| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p0val | Structured version Visualization version GIF version | ||
| Description: Value of poset zero. (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| p0val.b | ⊢ 𝐵 = (Base‘𝐾) |
| p0val.g | ⊢ 𝐺 = (glb‘𝐾) |
| p0val.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| p0val | ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3458 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
| 2 | p0val.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 3 | fveq2 6828 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾)) | |
| 4 | p0val.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2786 | . . . . 5 ⊢ (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺) |
| 6 | fveq2 6828 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) | |
| 7 | p0val.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | 6, 7 | eqtr4di 2786 | . . . . 5 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) |
| 9 | 5, 8 | fveq12d 6835 | . . . 4 ⊢ (𝑝 = 𝐾 → ((glb‘𝑝)‘(Base‘𝑝)) = (𝐺‘𝐵)) |
| 10 | df-p0 18331 | . . . 4 ⊢ 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) | |
| 11 | fvex 6841 | . . . 4 ⊢ (𝐺‘𝐵) ∈ V | |
| 12 | 9, 10, 11 | fvmpt 6935 | . . 3 ⊢ (𝐾 ∈ V → (0.‘𝐾) = (𝐺‘𝐵)) |
| 13 | 2, 12 | eqtrid 2780 | . 2 ⊢ (𝐾 ∈ V → 0 = (𝐺‘𝐵)) |
| 14 | 1, 13 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ‘cfv 6486 Basecbs 17122 glbcglb 18218 0.cp0 18329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-p0 18331 |
| This theorem is referenced by: p0le 18335 clatp0cl 32964 xrsp0 33000 op0cl 39303 atl0cl 39422 |
| Copyright terms: Public domain | W3C validator |