Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddfval Structured version   Visualization version   GIF version

Theorem paddfval 36932
Description: Projective subspace sum operation. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddfval (𝐾𝐵+ = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑚,𝑞,𝑟,𝐾,𝑛,𝑝
Allowed substitution hints:   𝐴(𝑟,𝑞)   𝐵(𝑚,𝑛,𝑟,𝑞,𝑝)   + (𝑚,𝑛,𝑟,𝑞,𝑝)   (𝑚,𝑛,𝑟,𝑞,𝑝)   (𝑚,𝑛,𝑟,𝑞,𝑝)

Proof of Theorem paddfval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 3512 . 2 (𝐾𝐵𝐾 ∈ V)
2 paddfval.p . . 3 + = (+𝑃𝐾)
3 fveq2 6669 . . . . . . 7 ( = 𝐾 → (Atoms‘) = (Atoms‘𝐾))
4 paddfval.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
53, 4syl6eqr 2874 . . . . . 6 ( = 𝐾 → (Atoms‘) = 𝐴)
65pweqd 4557 . . . . 5 ( = 𝐾 → 𝒫 (Atoms‘) = 𝒫 𝐴)
7 eqidd 2822 . . . . . . . . 9 ( = 𝐾𝑝 = 𝑝)
8 fveq2 6669 . . . . . . . . . 10 ( = 𝐾 → (le‘) = (le‘𝐾))
9 paddfval.l . . . . . . . . . 10 = (le‘𝐾)
108, 9syl6eqr 2874 . . . . . . . . 9 ( = 𝐾 → (le‘) = )
11 fveq2 6669 . . . . . . . . . . 11 ( = 𝐾 → (join‘) = (join‘𝐾))
12 paddfval.j . . . . . . . . . . 11 = (join‘𝐾)
1311, 12syl6eqr 2874 . . . . . . . . . 10 ( = 𝐾 → (join‘) = )
1413oveqd 7172 . . . . . . . . 9 ( = 𝐾 → (𝑞(join‘)𝑟) = (𝑞 𝑟))
157, 10, 14breq123d 5079 . . . . . . . 8 ( = 𝐾 → (𝑝(le‘)(𝑞(join‘)𝑟) ↔ 𝑝 (𝑞 𝑟)))
16152rexbidv 3300 . . . . . . 7 ( = 𝐾 → (∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟) ↔ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)))
175, 16rabeqbidv 3485 . . . . . 6 ( = 𝐾 → {𝑝 ∈ (Atoms‘) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟)} = {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})
1817uneq2d 4138 . . . . 5 ( = 𝐾 → ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟)}) = ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))
196, 6, 18mpoeq123dv 7228 . . . 4 ( = 𝐾 → (𝑚 ∈ 𝒫 (Atoms‘), 𝑛 ∈ 𝒫 (Atoms‘) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟)})) = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
20 df-padd 36931 . . . 4 +𝑃 = ( ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘), 𝑛 ∈ 𝒫 (Atoms‘) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘)(𝑞(join‘)𝑟)})))
214fvexi 6683 . . . . . 6 𝐴 ∈ V
2221pwex 5280 . . . . 5 𝒫 𝐴 ∈ V
2322, 22mpoex 7776 . . . 4 (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})) ∈ V
2419, 20, 23fvmpt 6767 . . 3 (𝐾 ∈ V → (+𝑃𝐾) = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
252, 24syl5eq 2868 . 2 (𝐾 ∈ V → + = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
261, 25syl 17 1 (𝐾𝐵+ = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3494  cun 3933  𝒫 cpw 4538   class class class wbr 5065  cfv 6354  (class class class)co 7155  cmpo 7157  lecple 16571  joincjn 17553  Atomscatm 36398  +𝑃cpadd 36930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-padd 36931
This theorem is referenced by:  paddval  36933
  Copyright terms: Public domain W3C validator