MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p0val Structured version   Visualization version   GIF version

Theorem p0val 18386
Description: Value of poset zero. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
p0val.b 𝐵 = (Base‘𝐾)
p0val.g 𝐺 = (glb‘𝐾)
p0val.z 0 = (0.‘𝐾)
Assertion
Ref Expression
p0val (𝐾𝑉0 = (𝐺𝐵))

Proof of Theorem p0val
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3468 . 2 (𝐾𝑉𝐾 ∈ V)
2 p0val.z . . 3 0 = (0.‘𝐾)
3 fveq2 6858 . . . . . 6 (𝑝 = 𝐾 → (glb‘𝑝) = (glb‘𝐾))
4 p0val.g . . . . . 6 𝐺 = (glb‘𝐾)
53, 4eqtr4di 2782 . . . . 5 (𝑝 = 𝐾 → (glb‘𝑝) = 𝐺)
6 fveq2 6858 . . . . . 6 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
7 p0val.b . . . . . 6 𝐵 = (Base‘𝐾)
86, 7eqtr4di 2782 . . . . 5 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
95, 8fveq12d 6865 . . . 4 (𝑝 = 𝐾 → ((glb‘𝑝)‘(Base‘𝑝)) = (𝐺𝐵))
10 df-p0 18384 . . . 4 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝)))
11 fvex 6871 . . . 4 (𝐺𝐵) ∈ V
129, 10, 11fvmpt 6968 . . 3 (𝐾 ∈ V → (0.‘𝐾) = (𝐺𝐵))
132, 12eqtrid 2776 . 2 (𝐾 ∈ V → 0 = (𝐺𝐵))
141, 13syl 17 1 (𝐾𝑉0 = (𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cfv 6511  Basecbs 17179  glbcglb 18271  0.cp0 18382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-p0 18384
This theorem is referenced by:  p0le  18388  clatp0cl  32902  xrsp0  32950  op0cl  39177  atl0cl  39296
  Copyright terms: Public domain W3C validator