MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p0val Structured version   Visualization version   GIF version

Theorem p0val 18145
Description: Value of poset zero. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
p0val.b 𝐵 = (Base‘𝐾)
p0val.g 𝐺 = (glb‘𝐾)
p0val.z 0 = (0.‘𝐾)
Assertion
Ref Expression
p0val (𝐾𝑉0 = (𝐺𝐵))

Proof of Theorem p0val
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐾𝑉𝐾 ∈ V)
2 p0val.z . . 3 0 = (0.‘𝐾)
3 fveq2 6774 . . . . . 6 (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾))
4 p0val.g . . . . . 6 𝐺 = (glb‘𝐾)
53, 4eqtr4di 2796 . . . . 5 (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺)
6 fveq2 6774 . . . . . 6 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
7 p0val.b . . . . . 6 𝐵 = (Base‘𝐾)
86, 7eqtr4di 2796 . . . . 5 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
95, 8fveq12d 6781 . . . 4 (𝑝 = 𝐾 → ((glb‘𝑝)‘(Base‘𝑝)) = (𝐺𝐵))
10 df-p0 18143 . . . 4 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝)))
11 fvex 6787 . . . 4 (𝐺𝐵) ∈ V
129, 10, 11fvmpt 6875 . . 3 (𝐾 ∈ V → (0.‘𝐾) = (𝐺𝐵))
132, 12eqtrid 2790 . 2 (𝐾 ∈ V → 0 = (𝐺𝐵))
141, 13syl 17 1 (𝐾𝑉0 = (𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cfv 6433  Basecbs 16912  glbcglb 18028  0.cp0 18141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-p0 18143
This theorem is referenced by:  p0le  18147  clatp0cl  31254  xrsp0  31290  op0cl  37198  atl0cl  37317
  Copyright terms: Public domain W3C validator