Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > p0val | Structured version Visualization version GIF version |
Description: Value of poset zero. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
p0val.b | ⊢ 𝐵 = (Base‘𝐾) |
p0val.g | ⊢ 𝐺 = (glb‘𝐾) |
p0val.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
p0val | ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3460 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
2 | p0val.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
3 | fveq2 6830 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾)) | |
4 | p0val.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
5 | 3, 4 | eqtr4di 2795 | . . . . 5 ⊢ (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺) |
6 | fveq2 6830 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) | |
7 | p0val.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
8 | 6, 7 | eqtr4di 2795 | . . . . 5 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) |
9 | 5, 8 | fveq12d 6837 | . . . 4 ⊢ (𝑝 = 𝐾 → ((glb‘𝑝)‘(Base‘𝑝)) = (𝐺‘𝐵)) |
10 | df-p0 18241 | . . . 4 ⊢ 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) | |
11 | fvex 6843 | . . . 4 ⊢ (𝐺‘𝐵) ∈ V | |
12 | 9, 10, 11 | fvmpt 6936 | . . 3 ⊢ (𝐾 ∈ V → (0.‘𝐾) = (𝐺‘𝐵)) |
13 | 2, 12 | eqtrid 2789 | . 2 ⊢ (𝐾 ∈ V → 0 = (𝐺‘𝐵)) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ‘cfv 6484 Basecbs 17010 glbcglb 18126 0.cp0 18239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-iota 6436 df-fun 6486 df-fv 6492 df-p0 18241 |
This theorem is referenced by: p0le 18245 clatp0cl 31539 xrsp0 31575 op0cl 37500 atl0cl 37619 |
Copyright terms: Public domain | W3C validator |