Detailed syntax breakdown of Definition df-padd
Step | Hyp | Ref
| Expression |
1 | | cpadd 37816 |
. 2
class
+𝑃 |
2 | | vl |
. . 3
setvar 𝑙 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vm |
. . . 4
setvar 𝑚 |
5 | | vn |
. . . 4
setvar 𝑛 |
6 | 2 | cv 1538 |
. . . . . 6
class 𝑙 |
7 | | catm 37284 |
. . . . . 6
class
Atoms |
8 | 6, 7 | cfv 6437 |
. . . . 5
class
(Atoms‘𝑙) |
9 | 8 | cpw 4534 |
. . . 4
class 𝒫
(Atoms‘𝑙) |
10 | 4 | cv 1538 |
. . . . . 6
class 𝑚 |
11 | 5 | cv 1538 |
. . . . . 6
class 𝑛 |
12 | 10, 11 | cun 3886 |
. . . . 5
class (𝑚 ∪ 𝑛) |
13 | | vp |
. . . . . . . . . 10
setvar 𝑝 |
14 | 13 | cv 1538 |
. . . . . . . . 9
class 𝑝 |
15 | | vq |
. . . . . . . . . . 11
setvar 𝑞 |
16 | 15 | cv 1538 |
. . . . . . . . . 10
class 𝑞 |
17 | | vr |
. . . . . . . . . . 11
setvar 𝑟 |
18 | 17 | cv 1538 |
. . . . . . . . . 10
class 𝑟 |
19 | | cjn 18038 |
. . . . . . . . . . 11
class
join |
20 | 6, 19 | cfv 6437 |
. . . . . . . . . 10
class
(join‘𝑙) |
21 | 16, 18, 20 | co 7284 |
. . . . . . . . 9
class (𝑞(join‘𝑙)𝑟) |
22 | | cple 16978 |
. . . . . . . . . 10
class
le |
23 | 6, 22 | cfv 6437 |
. . . . . . . . 9
class
(le‘𝑙) |
24 | 14, 21, 23 | wbr 5075 |
. . . . . . . 8
wff 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟) |
25 | 24, 17, 11 | wrex 3066 |
. . . . . . 7
wff
∃𝑟 ∈
𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟) |
26 | 25, 15, 10 | wrex 3066 |
. . . . . 6
wff
∃𝑞 ∈
𝑚 ∃𝑟 ∈ 𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟) |
27 | 26, 13, 8 | crab 3069 |
. . . . 5
class {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞 ∈ 𝑚 ∃𝑟 ∈ 𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)} |
28 | 12, 27 | cun 3886 |
. . . 4
class ((𝑚 ∪ 𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞 ∈ 𝑚 ∃𝑟 ∈ 𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}) |
29 | 4, 5, 9, 9, 28 | cmpo 7286 |
. . 3
class (𝑚 ∈ 𝒫
(Atoms‘𝑙), 𝑛 ∈ 𝒫
(Atoms‘𝑙) ↦
((𝑚 ∪ 𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞 ∈ 𝑚 ∃𝑟 ∈ 𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})) |
30 | 2, 3, 29 | cmpt 5158 |
. 2
class (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫
(Atoms‘𝑙), 𝑛 ∈ 𝒫
(Atoms‘𝑙) ↦
((𝑚 ∪ 𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞 ∈ 𝑚 ∃𝑟 ∈ 𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}))) |
31 | 1, 30 | wceq 1539 |
1
wff
+𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚 ∪ 𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞 ∈ 𝑚 ∃𝑟 ∈ 𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}))) |