Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-padd Structured version   Visualization version   GIF version

Definition df-padd 37737
Description: Define projective sum of two subspaces (or more generally two sets of atoms), which is the union of all lines generated by pairs of atoms from each subspace. Lemma 16.2 of [MaedaMaeda] p. 68. For convenience, our definition is generalized to apply to empty sets. (Contributed by NM, 29-Dec-2011.)
Assertion
Ref Expression
df-padd +𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})))
Distinct variable group:   𝑚,𝑙,𝑛,𝑝,𝑞,𝑟

Detailed syntax breakdown of Definition df-padd
StepHypRef Expression
1 cpadd 37736 . 2 class +𝑃
2 vl . . 3 setvar 𝑙
3 cvv 3422 . . 3 class V
4 vm . . . 4 setvar 𝑚
5 vn . . . 4 setvar 𝑛
62cv 1538 . . . . . 6 class 𝑙
7 catm 37204 . . . . . 6 class Atoms
86, 7cfv 6418 . . . . 5 class (Atoms‘𝑙)
98cpw 4530 . . . 4 class 𝒫 (Atoms‘𝑙)
104cv 1538 . . . . . 6 class 𝑚
115cv 1538 . . . . . 6 class 𝑛
1210, 11cun 3881 . . . . 5 class (𝑚𝑛)
13 vp . . . . . . . . . 10 setvar 𝑝
1413cv 1538 . . . . . . . . 9 class 𝑝
15 vq . . . . . . . . . . 11 setvar 𝑞
1615cv 1538 . . . . . . . . . 10 class 𝑞
17 vr . . . . . . . . . . 11 setvar 𝑟
1817cv 1538 . . . . . . . . . 10 class 𝑟
19 cjn 17944 . . . . . . . . . . 11 class join
206, 19cfv 6418 . . . . . . . . . 10 class (join‘𝑙)
2116, 18, 20co 7255 . . . . . . . . 9 class (𝑞(join‘𝑙)𝑟)
22 cple 16895 . . . . . . . . . 10 class le
236, 22cfv 6418 . . . . . . . . 9 class (le‘𝑙)
2414, 21, 23wbr 5070 . . . . . . . 8 wff 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)
2524, 17, 11wrex 3064 . . . . . . 7 wff 𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)
2625, 15, 10wrex 3064 . . . . . 6 wff 𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)
2726, 13, 8crab 3067 . . . . 5 class {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}
2812, 27cun 3881 . . . 4 class ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})
294, 5, 9, 9, 28cmpo 7257 . . 3 class (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}))
302, 3, 29cmpt 5153 . 2 class (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})))
311, 30wceq 1539 1 wff +𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})))
Colors of variables: wff setvar class
This definition is referenced by:  paddfval  37738
  Copyright terms: Public domain W3C validator