![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > p0val | Structured version Visualization version GIF version |
Description: Value of poset zero. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
p0val.b | ⊢ 𝐵 = (Base‘𝐾) |
p0val.g | ⊢ 𝐺 = (glb‘𝐾) |
p0val.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
p0val | ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3485 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
2 | p0val.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
3 | fveq2 6882 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾)) | |
4 | p0val.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
5 | 3, 4 | eqtr4di 2782 | . . . . 5 ⊢ (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺) |
6 | fveq2 6882 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) | |
7 | p0val.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
8 | 6, 7 | eqtr4di 2782 | . . . . 5 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) |
9 | 5, 8 | fveq12d 6889 | . . . 4 ⊢ (𝑝 = 𝐾 → ((glb‘𝑝)‘(Base‘𝑝)) = (𝐺‘𝐵)) |
10 | df-p0 18386 | . . . 4 ⊢ 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) | |
11 | fvex 6895 | . . . 4 ⊢ (𝐺‘𝐵) ∈ V | |
12 | 9, 10, 11 | fvmpt 6989 | . . 3 ⊢ (𝐾 ∈ V → (0.‘𝐾) = (𝐺‘𝐵)) |
13 | 2, 12 | eqtrid 2776 | . 2 ⊢ (𝐾 ∈ V → 0 = (𝐺‘𝐵)) |
14 | 1, 13 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ‘cfv 6534 Basecbs 17149 glbcglb 18271 0.cp0 18384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6486 df-fun 6536 df-fv 6542 df-p0 18386 |
This theorem is referenced by: p0le 18390 clatp0cl 32638 xrsp0 32674 op0cl 38557 atl0cl 38676 |
Copyright terms: Public domain | W3C validator |