| Metamath
Proof Explorer Theorem List (p. 184 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hof2val 18301* | The morphism part of the Hom functor, for morphisms 〈𝑓, 𝑔〉:〈𝑋, 𝑌〉⟶〈𝑍, 𝑊〉 (which since the first argument is contravariant means morphisms 𝑓:𝑍⟶𝑋 and 𝑔:𝑌⟶𝑊), yields a function (a morphism of SetCat) mapping ℎ:𝑋⟶𝑌 to 𝑔 ∘ ℎ ∘ 𝑓:𝑍⟶𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.) |
| ⊢ 𝑀 = (HomF‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) ⇒ ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) | ||
| Theorem | hof2 18302 | The morphism part of the Hom functor, for morphisms 〈𝑓, 𝑔〉:〈𝑋, 𝑌〉⟶〈𝑍, 𝑊〉 (which since the first argument is contravariant means morphisms 𝑓:𝑍⟶𝑋 and 𝑔:𝑌⟶𝑊), yields a function (a morphism of SetCat) mapping ℎ:𝑋⟶𝑌 to 𝑔 ∘ ℎ ∘ 𝑓:𝑍⟶𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.) |
| ⊢ 𝑀 = (HomF‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → ((𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺)‘𝐾) = ((𝐺(〈𝑋, 𝑌〉 · 𝑊)𝐾)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) | ||
| Theorem | hofcllem 18303 | Lemma for hofcl 18304. (Contributed by Mario Carneiro, 15-Jan-2017.) |
| ⊢ 𝑀 = (HomF‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐷 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ (𝑍𝐻𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (𝑌𝐻𝑊)) & ⊢ (𝜑 → 𝑃 ∈ (𝑆𝐻𝑍)) & ⊢ (𝜑 → 𝑄 ∈ (𝑊𝐻𝑇)) ⇒ ⊢ (𝜑 → ((𝐾(〈𝑆, 𝑍〉(comp‘𝐶)𝑋)𝑃)(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑆, 𝑇〉)(𝑄(〈𝑌, 𝑊〉(comp‘𝐶)𝑇)𝐿)) = ((𝑃(〈𝑍, 𝑊〉(2nd ‘𝑀)〈𝑆, 𝑇〉)𝑄)(〈(𝑋𝐻𝑌), (𝑍𝐻𝑊)〉(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐿))) | ||
| Theorem | hofcl 18304 | Closure of the Hom functor. Note that the codomain is the category SetCat‘𝑈 for any universe 𝑈 which contains each Hom-set. This corresponds to the assertion that 𝐶 be locally small (with respect to 𝑈). (Contributed by Mario Carneiro, 15-Jan-2017.) |
| ⊢ 𝑀 = (HomF‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝐷 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑀 ∈ ((𝑂 ×c 𝐶) Func 𝐷)) | ||
| Theorem | oppchofcl 18305 | Closure of the opposite Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑀 = (HomF‘𝑂) & ⊢ 𝐷 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑀 ∈ ((𝐶 ×c 𝑂) Func 𝐷)) | ||
| Theorem | yonval 18306 | Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑀 = (HomF‘𝑂) ⇒ ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) | ||
| Theorem | yoncl 18307 | The Yoneda embedding is a functor from the category to the category 𝑄 of presheaves on 𝐶. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝐶 Func 𝑄)) | ||
| Theorem | yon1cl 18308 | The Yoneda embedding at an object of 𝐶 is a presheaf on 𝐶, also known as the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) ⇒ ⊢ (𝜑 → ((1st ‘𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) | ||
| Theorem | yon11 18309 | Value of the Yoneda embedding at an object. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘((1st ‘𝑌)‘𝑋))‘𝑍) = (𝑍𝐻𝑋)) | ||
| Theorem | yon12 18310 | Value of the Yoneda embedding at a morphism. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑊𝐻𝑍)) & ⊢ (𝜑 → 𝐺 ∈ (𝑍𝐻𝑋)) ⇒ ⊢ (𝜑 → (((𝑍(2nd ‘((1st ‘𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = (𝐺(〈𝑊, 𝑍〉 · 𝑋)𝐹)) | ||
| Theorem | yon2 18311 | Value of the Yoneda embedding at a morphism. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑍)) & ⊢ (𝜑 → 𝐺 ∈ (𝑊𝐻𝑋)) ⇒ ⊢ (𝜑 → ((((𝑋(2nd ‘𝑌)𝑍)‘𝐹)‘𝑊)‘𝐺) = (𝐹(〈𝑊, 𝑋〉 · 𝑍)𝐺)) | ||
| Theorem | hofpropd 18312 | If two categories have the same set of objects, morphisms, and compositions, then they have the same Hom functor. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (HomF‘𝐶) = (HomF‘𝐷)) | ||
| Theorem | yonpropd 18313 | If two categories have the same set of objects, morphisms, and compositions, then they have the same Yoneda functor. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → (Yon‘𝐶) = (Yon‘𝐷)) | ||
| Theorem | oppcyon 18314 | Value of the opposite Yoneda embedding. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑌 = (Yon‘𝑂) & ⊢ 𝑀 = (HomF‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝑌 = (〈𝑂, 𝐶〉 curryF 𝑀)) | ||
| Theorem | oyoncl 18315 | The opposite Yoneda embedding is a functor from oppCat‘𝐶 to the functor category 𝐶 → SetCat. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑌 = (Yon‘𝑂) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ 𝑄 = (𝐶 FuncCat 𝑆) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝑂 Func 𝑄)) | ||
| Theorem | oyon1cl 18316 | The opposite Yoneda embedding at an object of 𝐶 is a functor from 𝐶 to Set, also known as the covariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑌 = (Yon‘𝑂) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝑌)‘𝑋) ∈ (𝐶 Func 𝑆)) | ||
| Theorem | yonedalem1 18317 | Lemma for yoneda 18328. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))) | ||
| Theorem | yonedalem21 18318 | Lemma for yoneda 18328. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹(1st ‘𝑍)𝑋) = (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) | ||
| Theorem | yonedalem3a 18319* | Lemma for yoneda 18328. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) ⇒ ⊢ (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎‘𝑋)‘( 1 ‘𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st ‘𝑍)𝑋)⟶(𝐹(1st ‘𝐸)𝑋))) | ||
| Theorem | yonedalem4a 18320* | Lemma for yoneda 18328. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) & ⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) ⇒ ⊢ (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))) | ||
| Theorem | yonedalem4b 18321* | Lemma for yoneda 18328. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) & ⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑃(Hom ‘𝐶)𝑋)) ⇒ ⊢ (𝜑 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑃)‘𝐺) = (((𝑋(2nd ‘𝐹)𝑃)‘𝐺)‘𝐴)) | ||
| Theorem | yonedalem4c 18322* | Lemma for yoneda 18328. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) & ⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) ⇒ ⊢ (𝜑 → ((𝐹𝑁𝑋)‘𝐴) ∈ (((1st ‘𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) | ||
| Theorem | yonedalem22 18323 | Lemma for yoneda 18328. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋)) ⇒ ⊢ (𝜑 → (𝐴(〈𝐹, 𝑋〉(2nd ‘𝑍)〈𝐺, 𝑃〉)𝐾) = (((𝑃(2nd ‘𝑌)𝑋)‘𝐾)(〈((1st ‘𝑌)‘𝑋), 𝐹〉(2nd ‘𝐻)〈((1st ‘𝑌)‘𝑃), 𝐺〉)𝐴)) | ||
| Theorem | yonedalem3b 18324* | Lemma for yoneda 18328. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑂 Func 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ (𝐹(𝑂 Nat 𝑆)𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃(Hom ‘𝐶)𝑋)) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) ⇒ ⊢ (𝜑 → ((𝐺𝑀𝑃)(〈(𝐹(1st ‘𝑍)𝑋), (𝐺(1st ‘𝑍)𝑃)〉(comp‘𝑇)(𝐺(1st ‘𝐸)𝑃))(𝐴(〈𝐹, 𝑋〉(2nd ‘𝑍)〈𝐺, 𝑃〉)𝐾)) = ((𝐴(〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑃〉)𝐾)(〈(𝐹(1st ‘𝑍)𝑋), (𝐹(1st ‘𝐸)𝑋)〉(comp‘𝑇)(𝐺(1st ‘𝐸)𝑃))(𝐹𝑀𝑋))) | ||
| Theorem | yonedalem3 18325* | Lemma for yoneda 18328. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸)) | ||
| Theorem | yonedainv 18326* | The Yoneda Lemma with explicit inverse. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) & ⊢ 𝐼 = (Inv‘𝑅) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) ⇒ ⊢ (𝜑 → 𝑀(𝑍𝐼𝐸)𝑁) | ||
| Theorem | yonffthlem 18327* | Lemma for yonffth 18329. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) & ⊢ 𝐼 = (Inv‘𝑅) & ⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) ⇒ ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) | ||
| Theorem | yoneda 18328* | The Yoneda Lemma. There is a natural isomorphism between the functors 𝑍 and 𝐸, where 𝑍(𝐹, 𝑋) is the natural transformations from Yon(𝑋) = Hom ( − , 𝑋) to 𝐹, and 𝐸(𝐹, 𝑋) = 𝐹(𝑋) is the evaluation functor. Here we need two universes to state the claim: the smaller universe 𝑈 is used for forming the functor category 𝑄 = 𝐶 op → SetCat(𝑈), which itself does not (necessarily) live in 𝑈 but instead is an element of the larger universe 𝑉. (If 𝑈 is a Grothendieck universe, then it will be closed under this "presheaf" operation, and so we can set 𝑈 = 𝑉 in this case.) (Contributed by Mario Carneiro, 29-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑇 = (SetCat‘𝑉) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐻 = (HomF‘𝑄) & ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) & ⊢ 𝐸 = (𝑂 evalF 𝑆) & ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑉 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) & ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) & ⊢ 𝐼 = (Iso‘𝑅) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐼𝐸)) | ||
| Theorem | yonffth 18329 | The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category 𝐶 as a full subcategory of the category 𝑄 of presheaves on 𝐶. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) ⇒ ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) | ||
| Theorem | yoniso 18330* | If the codomain is recoverable from a hom-set, then the Yoneda embedding is injective on objects, and hence is an isomorphism from 𝐶 into a full subcategory of a presheaf category. (Contributed by Mario Carneiro, 30-Jan-2017.) |
| ⊢ 𝑌 = (Yon‘𝐶) & ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐷 = (CatCat‘𝑉) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐼 = (Iso‘𝐷) & ⊢ 𝑄 = (𝑂 FuncCat 𝑆) & ⊢ 𝐸 = (𝑄 ↾s ran (1st ‘𝑌)) & ⊢ (𝜑 → 𝑉 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘(𝑥(Hom ‘𝐶)𝑦)) = 𝑦) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝐶𝐼𝐸)) | ||
| Syntax | codu 18331 | Class function defining dual orders. |
| class ODual | ||
| Definition | df-odu 18332 |
Define the dual of an ordered structure, which replaces the order
component of the structure with its reverse. See odubas 18336, oduleval 18334,
and oduleg 18335 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18540. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) | ||
| Theorem | oduval 18333 | Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) & ⊢ ≤ = (le‘𝑂) ⇒ ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) | ||
| Theorem | oduleval 18334 | Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) & ⊢ ≤ = (le‘𝑂) ⇒ ⊢ ◡ ≤ = (le‘𝐷) | ||
| Theorem | oduleg 18335 | Truth of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) & ⊢ ≤ = (le‘𝑂) & ⊢ 𝐺 = (le‘𝐷) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴𝐺𝐵 ↔ 𝐵 ≤ 𝐴)) | ||
| Theorem | odubas 18336 | Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ 𝐷 = (ODual‘𝑂) & ⊢ 𝐵 = (Base‘𝑂) ⇒ ⊢ 𝐵 = (Base‘𝐷) | ||
| Theorem | odubasOLD 18337 | Obsolete version of odubas 18336 as of 12-Nov-2024. Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐷 = (ODual‘𝑂) & ⊢ 𝐵 = (Base‘𝑂) ⇒ ⊢ 𝐵 = (Base‘𝐷) | ||
| Syntax | cproset 18338 | Extend class notation with the class of all prosets. |
| class Proset | ||
| Syntax | cdrs 18339 | Extend class notation with the class of all directed sets. |
| class Dirset | ||
| Definition | df-proset 18340* |
Define the class of preordered sets, or prosets. A proset is a set
equipped with a preorder, that is, a transitive and reflexive relation.
Preorders are a natural generalization of partial orders which need not be antisymmetric: there may be pairs of elements such that each is "less than or equal to" the other, so that both elements have the same order-theoretic properties (in some sense, there is a "tie" among them). If a preorder is required to be antisymmetric, that is, there is no such "tie", then one obtains a partial order. If a preorder is required to be symmetric, that is, all comparable elements are tied, then one obtains an equivalence relation. Every preorder naturally factors into these two notions: the "tie" relation on a proset is an equivalence relation, and the quotient under that equivalence relation is a partial order. (Contributed by FL, 17-Nov-2014.) (Revised by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ Proset = {𝑓 ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} | ||
| Definition | df-drs 18341* |
Define the class of directed sets. A directed set is a nonempty
preordered set where every pair of elements have some upper bound. Note
that it is not required that there exist a least upper bound.
There is no consensus in the literature over whether directed sets are allowed to be empty. It is slightly more convenient for us if they are not. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ Dirset = {𝑓 ∈ Proset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧))} | ||
| Theorem | isprs 18342* | Property of being a preordered set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
| Theorem | prslem 18343 | Lemma for prsref 18344 and prstr 18345. (Contributed by Mario Carneiro, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) | ||
| Theorem | prsref 18344 | "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) | ||
| Theorem | prstr 18345 | "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍)) → 𝑋 ≤ 𝑍) | ||
| Theorem | oduprs 18346 | Being a proset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
| ⊢ 𝐷 = (ODual‘𝐾) ⇒ ⊢ (𝐾 ∈ Proset → 𝐷 ∈ Proset ) | ||
| Theorem | isdrs 18347* | Property of being a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧))) | ||
| Theorem | drsdir 18348* | Direction of a directed set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑧 ∈ 𝐵 (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧)) | ||
| Theorem | drsprs 18349 | A directed set is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝐾 ∈ Dirset → 𝐾 ∈ Proset ) | ||
| Theorem | drsbn0 18350 | The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ (𝐾 ∈ Dirset → 𝐵 ≠ ∅) | ||
| Theorem | drsdirfi 18351* | Any finite number of elements in a directed set have a common upper bound. Here is where the nonemptiness constraint in df-drs 18341 first comes into play; without it we would need an additional constraint that 𝑋 not be empty. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Dirset ∧ 𝑋 ⊆ 𝐵 ∧ 𝑋 ∈ Fin) → ∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑦) | ||
| Theorem | isdrs2 18352* | Directed sets may be defined in terms of finite subsets. Again, without nonemptiness we would need to restrict to nonempty subsets here. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ (𝒫 𝐵 ∩ Fin)∃𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝑥 𝑧 ≤ 𝑦)) | ||
| Syntax | cpo 18353 | Extend class notation with the class of posets. |
| class Poset | ||
| Syntax | cplt 18354 | Extend class notation with less-than for posets. |
| class lt | ||
| Syntax | club 18355 | Extend class notation with poset least upper bound. |
| class lub | ||
| Syntax | cglb 18356 | Extend class notation with poset greatest lower bound. |
| class glb | ||
| Syntax | cjn 18357 | Extend class notation with poset join. |
| class join | ||
| Syntax | cmee 18358 | Extend class notation with poset meet. |
| class meet | ||
| Definition | df-poset 18359* |
Define the class of partially ordered sets (posets). A poset is a set
equipped with a partial order, that is, a binary relation which is
reflexive, antisymmetric, and transitive. Unlike a total order, in a
partial order there may be pairs of elements where neither precedes the
other. Definition of poset in [Crawley] p. 1. Note that
Crawley-Dilworth require that a poset base set be nonempty, but we
follow the convention of most authors who don't make this a requirement.
In our formalism of extensible structures, the base set of a poset 𝑓 is denoted by (Base‘𝑓) and its partial order by (le‘𝑓) (for "less than or equal to"). The quantifiers ∃𝑏∃𝑟 provide a notational shorthand to allow to refer to the base and ordering relation as 𝑏 and 𝑟 in the definition rather than having to repeat (Base‘𝑓) and (le‘𝑓) throughout. These quantifiers can be eliminated with ceqsex2v 3536 and related theorems. (Contributed by NM, 18-Oct-2012.) |
| ⊢ Poset = {𝑓 ∣ ∃𝑏∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))} | ||
| Theorem | ispos 18360* | The predicate "is a poset". (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 4-Nov-2013.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
| Theorem | ispos2 18361* |
A poset is an antisymmetric proset.
EDITORIAL: could become the definition of poset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦))) | ||
| Theorem | posprs 18362 | A poset is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) | ||
| Theorem | posi 18363 | Lemma for poset properties. (Contributed by NM, 11-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) | ||
| Theorem | posref 18364 | A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) | ||
| Theorem | posasymb 18365 | A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | ||
| Theorem | postr 18366 | A poset ordering is transitive. (Contributed by NM, 11-Sep-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) | ||
| Theorem | 0pos 18367 | Technical lemma to simplify the statement of ipopos 18581. The empty set is (rather pathologically) a poset under our definitions, since it has an empty base set (str0 17226) and any relation partially orders an empty set. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Proof shortened by AV, 13-Oct-2024.) |
| ⊢ ∅ ∈ Poset | ||
| Theorem | isposd 18368* | Properties that determine a poset (implicit structure version). (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by AV, 26-Apr-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → ≤ = (le‘𝐾)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ≤ 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ (𝜑 → 𝐾 ∈ Poset) | ||
| Theorem | isposi 18369* | Properties that determine a poset (implicit structure version). (Contributed by NM, 11-Sep-2011.) |
| ⊢ 𝐾 ∈ V & ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ 𝐾 ∈ Poset | ||
| Theorem | isposix 18370* | Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof. (Contributed by NM, 9-Nov-2012.) (Proof shortened by AV, 30-Oct-2024.) |
| ⊢ 𝐵 ∈ V & ⊢ ≤ ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ≤ 〉} & ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ 𝐾 ∈ Poset | ||
| Theorem | isposixOLD 18371* | Obsolete version of isposix 18370 as of 30-Oct-2024. Properties that determine a poset (explicit structure version). Note that the numeric indices of the structure components are not mentioned explicitly in either the theorem or its proof (Remark: That is not true - it becomes true with the new proof!). (Contributed by NM, 9-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 ∈ V & ⊢ ≤ ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(le‘ndx), ≤ 〉} & ⊢ (𝑥 ∈ 𝐵 → 𝑥 ≤ 𝑥) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥) → 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ⇒ ⊢ 𝐾 ∈ Poset | ||
| Theorem | pospropd 18372* | Posethood is determined only by structure components and only by the value of the relation within the base set. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(le‘𝐾)𝑦 ↔ 𝑥(le‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Poset ↔ 𝐿 ∈ Poset)) | ||
| Theorem | odupos 18373 | Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) | ||
| Theorem | oduposb 18374 | Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Poset ↔ 𝐷 ∈ Poset)) | ||
| Definition | df-plt 18375 | Define less-than ordering for posets and related structures. Unlike df-base 17248 and df-ple 17317, this is a derived component extractor and not an extensible structure component extractor that defines the poset. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| ⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) | ||
| Theorem | pltfval 18376 | Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) | ||
| Theorem | pltval 18377 | Less-than relation. (df-pss 3971 analog.) (Contributed by NM, 12-Oct-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) | ||
| Theorem | pltle 18378 | "Less than" implies "less than or equal to". (pssss 4098 analog.) (Contributed by NM, 4-Dec-2011.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≤ 𝑌)) | ||
| Theorem | pltne 18379 | The "less than" relation is not reflexive. (df-pss 3971 analog.) (Contributed by NM, 2-Dec-2011.) |
| ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 → 𝑋 ≠ 𝑌)) | ||
| Theorem | pltirr 18380 | The "less than" relation is not reflexive. (pssirr 4103 analog.) (Contributed by NM, 7-Feb-2012.) |
| ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋 < 𝑋) | ||
| Theorem | pleval2i 18381 | One direction of pleval2 18382. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) | ||
| Theorem | pleval2 18382 | "Less than or equal to" in terms of "less than". (sspss 4102 analog.) (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) | ||
| Theorem | pltnle 18383 | "Less than" implies not converse "less than or equal to". (Contributed by NM, 18-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 ≤ 𝑋) | ||
| Theorem | pltval3 18384 | Alternate expression for the "less than" relation. (dfpss3 4089 analog.) (Contributed by NM, 4-Nov-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋))) | ||
| Theorem | pltnlt 18385 | The less-than relation implies the negation of its inverse. (Contributed by NM, 18-Oct-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 < 𝑋) | ||
| Theorem | pltn2lp 18386 | The less-than relation has no 2-cycle loops. (pssn2lp 4104 analog.) (Contributed by NM, 2-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) | ||
| Theorem | plttr 18387 | The less-than relation is transitive. (psstr 4107 analog.) (Contributed by NM, 2-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) | ||
| Theorem | pltletr 18388 | Transitive law for chained "less than" and "less than or equal to". (psssstr 4109 analog.) (Contributed by NM, 2-Dec-2011.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) | ||
| Theorem | plelttr 18389 | Transitive law for chained "less than or equal to" and "less than". (sspsstr 4108 analog.) (Contributed by NM, 2-May-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) | ||
| Theorem | pospo 18390 | Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ))) | ||
| Definition | df-lub 18391* | Define the least upper bound (LUB) of a set of (poset) elements. The domain is restricted to exclude sets 𝑠 for which the LUB doesn't exist uniquely. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
| ⊢ lub = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑧 → 𝑥(le‘𝑝)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑧 → 𝑥(le‘𝑝)𝑧))})) | ||
| Definition | df-glb 18392* | Define the greatest lower bound (GLB) of a set of (poset) elements. The domain is restricted to exclude sets 𝑠 for which the GLB doesn't exist uniquely. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
| ⊢ glb = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))})) | ||
| Definition | df-join 18393* | Define poset join. (Contributed by NM, 12-Sep-2011.) (Revised by Mario Carneiro, 3-Nov-2015.) |
| ⊢ join = (𝑝 ∈ V ↦ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (lub‘𝑝)𝑧}) | ||
| Definition | df-meet 18394* | Define poset meet. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 8-Sep-2018.) |
| ⊢ meet = (𝑝 ∈ V ↦ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧}) | ||
| Theorem | lubfval 18395* | Value of the least upper bound function of a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑈 = ((𝑠 ∈ 𝒫 𝐵 ↦ (℩𝑥 ∈ 𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥 ∈ 𝐵 𝜓})) | ||
| Theorem | lubdm 18396* | Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝑈 = {𝑠 ∈ 𝒫 𝐵 ∣ ∃!𝑥 ∈ 𝐵 𝜓}) | ||
| Theorem | lubfun 18397 | The LUB is a function. (Contributed by NM, 9-Sep-2018.) |
| ⊢ 𝑈 = (lub‘𝐾) ⇒ ⊢ Fun 𝑈 | ||
| Theorem | lubeldm 18398* | Member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆 ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜓))) | ||
| Theorem | lubelss 18399 | A member of the domain of the least upper bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | ||
| Theorem | lubeu 18400* | Unique existence proper of a member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 𝜓) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |