| Metamath
Proof Explorer Theorem List (p. 184 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | meetval2 18301* | Value of meet for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) | ||
| Theorem | meeteu 18302* | Uniqueness of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) | ||
| Theorem | meetlem 18303* | Lemma for meet properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) | ||
| Theorem | lemeet1 18304 | A meet's first argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑋) | ||
| Theorem | lemeet2 18305 | A meet's second argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑌) | ||
| Theorem | meetle 18306 | A meet is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) ↔ 𝑍 ≤ (𝑋 ∧ 𝑌))) | ||
| Theorem | joincomALT 18307 | The join of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 16-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) | ||
| Theorem | joincom 18308 | The join of a poset is commutative. (The antecedent 〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ i.e., "the joins exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) | ||
| Theorem | meetcomALT 18309 | The meet of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 17-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) | ||
| Theorem | meetcom 18310 | The meet of a poset is commutative. (The antecedent 〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ i.e., "the meets exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 17-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) | ||
| Theorem | join0 18311 | Lemma for odumeet 18316. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ (join‘∅) = ∅ | ||
| Theorem | meet0 18312 | Lemma for odujoin 18314. (Contributed by Stefan O'Rear, 29-Jan-2015.) TODO (df-riota 7309 update): This proof increased from 152 bytes to 547 bytes after the df-riota 7309 change. Any way to shorten it? join0 18311 also. |
| ⊢ (meet‘∅) = ∅ | ||
| Theorem | odulub 18313 | Least upper bounds in a dual order are greatest lower bounds in the original order. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) & ⊢ 𝐿 = (glb‘𝑂) ⇒ ⊢ (𝑂 ∈ 𝑉 → 𝐿 = (lub‘𝐷)) | ||
| Theorem | odujoin 18314 | Joins in a dual order are meets in the original. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) & ⊢ ∧ = (meet‘𝑂) ⇒ ⊢ ∧ = (join‘𝐷) | ||
| Theorem | oduglb 18315 | Greatest lower bounds in a dual order are least upper bounds in the original order. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) & ⊢ 𝑈 = (lub‘𝑂) ⇒ ⊢ (𝑂 ∈ 𝑉 → 𝑈 = (glb‘𝐷)) | ||
| Theorem | odumeet 18316 | Meets in a dual order are joins in the original. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) & ⊢ ∨ = (join‘𝑂) ⇒ ⊢ ∨ = (meet‘𝐷) | ||
| Theorem | poslubmo 18317* | Least upper bounds in a poset are unique if they exist. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by NM, 16-Jun-2017.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | ||
| Theorem | posglbmo 18318* | Greatest lower bounds in a poset are unique if they exist. (Contributed by NM, 20-Sep-2018.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | ||
| Theorem | poslubd 18319* | Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) | ||
| Theorem | poslubdg 18320* | Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) | ||
| Theorem | posglbdg 18321* | Properties which determine the greatest lower bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑇 ≤ 𝑥) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑇) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) | ||
| Syntax | ctos 18322 | Extend class notation with the class of all tosets. |
| class Toset | ||
| Definition | df-toset 18323* | Define the class of totally ordered sets (tosets). (Contributed by FL, 17-Nov-2014.) |
| ⊢ Toset = {𝑓 ∈ Poset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥)} | ||
| Theorem | istos 18324* | The predicate "is a toset". (Contributed by FL, 17-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) | ||
| Theorem | tosso 18325 | Write the totally ordered set structure predicate in terms of the proper class strict order predicate. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ))) | ||
| Theorem | tospos 18326 | A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) | ||
| Theorem | tleile 18327 | In a Toset, any two elements are comparable. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) | ||
| Theorem | tltnle 18328 | In a Toset, "less than" is equivalent to the negation of the converse of "less than or equal to", see pltnle 18244. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 ≤ 𝑋)) | ||
| Syntax | cp0 18329 | Extend class notation with poset zero. |
| class 0. | ||
| Syntax | cp1 18330 | Extend class notation with poset unit. |
| class 1. | ||
| Definition | df-p0 18331 | Define poset zero. (Contributed by NM, 12-Oct-2011.) |
| ⊢ 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) | ||
| Definition | df-p1 18332 | Define poset unit. (Contributed by NM, 22-Oct-2011.) |
| ⊢ 1. = (𝑝 ∈ V ↦ ((lub‘𝑝)‘(Base‘𝑝))) | ||
| Theorem | p0val 18333 | Value of poset zero. (Contributed by NM, 12-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) | ||
| Theorem | p1val 18334 | Value of poset zero. (Contributed by NM, 22-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) | ||
| Theorem | p0le 18335 | Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → 0 ≤ 𝑋) | ||
| Theorem | ple1 18336 | Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → 𝑋 ≤ 1 ) | ||
| Theorem | resspos 18337 | The restriction of a Poset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ ((𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Poset) | ||
| Theorem | resstos 18338 | The restriction of a Toset is a Toset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
| ⊢ ((𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉) → (𝐹 ↾s 𝐴) ∈ Toset) | ||
| Syntax | clat 18339 | Extend class notation with the class of all lattices. |
| class Lat | ||
| Definition | df-lat 18340 | Define the class of all lattices. A lattice is a poset in which the join and meet of any two elements always exists. (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
| ⊢ Lat = {𝑝 ∈ Poset ∣ (dom (join‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)) ∧ dom (meet‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)))} | ||
| Theorem | islat 18341 | The predicate "is a lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) | ||
| Theorem | odulatb 18342 | Being a lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Lat ↔ 𝐷 ∈ Lat)) | ||
| Theorem | odulat 18343 | Being a lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ Lat → 𝐷 ∈ Lat) | ||
| Theorem | latcl2 18344 | The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Lat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) | ||
| Theorem | latlem 18345 | Lemma for lattice properties. (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵)) | ||
| Theorem | latpos 18346 | A lattice is a poset. (Contributed by NM, 17-Sep-2011.) |
| ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | ||
| Theorem | latjcl 18347 | Closure of join operation in a lattice. (chjcom 31488 analog.) (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) | ||
| Theorem | latmcl 18348 | Closure of meet operation in a lattice. (incom 4158 analog.) (Contributed by NM, 14-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) | ||
| Theorem | latref 18349 | A lattice ordering is reflexive. (ssid 3953 analog.) (Contributed by NM, 8-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) | ||
| Theorem | latasymb 18350 | A lattice ordering is asymmetric. (eqss 3946 analog.) (Contributed by NM, 22-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | ||
| Theorem | latasym 18351 | A lattice ordering is asymmetric. (eqss 3946 analog.) (Contributed by NM, 8-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌)) | ||
| Theorem | lattr 18352 | A lattice ordering is transitive. (sstr 3939 analog.) (Contributed by NM, 17-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) | ||
| Theorem | latasymd 18353 | Deduce equality from lattice ordering. (eqssd 3948 analog.) (Contributed by NM, 18-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Lat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑋) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | lattrd 18354 | A lattice ordering is transitive. Deduction version of lattr 18352. (Contributed by NM, 3-Sep-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Lat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑍) ⇒ ⊢ (𝜑 → 𝑋 ≤ 𝑍) | ||
| Theorem | latjcom 18355 | The join of a lattice commutes. (chjcom 31488 analog.) (Contributed by NM, 16-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) | ||
| Theorem | latlej1 18356 | A join's first argument is less than or equal to the join. (chub1 31489 analog.) (Contributed by NM, 17-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) | ||
| Theorem | latlej2 18357 | A join's second argument is less than or equal to the join. (chub2 31490 analog.) (Contributed by NM, 17-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (𝑋 ∨ 𝑌)) | ||
| Theorem | latjle12 18358 | A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 31491 analog.) (Contributed by NM, 17-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) | ||
| Theorem | latleeqj1 18359 | "Less than or equal to" in terms of join. (chlejb1 31494 analog.) (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) | ||
| Theorem | latleeqj2 18360 | "Less than or equal to" in terms of join. (chlejb2 31495 analog.) (Contributed by NM, 14-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑌 ∨ 𝑋) = 𝑌)) | ||
| Theorem | latjlej1 18361 | Add join to both sides of a lattice ordering. (chlej1i 31455 analog.) (Contributed by NM, 8-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍))) | ||
| Theorem | latjlej2 18362 | Add join to both sides of a lattice ordering. (chlej2i 31456 analog.) (Contributed by NM, 8-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) | ||
| Theorem | latjlej12 18363 | Add join to both sides of a lattice ordering. (chlej12i 31457 analog.) (Contributed by NM, 8-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑍 ≤ 𝑊) → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑊))) | ||
| Theorem | latnlej 18364 | An idiom to express that a lattice element differs from two others. (Contributed by NM, 28-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍)) | ||
| Theorem | latnlej1l 18365 | An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → 𝑋 ≠ 𝑌) | ||
| Theorem | latnlej1r 18366 | An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → 𝑋 ≠ 𝑍) | ||
| Theorem | latnlej2 18367 | An idiom to express that a lattice element differs from two others. (Contributed by NM, 10-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → (¬ 𝑋 ≤ 𝑌 ∧ ¬ 𝑋 ≤ 𝑍)) | ||
| Theorem | latnlej2l 18368 | An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → ¬ 𝑋 ≤ 𝑌) | ||
| Theorem | latnlej2r 18369 | An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → ¬ 𝑋 ≤ 𝑍) | ||
| Theorem | latjidm 18370 | Lattice join is idempotent. Analogue of unidm 4106. (Contributed by NM, 8-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) | ||
| Theorem | latmcom 18371 | The join of a lattice commutes. (Contributed by NM, 6-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) | ||
| Theorem | latmle1 18372 | A meet is less than or equal to its first argument. (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) | ||
| Theorem | latmle2 18373 | A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) | ||
| Theorem | latlem12 18374 | An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍) ↔ 𝑋 ≤ (𝑌 ∧ 𝑍))) | ||
| Theorem | latleeqm1 18375 | "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) = 𝑋)) | ||
| Theorem | latleeqm2 18376 | "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑌 ∧ 𝑋) = 𝑋)) | ||
| Theorem | latmlem1 18377 | Add meet to both sides of a lattice ordering. (Contributed by NM, 10-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) | ||
| Theorem | latmlem2 18378 | Add meet to both sides of a lattice ordering. (sslin 4192 analog.) (Contributed by NM, 10-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∧ 𝑋) ≤ (𝑍 ∧ 𝑌))) | ||
| Theorem | latmlem12 18379 | Add join to both sides of a lattice ordering. (ss2in 4194 analog.) (Contributed by NM, 10-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑍 ≤ 𝑊) → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑊))) | ||
| Theorem | latnlemlt 18380 | Negation of "less than or equal to" expressed in terms of meet and less-than. (nssinpss 4216 analog.) (Contributed by NM, 5-Feb-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) < 𝑋)) | ||
| Theorem | latnle 18381 | Equivalent expressions for "not less than" in a lattice. (chnle 31496 analog.) (Contributed by NM, 16-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑌))) | ||
| Theorem | latmidm 18382 | Lattice meet is idempotent. Analogue of inidm 4176. (Contributed by NM, 8-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 𝑋) = 𝑋) | ||
| Theorem | latabs1 18383 | Lattice absorption law. From definition of lattice in [Kalmbach] p. 14. (chabs1 31498 analog.) (Contributed by NM, 8-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋) | ||
| Theorem | latabs2 18384 | Lattice absorption law. From definition of lattice in [Kalmbach] p. 14. (chabs2 31499 analog.) (Contributed by NM, 8-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑋 ∨ 𝑌)) = 𝑋) | ||
| Theorem | latledi 18385 | An ortholattice is distributive in one ordering direction. (ledi 31522 analog.) (Contributed by NM, 7-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ 𝑍)) ≤ (𝑋 ∧ (𝑌 ∨ 𝑍))) | ||
| Theorem | latmlej11 18386 | Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) ≤ (𝑋 ∨ 𝑍)) | ||
| Theorem | latmlej12 18387 | Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) ≤ (𝑍 ∨ 𝑋)) | ||
| Theorem | latmlej21 18388 | Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑋) ≤ (𝑋 ∨ 𝑍)) | ||
| Theorem | latmlej22 18389 | Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑋) ≤ (𝑍 ∨ 𝑋)) | ||
| Theorem | lubsn 18390 | The least upper bound of a singleton. (chsupsn 31395 analog.) (Contributed by NM, 20-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑈‘{𝑋}) = 𝑋) | ||
| Theorem | latjass 18391 | Lattice join is associative. Lemma 2.2 in [MegPav2002] p. 362. (chjass 31515 analog.) (Contributed by NM, 17-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = (𝑋 ∨ (𝑌 ∨ 𝑍))) | ||
| Theorem | latj12 18392 | Swap 1st and 2nd members of lattice join. (chj12 31516 analog.) (Contributed by NM, 4-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = (𝑌 ∨ (𝑋 ∨ 𝑍))) | ||
| Theorem | latj32 18393 | Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 2-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑋 ∨ 𝑍) ∨ 𝑌)) | ||
| Theorem | latj13 18394 | Swap 1st and 3rd members of lattice join. (Contributed by NM, 4-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = (𝑍 ∨ (𝑌 ∨ 𝑋))) | ||
| Theorem | latj31 18395 | Swap 2nd and 3rd members of lattice join. Lemma 2.2 in [MegPav2002] p. 362. (Contributed by NM, 23-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑍 ∨ 𝑌) ∨ 𝑋)) | ||
| Theorem | latjrot 18396 | Rotate lattice join of 3 classes. (Contributed by NM, 23-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑍 ∨ 𝑋) ∨ 𝑌)) | ||
| Theorem | latj4 18397 | Rearrangement of lattice join of 4 classes. (chj4 31517 analog.) (Contributed by NM, 14-Jun-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑊))) | ||
| Theorem | latj4rot 18398 | Rotate lattice join of 4 classes. (Contributed by NM, 11-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ (𝑍 ∨ 𝑊)) = ((𝑊 ∨ 𝑋) ∨ (𝑌 ∨ 𝑍))) | ||
| Theorem | latjjdi 18399 | Lattice join distributes over itself. (Contributed by NM, 30-Jul-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = ((𝑋 ∨ 𝑌) ∨ (𝑋 ∨ 𝑍))) | ||
| Theorem | latjjdir 18400 | Lattice join distributes over itself. (Contributed by NM, 2-Aug-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∨ 𝑌) ∨ 𝑍) = ((𝑋 ∨ 𝑍) ∨ (𝑌 ∨ 𝑍))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |