| Metamath
Proof Explorer Theorem List (p. 184 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | odubas 18301 | Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ 𝐷 = (ODual‘𝑂) & ⊢ 𝐵 = (Base‘𝑂) ⇒ ⊢ 𝐵 = (Base‘𝐷) | ||
| Syntax | cproset 18302 | Extend class notation with the class of all prosets. |
| class Proset | ||
| Syntax | cdrs 18303 | Extend class notation with the class of all directed sets. |
| class Dirset | ||
| Definition | df-proset 18304* |
Define the class of preordered sets, or prosets. A proset is a set
equipped with a preorder, that is, a transitive and reflexive relation.
Preorders are a natural generalization of partial orders which need not be antisymmetric: there may be pairs of elements such that each is "less than or equal to" the other, so that both elements have the same order-theoretic properties (in some sense, there is a "tie" among them). If a preorder is required to be antisymmetric, that is, there is no such "tie", then one obtains a partial order. If a preorder is required to be symmetric, that is, all comparable elements are tied, then one obtains an equivalence relation. Every preorder naturally factors into these two notions: the "tie" relation on a proset is an equivalence relation, and the quotient under that equivalence relation is a partial order. (Contributed by FL, 17-Nov-2014.) (Revised by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ Proset = {𝑓 ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | ||
| Definition | df-drs 18305* |
Define the class of directed sets. A directed set is a nonempty
preordered set where every pair of elements have some upper bound. Note
that it is not required that there exist a least upper bound.
There is no consensus in the literature over whether directed sets are allowed to be empty. It is slightly more convenient for us if they are not. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ Dirset = {𝑓 ∈ Proset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧))} | ||
| Theorem | isprs 18306* | Property of being a preordered set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
| Theorem | prslem 18307 | Lemma for prsref 18308 and prstr 18309. (Contributed by Mario Carneiro, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) | ||
| Theorem | prsref 18308 | "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) | ||
| Theorem | prstr 18309 | "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍)) → 𝑋 ≤ 𝑍) | ||
| Theorem | oduprs 18310 | Being a proset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
| ⊢ 𝐷 = (ODual‘𝐾) ⇒ ⊢ (𝐾 ∈ Proset → 𝐷 ∈ Proset ) | ||
| Theorem | isdrs 18311* | Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) | ||
| Theorem | drsdir 18312* | Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧)) | ||
| Theorem | drsprs 18313 | A directed set is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝐾 ∈ Dirset → 𝐾 ∈ Proset ) | ||
| Theorem | drsbn0 18314 | The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ (𝐾 ∈ Dirset → 𝐵 ≠ ∅) | ||
| Theorem | drsdirfi 18315* | Any finite number of elements in a directed set have a common upper bound. Here is where the nonemptiness constraint in df-drs 18305 first comes into play; without it we would need an additional constraint that 𝑋 not be empty. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ∧ 𝑋 ∈ Fin) → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑦) | ||
| Theorem | isdrs2 18316* | Directed sets may be defined in terms of finite subsets. Again, without nonemptiness we would need to restrict to nonempty subsets here. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑦)) | ||
| Syntax | cpo 18317 | Extend class notation with the class of posets. |
| class Poset | ||
| Syntax | cplt 18318 | Extend class notation with less-than for posets. |
| class lt | ||
| Syntax | club 18319 | Extend class notation with poset least upper bound. |
| class lub | ||
| Syntax | cglb 18320 | Extend class notation with poset greatest lower bound. |
| class glb | ||
| Syntax | cjn 18321 | Extend class notation with poset join. |
| class join | ||
| Syntax | cmee 18322 | Extend class notation with poset meet. |
| class meet | ||
| Definition | df-poset 18323* |
Define the class of partially ordered sets (posets). A poset is a set
equipped with a partial order, that is, a binary relation which is
reflexive, antisymmetric, and transitive. Unlike a total order, in a
partial order there may be pairs of elements where neither precedes the
other. Definition of poset in [Crawley] p. 1. Note that
Crawley-Dilworth require that a poset base set be nonempty, but we
follow the convention of most authors who don't make this a requirement.
In our formalism of extensible structures, the base set of a poset 𝑓 is denoted by (Base‘𝑓) and its partial order by (le‘𝑓) (for "less than or equal to"). The quantifiers ∃𝑏∃𝑟 provide a notational shorthand to allow to refer to the base and ordering relation as 𝑏 and 𝑟 in the definition rather than having to repeat (Base‘𝑓) and (le‘𝑓) throughout. These quantifiers can be eliminated with ceqsex2v 3515 and related theorems. (Contributed by NM, 18-Oct-2012.) |
| ⊢ Poset = {𝑓 ∣ ∃𝑏∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))} | ||
| Theorem | ispos 18324* | The predicate "is a poset". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 4-Nov-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
| Theorem | ispos2 18325* |
A poset is an antisymmetric proset.
EDITORIAL: could become the definition of poset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦))) | ||
| Theorem | posprs 18326 | A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) | ||
| Theorem | posi 18327 | Lemma for poset properties. (Contributed by NM, 11-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) | ||
| Theorem | posref 18328 | A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) | ||
| Theorem | posasymb 18329 | A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | ||
| Theorem | postr 18330 | A poset ordering is transitive. (Contributed by NM, 11-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) | ||
| Theorem | 0pos 18331 | Technical lemma to simplify the statement of ipopos 18544. The empty set is (rather pathologically) a poset under our definitions, since it has an empty base set (str0 17206) and any relation partially orders an empty set. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Proof shortened by AV, 13-Oct-2024.) |
| ⊢ ∅ ∈ Poset | ||
| Theorem | isposd 18332* | Properties that determine a poset (implicit structure version). (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by AV, 26-Apr-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ≤ 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ (𝜑 → 𝐾 ∈ Poset) | ||
| Theorem | isposi 18333* | Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011.) |
| ⊢ 𝐾 ∈ V & ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ 𝐾 ∈ Poset | ||
| Theorem | isposix 18334* | Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof. (Contributed by NM, 9-Nov-2012.) (Proof shortened by AV, 30-Oct-2024.) |
| ⊢ 𝐵 ∈ V & ⊢ ≤ ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ≤ 〉} & ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ 𝐾 ∈ Poset | ||
| Theorem | pospropd 18335* | Posethood is determined only by structure components and only by the value of the relation within the base set. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(le‘𝐾)𝑦 ↔ 𝑥(le‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐿 ∈ Poset)) | ||
| Theorem | odupos 18336 | Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) | ||
| Theorem | oduposb 18337 | Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) | ||
| Definition | df-plt 18338 | Define less-than ordering for posets and related structures. Unlike df-base 17227 and df-ple 17289, this is a derived component extractor and not an extensible structure component extractor that defines the poset. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| ⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) | ||
| Theorem | pltfval 18339 | Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) | ||
| Theorem | pltval 18340 | Less-than relation. (df-pss 3946 analog.) (Contributed by NM, 12-Oct-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) | ||
| Theorem | pltle 18341 | "Less than" implies "less than or equal to". (pssss 4073 analog.) (Contributed by NM, 4-Dec-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) | ||
| Theorem | pltne 18342 | The "less than" relation is not reflexive. (df-pss 3946 analog.) (Contributed by NM, 2-Dec-2011.) |
| ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) | ||
| Theorem | pltirr 18343 | The "less than" relation is not reflexive. (pssirr 4078 analog.) (Contributed by NM, 7-Feb-2012.) |
| ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋 < 𝑋) | ||
| Theorem | pleval2i 18344 | One direction of pleval2 18345. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) | ||
| Theorem | pleval2 18345 | "Less than or equal to" in terms of "less than". (sspss 4077 analog.) (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) | ||
| Theorem | pltnle 18346 | "Less than" implies not converse "less than or equal to". (Contributed by NM, 18-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 ≤ 𝑋) | ||
| Theorem | pltval3 18347 | Alternate expression for the "less than" relation. (dfpss3 4064 analog.) (Contributed by NM, 4-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) | ||
| Theorem | pltnlt 18348 | The less-than relation implies the negation of its inverse. (Contributed by NM, 18-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 < 𝑋) | ||
| Theorem | pltn2lp 18349 | The less-than relation has no 2-cycle loops. (pssn2lp 4079 analog.) (Contributed by NM, 2-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) | ||
| Theorem | plttr 18350 | The less-than relation is transitive. (psstr 4082 analog.) (Contributed by NM, 2-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) | ||
| Theorem | pltletr 18351 | Transitive law for chained "less than" and "less than or equal to". (psssstr 4084 analog.) (Contributed by NM, 2-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) | ||
| Theorem | plelttr 18352 | Transitive law for chained "less than or equal to" and "less than". (sspsstr 4083 analog.) (Contributed by NM, 2-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) | ||
| Theorem | pospo 18353 | Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ))) | ||
| Definition | df-lub 18354* | Define the least upper bound (LUB) of a set of (poset) elements. The domain is restricted to exclude sets 𝑠 for which the LUB doesn't exist uniquely. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
| ⊢ lub = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑧 → 𝑥(le‘𝑝)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑧 → 𝑥(le‘𝑝)𝑧))})) | ||
| Definition | df-glb 18355* | Define the greatest lower bound (GLB) of a set of (poset) elements. The domain is restricted to exclude sets 𝑠 for which the GLB doesn't exist uniquely. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
| ⊢ glb = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))})) | ||
| Definition | df-join 18356* | Define poset join. (Contributed by NM, 12-Sep-2011.) (Revised by Mario Carneiro, 3-Nov-2015.) |
| ⊢ join = (𝑝 ∈ V ↦ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (lub‘𝑝)𝑧}) | ||
| Definition | df-meet 18357* | Define poset meet. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 8-Sep-2018.) |
| ⊢ meet = (𝑝 ∈ V ↦ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧}) | ||
| Theorem | lubfval 18358* | Value of the least upper bound function of a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) | ||
| Theorem | lubdm 18359* | Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) | ||
| Theorem | lubfun 18360 | The LUB is a function. (Contributed by NM, 9-Sep-2018.) |
| ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ Fun 𝑈 | ||
| Theorem | lubeldm 18361* | Member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) | ||
| Theorem | lubelss 18362 | A member of the domain of the least upper bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | ||
| Theorem | lubeu 18363* | Unique existence proper of a member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | lubval 18364* | Value of the least upper bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | lubcl 18365 | The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝐵) | ||
| Theorem | lubprop 18366* | Properties of greatest lower bound of a poset. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 𝑦 ≤ (𝑈‘𝑆) ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → (𝑈‘𝑆) ≤ 𝑧))) | ||
| Theorem | luble 18367 | The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑋 ≤ (𝑈‘𝑆)) | ||
| Theorem | lublecllem 18368* | Lemma for lublecl 18369 and lubid 18370. (Contributed by NM, 8-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) | ||
| Theorem | lublecl 18369* | The set of all elements less than a given element has an LUB. (Contributed by NM, 8-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ∈ dom 𝑈) | ||
| Theorem | lubid 18370* | The LUB of elements less than or equal to a fixed value equals that value. (Contributed by NM, 19-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑈‘{𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}) = 𝑋) | ||
| Theorem | glbfval 18371* | Value of the greatest lower function of a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) | ||
| Theorem | glbdm 18372* | Domain of the greatest lower bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐺 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) | ||
| Theorem | glbfun 18373 | The GLB is a function. (Contributed by NM, 9-Sep-2018.) |
| ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ Fun 𝐺 | ||
| Theorem | glbeldm 18374* | Member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) | ||
| Theorem | glbelss 18375 | A member of the domain of the greatest lower bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | ||
| Theorem | glbeu 18376* | Unique existence proper of a member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 𝜓) | ||
| Theorem | glbval 18377* | Value of the greatest lower bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set on both sides of the equality. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | glbcl 18378 | The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝐵) | ||
| Theorem | glbprop 18379* | Properties of greatest lower bound of a poset. (Contributed by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (glb‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) | ||
| Theorem | glble 18380 | The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (glb‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) | ||
| Theorem | joinfval 18381* | Value of join function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove joinfval2 18382 first to reduce net proof size (existence part)? |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝑈𝑧}) | ||
| Theorem | joinfval2 18382* | Value of join function for a poset-type structure. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) | ||
| Theorem | joindm 18383* | Domain of join function for a poset-type structure. (Contributed by NM, 16-Sep-2018.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈}) | ||
| Theorem | joindef 18384 | Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑍) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ {𝑋, 𝑌} ∈ dom 𝑈)) | ||
| Theorem | joinval 18385 | Join value. Since both sides evaluate to ∅ when they don't exist, for convenience we drop the {𝑋, 𝑌} ∈ dom 𝑈 requirement. (Contributed by NM, 9-Sep-2018.) |
| ⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (𝑈‘{𝑋, 𝑌})) | ||
| Theorem | joincl 18386 | Closure of join of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) | ||
| Theorem | joindmss 18387 | Subset property of domain of join. (Contributed by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) | ||
| Theorem | joinval2lem 18388* | Lemma for joinval2 18389 and joineu 18390. (Contributed by NM, 12-Sep-2018.) TODO: combine this through joineu 18390 into joinlem 18391? |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
| Theorem | joinval2 18389* | Value of join for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
| Theorem | joineu 18390* | Uniqueness of join of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) | ||
| Theorem | joinlem 18391* | Lemma for join properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) | ||
| Theorem | lejoin1 18392 | A join's first argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → 𝑋 ≤ (𝑋 ∨ 𝑌)) | ||
| Theorem | lejoin2 18393 | A join's second argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → 𝑌 ≤ (𝑋 ∨ 𝑌)) | ||
| Theorem | joinle 18394 | A join is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) | ||
| Theorem | meetfval 18395* | Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove meetfval2 18396 first to reduce net proof size (existence part)? |
| ⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝐺𝑧}) | ||
| Theorem | meetfval2 18396* | Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
| ⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) | ||
| Theorem | meetdm 18397* | Domain of meet function for a poset-type structure. (Contributed by NM, 16-Sep-2018.) |
| ⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺}) | ||
| Theorem | meetdef 18398 | Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018.) |
| ⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑍) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) | ||
| Theorem | meetval 18399 | Meet value. Since both sides evaluate to ∅ when they don't exist, for convenience we drop the {𝑋, 𝑌} ∈ dom 𝐺 requirement. (Contributed by NM, 9-Sep-2018.) |
| ⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) = (𝐺‘{𝑋, 𝑌})) | ||
| Theorem | meetcl 18400 | Closure of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) ∈ 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |