HomeHome Metamath Proof Explorer
Theorem List (p. 388 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 38701-38800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremistendo 38701* The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
 
Theoremtendotp 38702 Trace-preserving property of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑅‘(𝑆𝐹)) (𝑅𝐹))
 
Theoremistendod 38703* Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   (𝜑 → (𝐾𝑉𝑊𝐻))    &   (𝜑𝑆:𝑇𝑇)    &   ((𝜑𝑓𝑇𝑔𝑇) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))    &   ((𝜑𝑓𝑇) → (𝑅‘(𝑆𝑓)) (𝑅𝑓))       (𝜑𝑆𝐸)
 
Theoremtendof 38704 Functionality of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸) → 𝑆:𝑇𝑇)
 
Theoremtendoeq1 38705* Condition determining equality of two trace-preserving endomorphisms. (Contributed by NM, 11-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑈 = 𝑉)
 
Theoremtendovalco 38706 Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾𝑉𝑊𝐻𝑆𝐸) ∧ (𝐹𝑇𝐺𝑇)) → (𝑆‘(𝐹𝐺)) = ((𝑆𝐹) ∘ (𝑆𝐺)))
 
Theoremtendocoval 38707 Value of composition of endomorphisms in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑉)‘𝐹) = (𝑈‘(𝑉𝐹)))
 
Theoremtendocl 38708 Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾𝑉𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
 
Theoremtendoco2 38709 Distribution of compositions in preparation for endomorphism sum definition. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑈‘(𝐹𝐺)) ∘ (𝑉‘(𝐹𝐺))) = (((𝑈𝐹) ∘ (𝑉𝐹)) ∘ ((𝑈𝐺) ∘ (𝑉𝐺))))
 
Theoremtendoidcl 38710 The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
 
Theoremtendo1mul 38711 Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (( I ↾ 𝑇) ∘ 𝑈) = 𝑈)
 
Theoremtendo1mulr 38712 Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈)
 
Theoremtendococl 38713 The composition of two trace-preserving endomorphisms (multiplication in the endormorphism ring) is a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑇𝐸) → (𝑆𝑇) ∈ 𝐸)
 
Theoremtendoid 38714 The identity value of a trace-preserving endomorphism. (Contributed by NM, 21-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵))
 
Theoremtendoeq2 38715* Condition determining equality of two trace-preserving endomorphisms, showing it is unnecessary to consider the identity translation. In tendocan 38765, we show that we only need to consider a single non-identity translation. (Contributed by NM, 21-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈𝑓) = (𝑉𝑓))) → 𝑈 = 𝑉)
 
Theoremtendoplcbv 38716* Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013.)
𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       𝑃 = (𝑢𝐸, 𝑣𝐸 ↦ (𝑔𝑇 ↦ ((𝑢𝑔) ∘ (𝑣𝑔))))
 
Theoremtendopl 38717* Value of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
 
Theoremtendopl2 38718* Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
 
Theoremtendoplcl2 38719* Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇)
 
Theoremtendoplco2 38720* Value of result of endomorphism sum operation on a translation composition. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑈𝑃𝑉)‘(𝐹𝐺)) = (((𝑈𝑃𝑉)‘𝐹) ∘ ((𝑈𝑃𝑉)‘𝐺)))
 
Theoremtendopltp 38721* Trace-preserving property of endomorphism sum operation 𝑃, based on Theorems trlco 38668. Part of remark in [Crawley] p. 118, 2nd line, "it is clear from the second part of G (our trlco 38668) that Delta is a subring of E." (In our development, we will bypass their E and go directly to their Delta, whose base set is our (TEndo‘𝐾)‘𝑊.) (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &    = (le‘𝐾)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝐹𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) (𝑅𝐹))
 
Theoremtendoplcl 38722* Endomorphism sum is a trace-preserving endomorphism. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
 
Theoremtendoplcom 38723* The endomorphism sum operation is commutative. (Contributed by NM, 11-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑉𝑃𝑈))
 
Theoremtendoplass 38724* The endomorphism sum operation is associative. (Contributed by NM, 11-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈)𝑃𝑉) = (𝑆𝑃(𝑈𝑃𝑉)))
 
Theoremtendodi1 38725* Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆 ∘ (𝑈𝑃𝑉)) = ((𝑆𝑈)𝑃(𝑆𝑉)))
 
Theoremtendodi2 38726* Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈) ∘ 𝑉) = ((𝑆𝑉)𝑃(𝑈𝑉)))
 
Theoremtendo0cbv 38727* Define additive identity for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 11-Jun-2013.)
𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
 
Theoremtendo02 38728* Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013.)
𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &   𝐵 = (Base‘𝐾)       (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
 
Theoremtendo0co2 38729* The additive identity trace-preserving endormorphism preserves composition of translations. TODO: why isn't this a special case of tendospdi1 38961? (Contributed by NM, 11-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑂‘(𝐹𝐺)) = ((𝑂𝐹) ∘ (𝑂𝐺)))
 
Theoremtendo0tp 38730* Trace-preserving property of endomorphism additive identity. (Contributed by NM, 11-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &    = (le‘𝐾)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅‘(𝑂𝐹)) (𝑅𝐹))
 
Theoremtendo0cl 38731* The additive identity is a trace-preserving endormorphism. (Contributed by NM, 12-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
 
Theoremtendo0pl 38732* Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑂𝑃𝑆) = 𝑆)
 
Theoremtendo0plr 38733* Property of the additive identity endormorphism. (Contributed by NM, 21-Feb-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃𝑂) = 𝑆)
 
Theoremtendoicbv 38734* Define inverse function for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 12-Jun-2013.)
𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))       𝐼 = (𝑢𝐸 ↦ (𝑔𝑇(𝑢𝑔)))
 
Theoremtendoi 38735* Value of inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
 
Theoremtendoi2 38736* Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)       ((𝑆𝐸𝐹𝑇) → ((𝐼𝑆)‘𝐹) = (𝑆𝐹))
 
Theoremtendoicl 38737* Closure of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
 
Theoremtendoipl 38738* Property of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))    &   𝐵 = (Base‘𝐾)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) = 𝑂)
 
Theoremtendoipl2 38739* Property of the additive inverse endomorphism. (Contributed by NM, 29-Sep-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))    &   𝐵 = (Base‘𝐾)    &   𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃(𝐼𝑆)) = 𝑂)
 
Theoremerngfset 38740* The division rings on trace-preserving endomorphisms for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.)
𝐻 = (LHyp‘𝐾)       (𝐾𝑉 → (EDRing‘𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑠𝑡))⟩}))
 
Theoremerngset 38741* The division ring on trace-preserving endomorphisms for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)       ((𝐾𝑉𝑊𝐻) → 𝐷 = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑠𝑡))⟩})
 
Theoremerngbase 38742 The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom 𝑊). TODO: the .t hypothesis isn't used. (Also look at others.) (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &   𝐶 = (Base‘𝐷)       ((𝐾𝑉𝑊𝐻) → 𝐶 = 𝐸)
 
Theoremerngfplus 38743* Ring addition operation. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    + = (+g𝐷)       ((𝐾𝑉𝑊𝐻) → + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
 
Theoremerngplus 38744* Ring addition operation. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    + = (+g𝐷)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))
 
Theoremerngplus2 38745 Ring addition operation. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    + = (+g𝐷)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
 
Theoremerngfmul 38746* Ring multiplication operation. (Contributed by NM, 9-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    · = (.r𝐷)       ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑡𝐸 ↦ (𝑠𝑡)))
 
Theoremerngmul 38747 Ring addition operation. (Contributed by NM, 10-Jun-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &    · = (.r𝐷)       (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 · 𝑉) = (𝑈𝑉))
 
Theoremerngfset-rN 38748* The division rings on trace-preserving endomorphisms for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)       (𝐾𝑉 → (EDRingR𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((TEndo‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡𝑠))⟩}))
 
Theoremerngset-rN 38749* The division ring on trace-preserving endomorphisms for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)       ((𝐾𝑉𝑊𝐻) → 𝐷 = {⟨(Base‘ndx), 𝐸⟩, ⟨(+g‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠))⟩})
 
Theoremerngbase-rN 38750 The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom 𝑊). (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)    &   𝐶 = (Base‘𝐷)       ((𝐾𝑉𝑊𝐻) → 𝐶 = 𝐸)
 
Theoremerngfplus-rN 38751* Ring addition operation. (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)    &    + = (+g𝐷)       ((𝐾𝑉𝑊𝐻) → + = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓)))))
 
Theoremerngplus-rN 38752* Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)    &    + = (+g𝐷)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))
 
Theoremerngplus2-rN 38753 Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)    &    + = (+g𝐷)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
 
Theoremerngfmul-rN 38754* Ring multiplication operation. (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)    &    · = (.r𝐷)       ((𝐾𝑉𝑊𝐻) → · = (𝑠𝐸, 𝑡𝐸 ↦ (𝑡𝑠)))
 
Theoremerngmul-rN 38755 Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRingR𝐾)‘𝑊)    &    · = (.r𝐷)       (((𝐾𝑋𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 · 𝑉) = (𝑉𝑈))
 
Theoremcdlemh1 38756 Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 (𝑅‘(𝐺𝐹))) = (𝑄 (𝑅‘(𝐺𝐹))))
 
Theoremcdlemh2 38757 Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 16-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))    &    0 = (0.‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 𝑊) = 0 )
 
Theoremcdlemh 38758 Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 (𝑃 (𝑅𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
 
Theoremcdlemi1 38759 Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
 
Theoremcdlemi2 38760 Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))
 
Theoremcdlemi 38761 Lemma I of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑆 = ((𝑃 (𝑅𝐺)) (((𝑈𝐹)‘𝑃) (𝑅‘(𝐺𝐹))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑈𝐸 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑈𝐺)‘𝑃) = 𝑆)
 
Theoremcdlemj1 38762 Part of proof of Lemma J of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊))) → ((𝑈)‘𝑝) = ((𝑉)‘𝑝))
 
Theoremcdlemj2 38763 Part of proof of Lemma J of [Crawley] p. 118. Eliminate 𝑝. (Contributed by NM, 20-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅))) → (𝑈) = (𝑉))
 
Theoremcdlemj3 38764 Part of proof of Lemma J of [Crawley] p. 118. Eliminate 𝑔. (Contributed by NM, 20-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))
 
Theoremtendocan 38765 Cancellation law: if the values of two trace-preserving endormorphisms are equal, so are the endormorphisms. Lemma J of [Crawley] p. 118. (Contributed by NM, 21-Jun-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → 𝑈 = 𝑉)
 
Theoremtendoid0 38766* A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸 ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) → ((𝑈𝐹) = ( I ↾ 𝐵) ↔ 𝑈 = 𝑂))
 
Theoremtendo0mul 38767* Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 1-Aug-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑂𝑈) = 𝑂)
 
Theoremtendo0mulr 38768* Additive identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 13-Feb-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → (𝑈𝑂) = 𝑂)
 
Theoremtendo1ne0 38769* The identity (unity) is not equal to the zero trace-preserving endomorphism. (Contributed by NM, 8-Aug-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 𝑂)
 
Theoremtendoconid 38770* The composition (product) of trace-preserving endormorphisms is nonzero when each argument is nonzero. (Contributed by NM, 8-Aug-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ (𝑉𝐸𝑉𝑂)) → (𝑈𝑉) ≠ 𝑂)
 
Theoremtendotr 38771* The trace of the value of a nonzero trace-preserving endomorphism equals the trace of the argument. (Contributed by NM, 11-Aug-2013.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑈𝑂) ∧ 𝐹𝑇) → (𝑅‘(𝑈𝐹)) = (𝑅𝐹))
 
Theoremcdlemk1 38772 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 22-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑃 (𝑁𝑃)) = ((𝐹𝑃) (𝑅𝐹)))
 
Theoremcdlemk2 38773 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 22-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝑅‘(𝐺𝐹))) = ((𝐹𝑃) (𝑅‘(𝐺𝐹))))
 
Theoremcdlemk3 38774 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝐹𝑃) (𝑅𝐹)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) = (𝐹𝑃))
 
Theoremcdlemk4 38775 Part of proof of Lemma K of [Crawley] p. 118, last line. We use 𝑋 for their h, since 𝐻 is already used. (Contributed by NM, 24-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
 
Theoremcdlemk5a 38776 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝐹𝑃) (𝑅𝐹)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
 
Theoremcdlemk5 38777 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 25-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝑃 (𝑁𝑃)) ((𝐺𝑃) (𝑅‘(𝐺𝐹)))) ((𝑋𝑃) (𝑅‘(𝑋𝐹))))
 
Theoremcdlemk6 38778 Part of proof of Lemma K of [Crawley] p. 118. Apply dalaw 37827. (Contributed by NM, 25-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)))) → ((𝑃 (𝐺𝑃)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))) ((((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹)))) (((𝑋𝑃) 𝑃) ((𝑅‘(𝑋𝐹)) (𝑁𝑃)))))
 
Theoremcdlemk8 38779 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 26-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) (𝑋𝑃)) = ((𝐺𝑃) (𝑅‘(𝑋𝐺))))
 
Theoremcdlemk9 38780 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 29-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) (𝑋𝑃)) 𝑊) = (𝑅‘(𝑋𝐺)))
 
Theoremcdlemk9bN 38781 Part of proof of Lemma K of [Crawley] p. 118. TODO: is this needed? If so, shorten with cdlemk9 38780 if that one is also needed. (Contributed by NM, 28-Jun-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝐺𝑃) (𝑋𝑃)) 𝑊) = (𝑅‘(𝐺𝑋)))
 
Theoremcdlemki 38782* Part of proof of Lemma K of [Crawley] p. 118. TODO: Eliminate and put into cdlemksel 38786. (Contributed by NM, 25-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝐼 = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → 𝐼𝑇)
 
Theoremcdlemkvcl 38783 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 27-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ 𝑃𝐴) → 𝑉𝐵)
 
Theoremcdlemk10 38784 Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 29-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑉 (𝑅‘(𝑋𝐺)))
 
Theoremcdlemksv 38785* Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))       (𝐺𝑇 → (𝑆𝐺) = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
 
Theoremcdlemksel 38786* Part of proof of Lemma K of [Crawley] p. 118. Conditions for the sigma(p) function to be a translation. TODO: combine cdlemki 38782? (Contributed by NM, 26-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → (𝑆𝐺) ∈ 𝑇)
 
Theoremcdlemksat 38787* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 27-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) ∈ 𝐴)
 
Theoremcdlemksv2 38788* Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function 𝑆 at the fixed 𝑃 parameter. (Contributed by NM, 26-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
 
Theoremcdlemk7 38789* Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 119. (Contributed by NM, 27-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) (((𝑆𝑋)‘𝑃) 𝑉))
 
Theoremcdlemk11 38790* Part of proof of Lemma K of [Crawley] p. 118. Eq. 3, line 8, p. 119. (Contributed by NM, 29-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑉 = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐹)) (𝑅‘(𝑋𝐹))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ (𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹))) → ((𝑆𝐺)‘𝑃) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
 
Theoremcdlemk12 38791* Part of proof of Lemma K of [Crawley] p. 118. Eq. 4, line 10, p. 119. (Contributed by NM, 30-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &    = (meet‘𝐾)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝑋) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑋))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑆𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
 
Theoremcdlemkoatnle 38792* Utility lemma. (Contributed by NM, 2-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → ((𝑂𝑃) ∈ 𝐴 ∧ ¬ (𝑂𝑃) 𝑊))
 
Theoremcdlemk13 38793* Part of proof of Lemma K of [Crawley] p. 118. Line 13 on p. 119. 𝑂, 𝐷 are k1, f1. (Contributed by NM, 1-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑂𝑃) = ((𝑃 (𝑅𝐷)) ((𝑁𝑃) (𝑅‘(𝐷𝐹)))))
 
Theoremcdlemkole 38794* Utility lemma. (Contributed by NM, 2-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑂𝑃) (𝑃 (𝑅𝐷)))
 
Theoremcdlemk14 38795* Part of proof of Lemma K of [Crawley] p. 118. Line 19 on p. 119. 𝑂, 𝐷 are k1, f1. (Contributed by NM, 1-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑁𝑃) ((𝑂𝑃) (𝑅‘(𝐹𝐷))))
 
Theoremcdlemk15 38796* Part of proof of Lemma K of [Crawley] p. 118. Line 21 on p. 119. 𝑂, 𝐷 are k1, f1. (Contributed by NM, 1-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑁𝑃) ((𝑃 (𝑅𝐹)) ((𝑂𝑃) (𝑅‘(𝐹𝐷)))))
 
Theoremcdlemk16a 38797* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) 𝑊))
 
Theoremcdlemk16 38798* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 1-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (((𝑃 (𝑅𝐹)) ((𝑂𝑃) (𝑅‘(𝐹𝐷)))) ∈ 𝐴 ∧ ¬ ((𝑃 (𝑅𝐹)) ((𝑂𝑃) (𝑅‘(𝐹𝐷)))) 𝑊))
 
Theoremcdlemk17 38799* Part of proof of Lemma K of [Crawley] p. 118. Line 21 on p. 119. 𝑂, 𝐷 are k1, f1. (Contributed by NM, 1-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑁𝑃) = ((𝑃 (𝑅𝐹)) ((𝑂𝑃) (𝑅‘(𝐹𝐷)))))
 
Theoremcdlemk1u 38800* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑂 = (𝑆𝐷)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑃 (𝑂𝑃)) ((𝐷𝑃) (𝑅𝐷)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >