Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-padd Structured version   Visualization version   GIF version

Definition df-padd 39763
Description: Define projective sum of two subspaces (or more generally two sets of atoms), which is the union of all lines generated by pairs of atoms from each subspace. Lemma 16.2 of [MaedaMaeda] p. 68. For convenience, our definition is generalized to apply to empty sets. (Contributed by NM, 29-Dec-2011.)
Assertion
Ref Expression
df-padd +𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})))
Distinct variable group:   𝑚,𝑙,𝑛,𝑝,𝑞,𝑟

Detailed syntax breakdown of Definition df-padd
StepHypRef Expression
1 cpadd 39762 . 2 class +𝑃
2 vl . . 3 setvar 𝑙
3 cvv 3444 . . 3 class V
4 vm . . . 4 setvar 𝑚
5 vn . . . 4 setvar 𝑛
62cv 1539 . . . . . 6 class 𝑙
7 catm 39229 . . . . . 6 class Atoms
86, 7cfv 6499 . . . . 5 class (Atoms‘𝑙)
98cpw 4559 . . . 4 class 𝒫 (Atoms‘𝑙)
104cv 1539 . . . . . 6 class 𝑚
115cv 1539 . . . . . 6 class 𝑛
1210, 11cun 3909 . . . . 5 class (𝑚𝑛)
13 vp . . . . . . . . . 10 setvar 𝑝
1413cv 1539 . . . . . . . . 9 class 𝑝
15 vq . . . . . . . . . . 11 setvar 𝑞
1615cv 1539 . . . . . . . . . 10 class 𝑞
17 vr . . . . . . . . . . 11 setvar 𝑟
1817cv 1539 . . . . . . . . . 10 class 𝑟
19 cjn 18248 . . . . . . . . . . 11 class join
206, 19cfv 6499 . . . . . . . . . 10 class (join‘𝑙)
2116, 18, 20co 7369 . . . . . . . . 9 class (𝑞(join‘𝑙)𝑟)
22 cple 17203 . . . . . . . . . 10 class le
236, 22cfv 6499 . . . . . . . . 9 class (le‘𝑙)
2414, 21, 23wbr 5102 . . . . . . . 8 wff 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)
2524, 17, 11wrex 3053 . . . . . . 7 wff 𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)
2625, 15, 10wrex 3053 . . . . . 6 wff 𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)
2726, 13, 8crab 3402 . . . . 5 class {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}
2812, 27cun 3909 . . . 4 class ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})
294, 5, 9, 9, 28cmpo 7371 . . 3 class (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}))
302, 3, 29cmpt 5183 . 2 class (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})))
311, 30wceq 1540 1 wff +𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})))
Colors of variables: wff setvar class
This definition is referenced by:  paddfval  39764
  Copyright terms: Public domain W3C validator