| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p0val | Structured version Visualization version GIF version | ||
| Description: Value of poset zero. (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| p0val.b | ⊢ 𝐵 = (Base‘𝐾) |
| p0val.g | ⊢ 𝐺 = (glb‘𝐾) |
| p0val.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| p0val | ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
| 2 | p0val.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 3 | fveq2 6861 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾)) | |
| 4 | p0val.g | . . . . . 6 ⊢ 𝐺 = (glb‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2783 | . . . . 5 ⊢ (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺) |
| 6 | fveq2 6861 | . . . . . 6 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) | |
| 7 | p0val.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | 6, 7 | eqtr4di 2783 | . . . . 5 ⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) |
| 9 | 5, 8 | fveq12d 6868 | . . . 4 ⊢ (𝑝 = 𝐾 → ((glb‘𝑝)‘(Base‘𝑝)) = (𝐺‘𝐵)) |
| 10 | df-p0 18391 | . . . 4 ⊢ 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) | |
| 11 | fvex 6874 | . . . 4 ⊢ (𝐺‘𝐵) ∈ V | |
| 12 | 9, 10, 11 | fvmpt 6971 | . . 3 ⊢ (𝐾 ∈ V → (0.‘𝐾) = (𝐺‘𝐵)) |
| 13 | 2, 12 | eqtrid 2777 | . 2 ⊢ (𝐾 ∈ V → 0 = (𝐺‘𝐵)) |
| 14 | 1, 13 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ‘cfv 6514 Basecbs 17186 glbcglb 18278 0.cp0 18389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-p0 18391 |
| This theorem is referenced by: p0le 18395 clatp0cl 32909 xrsp0 32957 op0cl 39184 atl0cl 39303 |
| Copyright terms: Public domain | W3C validator |