| Metamath
Proof Explorer Theorem List (p. 388 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eldisjs3 38701* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (𝑅 ∈ Disjs ↔ (∀𝑢∀𝑣∀𝑥((𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥) → 𝑢 = 𝑣) ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eldisjs4 38702* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (𝑅 ∈ Disjs ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ 𝑅 ∈ Rels )) | ||
| Theorem | eldisjs5 38703* | Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ))) | ||
| Theorem | eldisjsdisj 38704 | The element of the class of disjoint relations and the disjoint relation predicate are the same, that is (𝑅 ∈ Disjs ↔ Disj 𝑅) when 𝑅 is a set. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ Disj 𝑅)) | ||
| Theorem | eleldisjs 38705 | Elementhood in the disjoint elements class. (Contributed by Peter Mazsa, 23-Jul-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ (◡ E ↾ 𝐴) ∈ Disjs )) | ||
| Theorem | eleldisjseldisj 38706 | The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴) when 𝐴 is a set. (Contributed by Peter Mazsa, 23-Jul-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ElDisjs ↔ ElDisj 𝐴)) | ||
| Theorem | disjrel 38707 | Disjoint relation is a relation. (Contributed by Peter Mazsa, 15-Sep-2021.) |
| ⊢ ( Disj 𝑅 → Rel 𝑅) | ||
| Theorem | disjss 38708 | Subclass theorem for disjoints. (Contributed by Peter Mazsa, 28-Oct-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ (𝐴 ⊆ 𝐵 → ( Disj 𝐵 → Disj 𝐴)) | ||
| Theorem | disjssi 38709 | Subclass theorem for disjoints, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ( Disj 𝐵 → Disj 𝐴) | ||
| Theorem | disjssd 38710 | Subclass theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ( Disj 𝐵 → Disj 𝐴)) | ||
| Theorem | disjeq 38711 | Equality theorem for disjoints. (Contributed by Peter Mazsa, 22-Sep-2021.) |
| ⊢ (𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵)) | ||
| Theorem | disjeqi 38712 | Equality theorem for disjoints, inference version. (Contributed by Peter Mazsa, 22-Sep-2021.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ( Disj 𝐴 ↔ Disj 𝐵) | ||
| Theorem | disjeqd 38713 | Equality theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 22-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( Disj 𝐴 ↔ Disj 𝐵)) | ||
| Theorem | disjdmqseqeq1 38714 | Lemma for the equality theorem for partition parteq1 38751. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ (𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))) | ||
| Theorem | eldisjss 38715 | Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴)) | ||
| Theorem | eldisjssi 38716 | Subclass theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ( ElDisj 𝐵 → ElDisj 𝐴) | ||
| Theorem | eldisjssd 38717 | Subclass theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐵 → ElDisj 𝐴)) | ||
| Theorem | eldisjeq 38718 | Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
| Theorem | eldisjeqi 38719 | Equality theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ( ElDisj 𝐴 ↔ ElDisj 𝐵) | ||
| Theorem | eldisjeqd 38720 | Equality theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
| Theorem | disjres 38721* | Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) | ||
| Theorem | eldisjn0elb 38722 | Two forms of disjoint elements when the empty set is not an element of the class. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj (◡ E ↾ 𝐴) ∧ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴)) | ||
| Theorem | disjxrn 38723 | Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | ||
| Theorem | disjxrnres5 38724* | Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| ⊢ ( Disj (𝑅 ⋉ (𝑆 ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) | ||
| Theorem | disjorimxrn 38725 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) | ||
| Theorem | disjimxrn 38726 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 15-Dec-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ 𝑆)) | ||
| Theorem | disjimres 38727 | Disjointness condition for restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ ( Disj 𝑅 → Disj (𝑅 ↾ 𝐴)) | ||
| Theorem | disjimin 38728 | Disjointness condition for intersection. (Contributed by Peter Mazsa, 11-Jun-2021.) (Revised by Peter Mazsa, 28-Sep-2021.) |
| ⊢ ( Disj 𝑆 → Disj (𝑅 ∩ 𝑆)) | ||
| Theorem | disjiminres 38729 | Disjointness condition for intersection with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ ( Disj 𝑆 → Disj (𝑅 ∩ (𝑆 ↾ 𝐴))) | ||
| Theorem | disjimxrnres 38730 | Disjointness condition for range Cartesian product with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ (𝑆 ↾ 𝐴))) | ||
| Theorem | disjALTV0 38731 | The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ Disj ∅ | ||
| Theorem | disjALTVid 38732 | The class of identity relations is disjoint. (Contributed by Peter Mazsa, 20-Jun-2021.) |
| ⊢ Disj I | ||
| Theorem | disjALTVidres 38733 | The class of identity relations restricted is disjoint. (Contributed by Peter Mazsa, 28-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
| ⊢ Disj ( I ↾ 𝐴) | ||
| Theorem | disjALTVinidres 38734 | The intersection with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ Disj (𝑅 ∩ ( I ↾ 𝐴)) | ||
| Theorem | disjALTVxrnidres 38735 | The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
| ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) | ||
| Theorem | disjsuc 38736* | Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) | ||
| Definition | df-antisymrel 38737 | Define the antisymmetric relation predicate. (Read: 𝑅 is an antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024.) |
| ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | ||
| Theorem | dfantisymrel4 38738 | Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
| ⊢ ( AntisymRel 𝑅 ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel 𝑅)) | ||
| Theorem | dfantisymrel5 38739* | Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
| ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) | ||
| Theorem | antisymrelres 38740* | (Contributed by Peter Mazsa, 25-Jun-2024.) |
| ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | ||
| Theorem | antisymrelressn 38741 | (Contributed by Peter Mazsa, 29-Jun-2024.) |
| ⊢ AntisymRel (𝑅 ↾ {𝐴}) | ||
| Definition | df-parts 38742 |
Define the class of all partitions, cf. the comment of df-disjs 38681.
Partitions are disjoints on domain quotients (or: domain quotients
restricted to disjoints).
This is a more general meaning of partition than we we are familiar with: the conventional meaning of partition (e.g. partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 38681) is what we call membership partition here, cf. dfmembpart2 38747. The binary partitions relation and the partition predicate are the same, that is, (𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴) if 𝐴 and 𝑅 are sets, cf. brpartspart 38750. (Contributed by Peter Mazsa, 26-Jun-2021.) |
| ⊢ Parts = ( DomainQss ↾ Disjs ) | ||
| Definition | df-part 38743 | Define the partition predicate (read: 𝐴 is a partition by 𝑅). Alternative definition is dfpart2 38746. The binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets, cf. brpartspart 38750. (Contributed by Peter Mazsa, 12-Aug-2021.) |
| ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) | ||
| Definition | df-membparts 38744 | Define the class of member partition relations on their domain quotients. (Contributed by Peter Mazsa, 26-Jun-2021.) |
| ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} | ||
| Definition | df-membpart 38745 |
Define the member partition predicate, or the disjoint restricted element
relation on its domain quotient predicate. (Read: 𝐴 is a member
partition.) A alternative definition is dfmembpart2 38747.
Member partition is the conventional meaning of partition (see the notes of df-parts 38742 and dfmembpart2 38747), we generalize the concept in df-parts 38742 and df-part 38743. Member partition and comember equivalence are the same by mpet 38816. (Contributed by Peter Mazsa, 26-Jun-2021.) |
| ⊢ ( MembPart 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴) | ||
| Theorem | dfpart2 38746 | Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | ||
| Theorem | dfmembpart2 38747 | Alternate definition of the conventional membership case of partition. Partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021.) |
| ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | ||
| Theorem | brparts 38748 | Binary partitions relation. (Contributed by Peter Mazsa, 23-Jul-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴))) | ||
| Theorem | brparts2 38749 | Binary partitions relation. (Contributed by Peter Mazsa, 30-Dec-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ (dom 𝑅 / 𝑅) = 𝐴))) | ||
| Theorem | brpartspart 38750 | Binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴)) | ||
| Theorem | parteq1 38751 | Equality theorem for partition. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ (𝑅 = 𝑆 → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴)) | ||
| Theorem | parteq2 38752 | Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.) |
| ⊢ (𝐴 = 𝐵 → (𝑅 Part 𝐴 ↔ 𝑅 Part 𝐵)) | ||
| Theorem | parteq12 38753 | Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐵)) | ||
| Theorem | parteq1i 38754 | Equality theorem for partition, inference version. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴) | ||
| Theorem | parteq1d 38755 | Equality theorem for partition, deduction version. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴)) | ||
| Theorem | partsuc2 38756 | Property of the partition. (Contributed by Peter Mazsa, 24-Jul-2024.) |
| ⊢ (((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) Part ((𝐴 ∪ {𝐴}) ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴) | ||
| Theorem | partsuc 38757 | Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024.) |
| ⊢ (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴) | ||
| Theorem | disjim 38758 | The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 38857, cf. eldisjim 38761. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
| ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) | ||
| Theorem | disjimi 38759 | Every disjoint relation generates equivalent cosets by the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021.) |
| ⊢ Disj 𝑅 ⇒ ⊢ EqvRel ≀ 𝑅 | ||
| Theorem | detlem 38760 | If a relation is disjoint, then it is equivalent to the equivalent cosets of the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021.) |
| ⊢ Disj 𝑅 ⇒ ⊢ ( Disj 𝑅 ↔ EqvRel ≀ 𝑅) | ||
| Theorem | eldisjim 38761 | If the elements of 𝐴 are disjoint, then it has equivalent coelements (former prter1 38857). Special case of disjim 38758. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018.) ( Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) | ||
| Theorem | eldisjim2 38762 | Alternate form of eldisjim 38761. (Contributed by Peter Mazsa, 30-Dec-2024.) |
| ⊢ ( ElDisj 𝐴 → EqvRel ∼ 𝐴) | ||
| Theorem | eqvrel0 38763 | The null class is an equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel ∅ | ||
| Theorem | det0 38764 | The cosets by the null class are in equivalence relation if and only if the null class is disjoint (which it is, see disjALTV0 38731). (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj ∅ ↔ EqvRel ≀ ∅) | ||
| Theorem | eqvrelcoss0 38765 | The cosets by the null class are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| ⊢ EqvRel ≀ ∅ | ||
| Theorem | eqvrelid 38766 | The identity relation is an equivalence relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel I | ||
| Theorem | eqvrel1cossidres 38767 | The cosets by a restricted identity relation is an equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel ≀ ( I ↾ 𝐴) | ||
| Theorem | eqvrel1cossinidres 38768 | The cosets by an intersection with a restricted identity relation are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)) | ||
| Theorem | eqvrel1cossxrnidres 38769 | The cosets by a range Cartesian product with a restricted identity relation are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)) | ||
| Theorem | detid 38770 | The cosets by the identity relation are in equivalence relation if and only if the identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj I ↔ EqvRel ≀ I ) | ||
| Theorem | eqvrelcossid 38771 | The cosets by the identity class are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| ⊢ EqvRel ≀ I | ||
| Theorem | detidres 38772 | The cosets by the restricted identity relation are in equivalence relation if and only if the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj ( I ↾ 𝐴) ↔ EqvRel ≀ ( I ↾ 𝐴)) | ||
| Theorem | detinidres 38773 | The cosets by the intersection with the restricted identity relation are in equivalence relation if and only if the intersection with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴))) | ||
| Theorem | detxrnidres 38774 | The cosets by the range Cartesian product with the restricted identity relation are in equivalence relation if and only if the range Cartesian product with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴))) | ||
| Theorem | disjlem14 38775* | Lemma for disjdmqseq 38782, partim2 38784 and petlem 38789 via disjlem17 38776, (general version of the former prtlem14 38852). (Contributed by Peter Mazsa, 10-Sep-2021.) |
| ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))) | ||
| Theorem | disjlem17 38776* | Lemma for disjdmqseq 38782, partim2 38784 and petlem 38789 via disjlem18 38777, (general version of the former prtlem17 38854). (Contributed by Peter Mazsa, 10-Sep-2021.) |
| ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅 ∧ 𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅))) | ||
| Theorem | disjlem18 38777* | Lemma for disjdmqseq 38782, partim2 38784 and petlem 38789 via disjlem19 38778, (general version of the former prtlem18 38855). (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝐵)))) | ||
| Theorem | disjlem19 38778* | Lemma for disjdmqseq 38782, partim2 38784 and petlem 38789 via disjdmqs 38781, (general version of the former prtlem19 38856). (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) | ||
| Theorem | disjdmqsss 38779 | Lemma for disjdmqseq 38782 via disjdmqs 38781. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ( Disj 𝑅 → (dom 𝑅 / 𝑅) ⊆ (dom ≀ 𝑅 / ≀ 𝑅)) | ||
| Theorem | disjdmqscossss 38780 | Lemma for disjdmqseq 38782 via disjdmqs 38781. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ( Disj 𝑅 → (dom ≀ 𝑅 / ≀ 𝑅) ⊆ (dom 𝑅 / 𝑅)) | ||
| Theorem | disjdmqs 38781 | If a relation is disjoint, its domain quotient is equal to the domain quotient of the cosets by it. Lemma for partim2 38784 and petlem 38789 via disjdmqseq 38782. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ( Disj 𝑅 → (dom 𝑅 / 𝑅) = (dom ≀ 𝑅 / ≀ 𝑅)) | ||
| Theorem | disjdmqseq 38782 | If a relation is disjoint, its domain quotient is equal to a class if and only if the domain quotient of the cosets by it is equal to the class. General version of eldisjn0el 38783 (which is the closest theorem to the former prter2 38859). Lemma for partim2 38784 and petlem 38789. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | ||
| Theorem | eldisjn0el 38783 | Special case of disjdmqseq 38782 (perhaps this is the closest theorem to the former prter2 38859). (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | partim2 38784 | Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim 38785. Lemma for petlem 38789. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | ||
| Theorem | partim 38785 | Partition implies equivalence relation by the cosets of the relation on its natural domain, cf. partim2 38784. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) | ||
| Theorem | partimeq 38786 | Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq 38656. (Contributed by Peter Mazsa, 25-Dec-2024.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) | ||
| Theorem | eldisjlem19 38787* | Special case of disjlem19 38778 (together with membpartlem19 38788, this is former prtlem19 38856). (Contributed by Peter Mazsa, 21-Oct-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom (◡ E ↾ 𝐴) ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) | ||
| Theorem | membpartlem19 38788* | Together with disjlem19 38778, this is former prtlem19 38856. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 21-Oct-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → ( MembPart 𝐴 → ((𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) | ||
| Theorem | petlem 38789 | If you can prove that the equivalence of cosets on their natural domain implies disjointness (e.g. eqvrelqseqdisj5 38810), or converse function (cf. dfdisjALTV 38690), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. Lemma for the Partition Equivalence Theorem pet2 38827. (Contributed by Peter Mazsa, 18-Sep-2021.) |
| ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → Disj 𝑅) ⇒ ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | ||
| Theorem | petlemi 38790 | If you can prove disjointness (e.g. disjALTV0 38731, disjALTVid 38732, disjALTVidres 38733, disjALTVxrnidres 38735, search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV 38690), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021.) |
| ⊢ Disj 𝑅 ⇒ ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | ||
| Theorem | pet02 38791 | Class 𝐴 is a partition by the null class if and only if the cosets by the null class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴) ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴)) | ||
| Theorem | pet0 38792 | Class 𝐴 is a partition by the null class if and only if the cosets by the null class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴) | ||
| Theorem | petid2 38793 | Class 𝐴 is a partition by the identity class if and only if the cosets by the identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj I ∧ (dom I / I ) = 𝐴) ↔ ( EqvRel ≀ I ∧ (dom ≀ I / ≀ I ) = 𝐴)) | ||
| Theorem | petid 38794 | A class is a partition by the identity class if and only if the cosets by the identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴) | ||
| Theorem | petidres2 38795 | Class 𝐴 is a partition by the identity class restricted to it if and only if the cosets by the restricted identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj ( I ↾ 𝐴) ∧ (dom ( I ↾ 𝐴) / ( I ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ≀ ( I ↾ 𝐴) ∧ (dom ≀ ( I ↾ 𝐴) / ≀ ( I ↾ 𝐴)) = 𝐴)) | ||
| Theorem | petidres 38796 | A class is a partition by identity class restricted to it if and only if the cosets by the restricted identity class are in equivalence relation on it, cf. eqvrel1cossidres 38767. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( I ↾ 𝐴) Part 𝐴 ↔ ≀ ( I ↾ 𝐴) ErALTV 𝐴) | ||
| Theorem | petinidres2 38797 | Class 𝐴 is a partition by an intersection with the identity class restricted to it if and only if the cosets by the intersection are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( I ↾ 𝐴)) / (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( I ↾ 𝐴)) / ≀ (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴)) | ||
| Theorem | petinidres 38798 | A class is a partition by an intersection with the identity class restricted to it if and only if the cosets by the intersection are in equivalence relation on it. Cf. br1cossinidres 38425, disjALTVinidres 38734 and eqvrel1cossinidres 38768. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝑅 ∩ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( I ↾ 𝐴)) ErALTV 𝐴) | ||
| Theorem | petxrnidres2 38799 | Class 𝐴 is a partition by a range Cartesian product with the identity class restricted to it if and only if the cosets by the range Cartesian product are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( I ↾ 𝐴)) / (𝑅 ⋉ ( I ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( I ↾ 𝐴)) / ≀ (𝑅 ⋉ ( I ↾ 𝐴))) = 𝐴)) | ||
| Theorem | petxrnidres 38800 | A class is a partition by a range Cartesian product with the identity class restricted to it if and only if the cosets by the range Cartesian product are in equivalence relation on it. Cf. br1cossxrnidres 38427, disjALTVxrnidres 38735 and eqvrel1cossxrnidres 38769. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝑅 ⋉ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( I ↾ 𝐴)) ErALTV 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |