Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddfval Structured version   Visualization version   GIF version

Theorem paddfval 39816
Description: Projective subspace sum operation. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddfval (𝐾𝐵+ = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑚,𝑞,𝑟,𝐾,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑟,𝑞)   𝐵(𝑚,𝑛,𝑟,𝑞,𝑝)   + (𝑚,𝑛,𝑟,𝑞,𝑝)   (𝑚,𝑛,𝑟,𝑞,𝑝)   (𝑚,𝑛,𝑟,𝑞,𝑝)

Proof of Theorem paddfval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 3480 . 2 (𝐾𝐵𝐾 ∈ V)
2 paddfval.p . . 3 + = (+𝑃𝐾)
3 fveq2 6876 . . . . . . 7 ( = 𝐾 → (Atoms‘) = (Atoms‘𝐾))
4 paddfval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4eqtr4di 2788 . . . . . 6 ( = 𝐾 → (Atoms‘) = 𝐴)
65pweqd 4592 . . . . 5 ( = 𝐾 → 𝒫 (Atoms‘) = 𝒫 𝐴)
7 eqidd 2736 . . . . . . . . 9 ( = 𝐾𝑝 = 𝑝)
8 fveq2 6876 . . . . . . . . . 10 ( = 𝐾 → (le‘) = (le‘𝐾))
9 paddfval.l . . . . . . . . . 10 = (le‘𝐾)
108, 9eqtr4di 2788 . . . . . . . . 9 ( = 𝐾 → (le‘) = )
11 fveq2 6876 . . . . . . . . . . 11 ( = 𝐾 → (join‘) = (join‘𝐾))
12 paddfval.j . . . . . . . . . . 11 = (join‘𝐾)
1311, 12eqtr4di 2788 . . . . . . . . . 10 ( = 𝐾 → (join‘) = )
1413oveqd 7422 . . . . . . . . 9 ( = 𝐾 → (𝑞(join‘)𝑟) = (𝑞 𝑟))
157, 10, 14breq123d 5133 . . . . . . . 8 ( = 𝐾 → (𝑝(le‘)(𝑞(join‘)𝑟) ↔ 𝑝 (𝑞 𝑟)))
16152rexbidv 3206 . . . . . . 7 ( = 𝐾 → (∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟) ↔ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)))
175, 16rabeqbidv 3434 . . . . . 6 ( = 𝐾 → {𝑝 ∈ (Atoms‘) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟)} = {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})
1817uneq2d 4143 . . . . 5 ( = 𝐾 → ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟)}) = ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))
196, 6, 18mpoeq123dv 7482 . . . 4 ( = 𝐾 → (𝑚 ∈ 𝒫 (Atoms‘), 𝑛 ∈ 𝒫 (Atoms‘) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟)})) = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
20 df-padd 39815 . . . 4 +𝑃 = ( ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘), 𝑛 ∈ 𝒫 (Atoms‘) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟)})))
214fvexi 6890 . . . . . 6 𝐴 ∈ V
2221pwex 5350 . . . . 5 𝒫 𝐴 ∈ V
2322, 22mpoex 8078 . . . 4 (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})) ∈ V
2419, 20, 23fvmpt 6986 . . 3 (𝐾 ∈ V → (+𝑃𝐾) = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
252, 24eqtrid 2782 . 2 (𝐾 ∈ V → + = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
261, 25syl 17 1 (𝐾𝐵+ = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  Vcvv 3459  cun 3924  𝒫 cpw 4575   class class class wbr 5119  cfv 6531  (class class class)co 7405  cmpo 7407  lecple 17278  joincjn 18323  Atomscatm 39281  +𝑃cpadd 39814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-padd 39815
This theorem is referenced by:  paddval  39817
  Copyright terms: Public domain W3C validator