![]() |
Metamath
Proof Explorer Theorem List (p. 388 of 483) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30721) |
![]() (30722-32244) |
![]() (32245-48232) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | latmmdir 38701 | Lattice meet distributes over itself. (inindir 4223 analog.) (Contributed by NM, 6-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = ((𝑋 ∧ 𝑍) ∧ (𝑌 ∧ 𝑍))) | ||
Theorem | olm01 38702 | Meet with lattice zero is zero. (chm0 31294 analog.) (Contributed by NM, 8-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) | ||
Theorem | olm02 38703 | Meet with lattice zero is zero. (Contributed by NM, 9-Oct-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → ( 0 ∧ 𝑋) = 0 ) | ||
Theorem | isoml 38704* | The predicate "is an orthomodular lattice." (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))))) | ||
Theorem | isomliN 38705* | Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
⊢ 𝐾 ∈ OL & ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) ⇒ ⊢ 𝐾 ∈ OML | ||
Theorem | omlol 38706 | An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011.) |
⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | ||
Theorem | omlop 38707 | An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011.) |
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | ||
Theorem | omllat 38708 | An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.) |
⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) | ||
Theorem | omllaw 38709 | The orthomodular law. (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) | ||
Theorem | omllaw2N 38710 | Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 31388 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌)) | ||
Theorem | omllaw3 38711 | Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 31239 analog.) (Contributed by NM, 19-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = 𝑌)) | ||
Theorem | omllaw4 38712 | Orthomodular law equivalent. Remark in [Holland95] p. 223. (Contributed by NM, 19-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (( ⊥ ‘(( ⊥ ‘𝑋) ∧ 𝑌)) ∧ 𝑌) = 𝑋)) | ||
Theorem | omllaw5N 38713 | The orthomodular law. Remark in [Kalmbach] p. 22. (pjoml5 31416 analog.) (Contributed by NM, 14-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ (𝑋 ∨ 𝑌))) = (𝑋 ∨ 𝑌)) | ||
Theorem | cmtcomlemN 38714 | Lemma for cmtcomN 38715. (cmcmlem 31394 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 → 𝑌𝐶𝑋)) | ||
Theorem | cmtcomN 38715 | Commutation is symmetric. Theorem 2(v) in [Kalmbach] p. 22. (cmcmi 31395 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌𝐶𝑋)) | ||
Theorem | cmt2N 38716 | Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (cmcm2i 31396 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋𝐶( ⊥ ‘𝑌))) | ||
Theorem | cmt3N 38717 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 31398 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶𝑌)) | ||
Theorem | cmt4N 38718 | Commutation with orthocomplement. Remark in [Kalmbach] p. 23. (cmcm4i 31398 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑋)𝐶( ⊥ ‘𝑌))) | ||
Theorem | cmtbr2N 38719 | Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (cmbr2i 31399 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋 = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ ( ⊥ ‘𝑌))))) | ||
Theorem | cmtbr3N 38720 | Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (cmbr3 31411 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) | ||
Theorem | cmtbr4N 38721 | Alternate definition for the commutes relation. (cmbr4i 31404 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) ≤ 𝑌)) | ||
Theorem | lecmtN 38722 | Ordered elements commute. (lecmi 31405 analog.) (Contributed by NM, 10-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑋𝐶𝑌)) | ||
Theorem | cmtidN 38723 | Any element commutes with itself. (cmidi 31413 analog.) (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵) → 𝑋𝐶𝑋) | ||
Theorem | omlfh1N 38724 | Foulis-Holland Theorem, part 1. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Part of Theorem 5 in [Kalmbach] p. 25. (fh1 31421 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋𝐶𝑌 ∧ 𝑋𝐶𝑍)) → (𝑋 ∧ (𝑌 ∨ 𝑍)) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ 𝑍))) | ||
Theorem | omlfh3N 38725 | Foulis-Holland Theorem, part 3. Dual of omlfh1N 38724. (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋𝐶𝑌 ∧ 𝑋𝐶𝑍)) → (𝑋 ∨ (𝑌 ∧ 𝑍)) = ((𝑋 ∨ 𝑌) ∧ (𝑋 ∨ 𝑍))) | ||
Theorem | omlmod1i2N 38726 | Analogue of modular law atmod1i2 39326 that holds in any OML. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐶 = (cm‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑍 ∧ 𝑌𝐶𝑍)) → (𝑋 ∨ (𝑌 ∧ 𝑍)) = ((𝑋 ∨ 𝑌) ∧ 𝑍)) | ||
Theorem | omlspjN 38727 | Contraction of a Sasaki projection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) ⇒ ⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((𝑋 ∨ ( ⊥ ‘𝑌)) ∧ 𝑌) = 𝑋) | ||
Syntax | ccvr 38728 | Extend class notation with covers relation. |
class ⋖ | ||
Syntax | catm 38729 | Extend class notation with atoms. |
class Atoms | ||
Syntax | cal 38730 | Extend class notation with atomic lattices. |
class AtLat | ||
Syntax | clc 38731 | Extend class notation with lattices with the covering property. |
class CvLat | ||
Definition | df-covers 38732* | Define the covers relation ("is covered by") for posets. "𝑎 is covered by 𝑏 " means that 𝑎 is strictly less than 𝑏 and there is nothing in between. See cvrval 38735 for the relation form. (Contributed by NM, 18-Sep-2011.) |
⊢ ⋖ = (𝑝 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑝) ∧ 𝑏 ∈ (Base‘𝑝)) ∧ 𝑎(lt‘𝑝)𝑏 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑎(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑏))}) | ||
Definition | df-ats 38733* | Define the class of poset atoms. (Contributed by NM, 18-Sep-2011.) |
⊢ Atoms = (𝑝 ∈ V ↦ {𝑎 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑎}) | ||
Theorem | cvrfval 38734* | Value of covers relation "is covered by". (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐴 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑥 < 𝑧 ∧ 𝑧 < 𝑦))}) | ||
Theorem | cvrval 38735* | Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (cvbr 32085 analog.) (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧 ∈ 𝐵 (𝑋 < 𝑧 ∧ 𝑧 < 𝑌)))) | ||
Theorem | cvrlt 38736 | The covers relation implies the less-than relation. (cvpss 32088 analog.) (Contributed by NM, 8-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌) | ||
Theorem | cvrnbtwn 38737 | There is no element between the two arguments of the covers relation. (cvnbtwn 32089 analog.) (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍 ∧ 𝑍 < 𝑌)) | ||
Theorem | ncvr1 38738 | No element covers the lattice unity. (Contributed by NM, 8-Jul-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ¬ 1 𝐶𝑋) | ||
Theorem | cvrletrN 38739 | Property of an element above a covering. (Contributed by NM, 7-Dec-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 < 𝑍)) | ||
Theorem | cvrval2 38740* | Binary relation expressing 𝑌 covers 𝑋. Definition of covers in [Kalmbach] p. 15. (cvbr2 32086 analog.) (Contributed by NM, 16-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧 ∈ 𝐵 ((𝑋 < 𝑧 ∧ 𝑧 ≤ 𝑌) → 𝑧 = 𝑌)))) | ||
Theorem | cvrnbtwn2 38741 | The covers relation implies no in-betweenness. (cvnbtwn2 32090 analog.) (Contributed by NM, 17-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌) ↔ 𝑍 = 𝑌)) | ||
Theorem | cvrnbtwn3 38742 | The covers relation implies no in-betweenness. (cvnbtwn3 32091 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌) ↔ 𝑋 = 𝑍)) | ||
Theorem | cvrcon3b 38743 | Contraposition law for the covers relation. (cvcon3 32087 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ ( ⊥ ‘𝑌)𝐶( ⊥ ‘𝑋))) | ||
Theorem | cvrle 38744 | The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≤ 𝑌) | ||
Theorem | cvrnbtwn4 38745 | The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (cvnbtwn4 32092 analog.) (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ 𝑌) ↔ (𝑋 = 𝑍 ∨ 𝑍 = 𝑌))) | ||
Theorem | cvrnle 38746 | The covers relation implies the negation of the converse "less than or equal to" relation. (Contributed by NM, 18-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → ¬ 𝑌 ≤ 𝑋) | ||
Theorem | cvrne 38747 | The covers relation implies inequality. (Contributed by NM, 13-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 ≠ 𝑌) | ||
Theorem | cvrnrefN 38748 | The covers relation is not reflexive. (cvnref 32094 analog.) (Contributed by NM, 1-Nov-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → ¬ 𝑋𝐶𝑋) | ||
Theorem | cvrcmp 38749 | If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑍𝐶𝑋 ∧ 𝑍𝐶𝑌)) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) | ||
Theorem | cvrcmp2 38750 | If two lattice elements covered by a third are comparable, then they are equal. (Contributed by NM, 20-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋𝐶𝑍 ∧ 𝑌𝐶𝑍)) → (𝑋 ≤ 𝑌 ↔ 𝑋 = 𝑌)) | ||
Theorem | pats 38751* | The set of atoms in a poset. (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → 𝐴 = {𝑥 ∈ 𝐵 ∣ 0 𝐶𝑥}) | ||
Theorem | isat 38752 | The predicate "is an atom". (ela 32142 analog.) (Contributed by NM, 18-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 0 𝐶𝑃))) | ||
Theorem | isat2 38753 | The predicate "is an atom". (elatcv0 32144 analog.) (Contributed by NM, 18-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐵) → (𝑃 ∈ 𝐴 ↔ 0 𝐶𝑃)) | ||
Theorem | atcvr0 38754 | An atom covers zero. (atcv0 32145 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐴) → 0 𝐶𝑃) | ||
Theorem | atbase 38755 | An atom is a member of the lattice base set (i.e. a lattice element). (atelch 32147 analog.) (Contributed by NM, 10-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) | ||
Theorem | atssbase 38756 | The set of atoms is a subset of the base set. (atssch 32146 analog.) (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
Theorem | 0ltat 38757 | An atom is greater than zero. (Contributed by NM, 4-Jul-2012.) |
⊢ 0 = (0.‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴) → 0 < 𝑃) | ||
Theorem | leatb 38758 | A poset element less than or equal to an atom equals either zero or the atom. (atss 32149 analog.) (Contributed by NM, 17-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) | ||
Theorem | leat 38759 | A poset element less than or equal to an atom equals either zero or the atom. (Contributed by NM, 15-Oct-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 = 𝑃 ∨ 𝑋 = 0 )) | ||
Theorem | leat2 38760 | A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ≠ 0 ∧ 𝑋 ≤ 𝑃)) → 𝑋 = 𝑃) | ||
Theorem | leat3 38761 | A poset element less than or equal to an atom is either an atom or zero. (Contributed by NM, 2-Dec-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 ∈ 𝐴 ∨ 𝑋 = 0 )) | ||
Theorem | meetat 38762 | The meet of any element with an atom is either the atom or zero. (Contributed by NM, 28-Aug-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) = 𝑃 ∨ (𝑋 ∧ 𝑃) = 0 )) | ||
Theorem | meetat2 38763 | The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((𝑋 ∧ 𝑃) ∈ 𝐴 ∨ (𝑋 ∧ 𝑃) = 0 )) | ||
Definition | df-atl 38764* | Define the class of atomic lattices, in which every nonzero element is greater than or equal to an atom. We also ensure the existence of a lattice zero, since a lattice by itself may not have a zero. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.) |
⊢ AtLat = {𝑘 ∈ Lat ∣ ((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑝 ∈ (Atoms‘𝑘)𝑝(le‘𝑘)𝑥))} | ||
Theorem | isatl 38765* | The predicate "is an atomic lattice." Every nonzero element is less than or equal to an atom. (Contributed by NM, 18-Sep-2011.) (Revised by NM, 14-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥))) | ||
Theorem | atllat 38766 | An atomic lattice is a lattice. (Contributed by NM, 21-Oct-2011.) |
⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | ||
Theorem | atlpos 38767 | An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.) |
⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | ||
Theorem | atl0dm 38768 | Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺) | ||
Theorem | atl0cl 38769 | An atomic lattice has a zero element. We can use this in place of op0cl 38650 for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) | ||
Theorem | atl0le 38770 | Orthoposet zero is less than or equal to any element. (ch0le 31244 analog.) (Contributed by NM, 12-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) | ||
Theorem | atlle0 38771 | An element less than or equal to zero equals zero. (chle0 31246 analog.) (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) | ||
Theorem | atlltn0 38772 | A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ( 0 < 𝑋 ↔ 𝑋 ≠ 0 )) | ||
Theorem | isat3 38773* | The predicate "is an atom". (elat2 32143 analog.) (Contributed by NM, 27-Apr-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))))) | ||
Theorem | atn0 38774 | An atom is not zero. (atne0 32148 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ 0 ) | ||
Theorem | atnle0 38775 | An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) | ||
Theorem | atlen0 38776 | A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ≠ 0 ) | ||
Theorem | atcmp 38777 | If two atoms are comparable, they are equal. (atsseq 32150 analog.) (Contributed by NM, 13-Oct-2011.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) | ||
Theorem | atncmp 38778 | Frequently-used variation of atcmp 38777. (Contributed by NM, 29-Jun-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃 ≤ 𝑄 ↔ 𝑃 ≠ 𝑄)) | ||
Theorem | atnlt 38779 | Two atoms cannot satisfy the less than relation. (Contributed by NM, 7-Feb-2012.) |
⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃 < 𝑄) | ||
Theorem | atcvreq0 38780 | An element covered by an atom must be zero. (atcveq0 32151 analog.) (Contributed by NM, 4-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋𝐶𝑃 ↔ 𝑋 = 0 )) | ||
Theorem | atncvrN 38781 | Two atoms cannot satisfy the covering relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
⊢ 𝐶 = ( ⋖ ‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) | ||
Theorem | atlex 38782* | Every nonzero element of an atomic lattice is greater than or equal to an atom. (hatomic 32163 analog.) (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑋) | ||
Theorem | atnle 38783 | Two ways of expressing "an atom is not less than or equal to a lattice element." (atnssm0 32179 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑃 ≤ 𝑋 ↔ (𝑃 ∧ 𝑋) = 0 )) | ||
Theorem | atnem0 38784 | The meet of distinct atoms is zero. (atnemeq0 32180 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ (𝑃 ∧ 𝑄) = 0 )) | ||
Theorem | atlatmstc 38785* | An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 32165 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 1 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ( 1 ‘{𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋}) = 𝑋) | ||
Theorem | atlatle 38786* | The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 32174 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌))) | ||
Theorem | atlrelat1 38787* | An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 32166, with ∧ swapped, analog.) (Contributed by NM, 4-Dec-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) | ||
Definition | df-cvlat 38788* | Define the class of atomic lattices with the covering property. (This is actually the exchange property, but they are equivalent. The literature usually uses the covering property terminology.) (Contributed by NM, 5-Nov-2012.) |
⊢ CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐 ∧ 𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))} | ||
Theorem | iscvlat 38789* | The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 ((¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) | ||
Theorem | iscvlat2N 38790* | The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ∀𝑥 ∈ 𝐵 (((𝑝 ∧ 𝑥) = 0 ∧ 𝑝 ≤ (𝑥 ∨ 𝑞)) → 𝑞 ≤ (𝑥 ∨ 𝑝)))) | ||
Theorem | cvlatl 38791 | An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.) |
⊢ (𝐾 ∈ CvLat → 𝐾 ∈ AtLat) | ||
Theorem | cvllat 38792 | An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012.) |
⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) | ||
Theorem | cvlposN 38793 | An atomic lattice with the covering property is a poset. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Poset) | ||
Theorem | cvlexch1 38794 | An atomic covering lattice has the exchange property. (Contributed by NM, 6-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | ||
Theorem | cvlexch2 38795 | An atomic covering lattice has the exchange property. (Contributed by NM, 6-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) → 𝑄 ≤ (𝑃 ∨ 𝑋))) | ||
Theorem | cvlexchb1 38796 | An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | ||
Theorem | cvlexchb2 38797 | An atomic covering lattice has the exchange property. (Contributed by NM, 22-Jun-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) ↔ (𝑃 ∨ 𝑋) = (𝑄 ∨ 𝑋))) | ||
Theorem | cvlexch3 38798 | An atomic covering lattice has the exchange property. (atexch 32184 analog.) (Contributed by NM, 5-Nov-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) → 𝑄 ≤ (𝑋 ∨ 𝑃))) | ||
Theorem | cvlexch4N 38799 | An atomic covering lattice has the exchange property. Part of Definition 7.8 of [MaedaMaeda] p. 32. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑃 ∧ 𝑋) = 0 ) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) | ||
Theorem | cvlatexchb1 38800 | A version of cvlexchb1 38796 for atoms. (Contributed by NM, 5-Nov-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑄) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |