | 1, 10 | wceq 1539 | 1 wff 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) |
Colors of variables: wff setvar class |
This definition is referenced by: p0val 18154 |
Copyright terms: Public domain | W3C validator |