Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-padd Structured version   Visualization version   GIF version

Definition df-padd 39798
Description: Define projective sum of two subspaces (or more generally two sets of atoms), which is the union of all lines generated by pairs of atoms from each subspace. Lemma 16.2 of [MaedaMaeda] p. 68. For convenience, our definition is generalized to apply to empty sets. (Contributed by NM, 29-Dec-2011.)
Assertion
Ref Expression
df-padd +𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})))
Distinct variable group:   𝑚,𝑙,𝑛,𝑝,𝑞,𝑟

Detailed syntax breakdown of Definition df-padd
StepHypRef Expression
1 cpadd 39797 . 2 class +𝑃
2 vl . . 3 setvar 𝑙
3 cvv 3480 . . 3 class V
4 vm . . . 4 setvar 𝑚
5 vn . . . 4 setvar 𝑛
62cv 1539 . . . . . 6 class 𝑙
7 catm 39264 . . . . . 6 class Atoms
86, 7cfv 6561 . . . . 5 class (Atoms‘𝑙)
98cpw 4600 . . . 4 class 𝒫 (Atoms‘𝑙)
104cv 1539 . . . . . 6 class 𝑚
115cv 1539 . . . . . 6 class 𝑛
1210, 11cun 3949 . . . . 5 class (𝑚𝑛)
13 vp . . . . . . . . . 10 setvar 𝑝
1413cv 1539 . . . . . . . . 9 class 𝑝
15 vq . . . . . . . . . . 11 setvar 𝑞
1615cv 1539 . . . . . . . . . 10 class 𝑞
17 vr . . . . . . . . . . 11 setvar 𝑟
1817cv 1539 . . . . . . . . . 10 class 𝑟
19 cjn 18357 . . . . . . . . . . 11 class join
206, 19cfv 6561 . . . . . . . . . 10 class (join‘𝑙)
2116, 18, 20co 7431 . . . . . . . . 9 class (𝑞(join‘𝑙)𝑟)
22 cple 17304 . . . . . . . . . 10 class le
236, 22cfv 6561 . . . . . . . . 9 class (le‘𝑙)
2414, 21, 23wbr 5143 . . . . . . . 8 wff 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)
2524, 17, 11wrex 3070 . . . . . . 7 wff 𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)
2625, 15, 10wrex 3070 . . . . . 6 wff 𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)
2726, 13, 8crab 3436 . . . . 5 class {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}
2812, 27cun 3949 . . . 4 class ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})
294, 5, 9, 9, 28cmpo 7433 . . 3 class (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}))
302, 3, 29cmpt 5225 . 2 class (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})))
311, 30wceq 1540 1 wff +𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})))
Colors of variables: wff setvar class
This definition is referenced by:  paddfval  39799
  Copyright terms: Public domain W3C validator