| Metamath
Proof Explorer Theorem List (p. 388 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30865) |
(30866-32388) |
(32389-49332) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eldisjeq 38701 | Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
| Theorem | eldisjeqi 38702 | Equality theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ( ElDisj 𝐴 ↔ ElDisj 𝐵) | ||
| Theorem | eldisjeqd 38703 | Equality theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
| Theorem | disjres 38704* | Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) | ||
| Theorem | eldisjn0elb 38705 | Two forms of disjoint elements when the empty set is not an element of the class. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj (◡ E ↾ 𝐴) ∧ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴)) | ||
| Theorem | disjxrn 38706 | Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | ||
| Theorem | disjxrnres5 38707* | Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| ⊢ ( Disj (𝑅 ⋉ (𝑆 ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) | ||
| Theorem | disjorimxrn 38708 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) | ||
| Theorem | disjimxrn 38709 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 15-Dec-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ 𝑆)) | ||
| Theorem | disjimres 38710 | Disjointness condition for restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ ( Disj 𝑅 → Disj (𝑅 ↾ 𝐴)) | ||
| Theorem | disjimin 38711 | Disjointness condition for intersection. (Contributed by Peter Mazsa, 11-Jun-2021.) (Revised by Peter Mazsa, 28-Sep-2021.) |
| ⊢ ( Disj 𝑆 → Disj (𝑅 ∩ 𝑆)) | ||
| Theorem | disjiminres 38712 | Disjointness condition for intersection with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ ( Disj 𝑆 → Disj (𝑅 ∩ (𝑆 ↾ 𝐴))) | ||
| Theorem | disjimxrnres 38713 | Disjointness condition for range Cartesian product with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ (𝑆 ↾ 𝐴))) | ||
| Theorem | disjALTV0 38714 | The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ Disj ∅ | ||
| Theorem | disjALTVid 38715 | The class of identity relations is disjoint. (Contributed by Peter Mazsa, 20-Jun-2021.) |
| ⊢ Disj I | ||
| Theorem | disjALTVidres 38716 | The class of identity relations restricted is disjoint. (Contributed by Peter Mazsa, 28-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
| ⊢ Disj ( I ↾ 𝐴) | ||
| Theorem | disjALTVinidres 38717 | The intersection with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ Disj (𝑅 ∩ ( I ↾ 𝐴)) | ||
| Theorem | disjALTVxrnidres 38718 | The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
| ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) | ||
| Theorem | disjsuc 38719* | Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) | ||
| Definition | df-antisymrel 38720 | Define the antisymmetric relation predicate. (Read: 𝑅 is an antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024.) |
| ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | ||
| Theorem | dfantisymrel4 38721 | Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
| ⊢ ( AntisymRel 𝑅 ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel 𝑅)) | ||
| Theorem | dfantisymrel5 38722* | Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
| ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) | ||
| Theorem | antisymrelres 38723* | (Contributed by Peter Mazsa, 25-Jun-2024.) |
| ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | ||
| Theorem | antisymrelressn 38724 | (Contributed by Peter Mazsa, 29-Jun-2024.) |
| ⊢ AntisymRel (𝑅 ↾ {𝐴}) | ||
| Definition | df-parts 38725 |
Define the class of all partitions, cf. the comment of df-disjs 38664.
Partitions are disjoints on domain quotients (or: domain quotients
restricted to disjoints).
This is a more general meaning of partition than we we are familiar with: the conventional meaning of partition (e.g. partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 38664) is what we call membership partition here, cf. dfmembpart2 38730. The binary partitions relation and the partition predicate are the same, that is, (𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴) if 𝐴 and 𝑅 are sets, cf. brpartspart 38733. (Contributed by Peter Mazsa, 26-Jun-2021.) |
| ⊢ Parts = ( DomainQss ↾ Disjs ) | ||
| Definition | df-part 38726 | Define the partition predicate (read: 𝐴 is a partition by 𝑅). Alternative definition is dfpart2 38729. The binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets, cf. brpartspart 38733. (Contributed by Peter Mazsa, 12-Aug-2021.) |
| ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) | ||
| Definition | df-membparts 38727 | Define the class of member partition relations on their domain quotients. (Contributed by Peter Mazsa, 26-Jun-2021.) |
| ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} | ||
| Definition | df-membpart 38728 |
Define the member partition predicate, or the disjoint restricted element
relation on its domain quotient predicate. (Read: 𝐴 is a member
partition.) A alternative definition is dfmembpart2 38730.
Member partition is the conventional meaning of partition (see the notes of df-parts 38725 and dfmembpart2 38730), we generalize the concept in df-parts 38725 and df-part 38726. Member partition and comember equivalence are the same by mpet 38799. (Contributed by Peter Mazsa, 26-Jun-2021.) |
| ⊢ ( MembPart 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴) | ||
| Theorem | dfpart2 38729 | Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | ||
| Theorem | dfmembpart2 38730 | Alternate definition of the conventional membership case of partition. Partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021.) |
| ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | ||
| Theorem | brparts 38731 | Binary partitions relation. (Contributed by Peter Mazsa, 23-Jul-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴))) | ||
| Theorem | brparts2 38732 | Binary partitions relation. (Contributed by Peter Mazsa, 30-Dec-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ (dom 𝑅 / 𝑅) = 𝐴))) | ||
| Theorem | brpartspart 38733 | Binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴)) | ||
| Theorem | parteq1 38734 | Equality theorem for partition. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ (𝑅 = 𝑆 → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴)) | ||
| Theorem | parteq2 38735 | Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.) |
| ⊢ (𝐴 = 𝐵 → (𝑅 Part 𝐴 ↔ 𝑅 Part 𝐵)) | ||
| Theorem | parteq12 38736 | Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐵)) | ||
| Theorem | parteq1i 38737 | Equality theorem for partition, inference version. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴) | ||
| Theorem | parteq1d 38738 | Equality theorem for partition, deduction version. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴)) | ||
| Theorem | partsuc2 38739 | Property of the partition. (Contributed by Peter Mazsa, 24-Jul-2024.) |
| ⊢ (((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) Part ((𝐴 ∪ {𝐴}) ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴) | ||
| Theorem | partsuc 38740 | Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024.) |
| ⊢ (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴) | ||
| Theorem | disjim 38741 | The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 38839, cf. eldisjim 38744. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
| ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) | ||
| Theorem | disjimi 38742 | Every disjoint relation generates equivalent cosets by the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021.) |
| ⊢ Disj 𝑅 ⇒ ⊢ EqvRel ≀ 𝑅 | ||
| Theorem | detlem 38743 | If a relation is disjoint, then it is equivalent to the equivalent cosets of the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021.) |
| ⊢ Disj 𝑅 ⇒ ⊢ ( Disj 𝑅 ↔ EqvRel ≀ 𝑅) | ||
| Theorem | eldisjim 38744 | If the elements of 𝐴 are disjoint, then it has equivalent coelements (former prter1 38839). Special case of disjim 38741. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018.) ( Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) | ||
| Theorem | eldisjim2 38745 | Alternate form of eldisjim 38744. (Contributed by Peter Mazsa, 30-Dec-2024.) |
| ⊢ ( ElDisj 𝐴 → EqvRel ∼ 𝐴) | ||
| Theorem | eqvrel0 38746 | The null class is an equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel ∅ | ||
| Theorem | det0 38747 | The cosets by the null class are in equivalence relation if and only if the null class is disjoint (which it is, see disjALTV0 38714). (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj ∅ ↔ EqvRel ≀ ∅) | ||
| Theorem | eqvrelcoss0 38748 | The cosets by the null class are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| ⊢ EqvRel ≀ ∅ | ||
| Theorem | eqvrelid 38749 | The identity relation is an equivalence relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel I | ||
| Theorem | eqvrel1cossidres 38750 | The cosets by a restricted identity relation is an equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel ≀ ( I ↾ 𝐴) | ||
| Theorem | eqvrel1cossinidres 38751 | The cosets by an intersection with a restricted identity relation are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)) | ||
| Theorem | eqvrel1cossxrnidres 38752 | The cosets by a range Cartesian product with a restricted identity relation are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)) | ||
| Theorem | detid 38753 | The cosets by the identity relation are in equivalence relation if and only if the identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj I ↔ EqvRel ≀ I ) | ||
| Theorem | eqvrelcossid 38754 | The cosets by the identity class are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| ⊢ EqvRel ≀ I | ||
| Theorem | detidres 38755 | The cosets by the restricted identity relation are in equivalence relation if and only if the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj ( I ↾ 𝐴) ↔ EqvRel ≀ ( I ↾ 𝐴)) | ||
| Theorem | detinidres 38756 | The cosets by the intersection with the restricted identity relation are in equivalence relation if and only if the intersection with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴))) | ||
| Theorem | detxrnidres 38757 | The cosets by the range Cartesian product with the restricted identity relation are in equivalence relation if and only if the range Cartesian product with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴))) | ||
| Theorem | disjlem14 38758* | Lemma for disjdmqseq 38765, partim2 38767 and petlem 38772 via disjlem17 38759, (general version of the former prtlem14 38834). (Contributed by Peter Mazsa, 10-Sep-2021.) |
| ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))) | ||
| Theorem | disjlem17 38759* | Lemma for disjdmqseq 38765, partim2 38767 and petlem 38772 via disjlem18 38760, (general version of the former prtlem17 38836). (Contributed by Peter Mazsa, 10-Sep-2021.) |
| ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅 ∧ 𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅))) | ||
| Theorem | disjlem18 38760* | Lemma for disjdmqseq 38765, partim2 38767 and petlem 38772 via disjlem19 38761, (general version of the former prtlem18 38837). (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝐵)))) | ||
| Theorem | disjlem19 38761* | Lemma for disjdmqseq 38765, partim2 38767 and petlem 38772 via disjdmqs 38764, (general version of the former prtlem19 38838). (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) | ||
| Theorem | disjdmqsss 38762 | Lemma for disjdmqseq 38765 via disjdmqs 38764. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ( Disj 𝑅 → (dom 𝑅 / 𝑅) ⊆ (dom ≀ 𝑅 / ≀ 𝑅)) | ||
| Theorem | disjdmqscossss 38763 | Lemma for disjdmqseq 38765 via disjdmqs 38764. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ( Disj 𝑅 → (dom ≀ 𝑅 / ≀ 𝑅) ⊆ (dom 𝑅 / 𝑅)) | ||
| Theorem | disjdmqs 38764 | If a relation is disjoint, its domain quotient is equal to the domain quotient of the cosets by it. Lemma for partim2 38767 and petlem 38772 via disjdmqseq 38765. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ( Disj 𝑅 → (dom 𝑅 / 𝑅) = (dom ≀ 𝑅 / ≀ 𝑅)) | ||
| Theorem | disjdmqseq 38765 | If a relation is disjoint, its domain quotient is equal to a class if and only if the domain quotient of the cosets by it is equal to the class. General version of eldisjn0el 38766 (which is the closest theorem to the former prter2 38841). Lemma for partim2 38767 and petlem 38772. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | ||
| Theorem | eldisjn0el 38766 | Special case of disjdmqseq 38765 (perhaps this is the closest theorem to the former prter2 38841). (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | partim2 38767 | Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim 38768. Lemma for petlem 38772. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | ||
| Theorem | partim 38768 | Partition implies equivalence relation by the cosets of the relation on its natural domain, cf. partim2 38767. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) | ||
| Theorem | partimeq 38769 | Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq 38639. (Contributed by Peter Mazsa, 25-Dec-2024.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) | ||
| Theorem | eldisjlem19 38770* | Special case of disjlem19 38761 (together with membpartlem19 38771, this is former prtlem19 38838). (Contributed by Peter Mazsa, 21-Oct-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom (◡ E ↾ 𝐴) ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) | ||
| Theorem | membpartlem19 38771* | Together with disjlem19 38761, this is former prtlem19 38838. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 21-Oct-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → ( MembPart 𝐴 → ((𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) | ||
| Theorem | petlem 38772 | If you can prove that the equivalence of cosets on their natural domain implies disjointness (e.g. eqvrelqseqdisj5 38793), or converse function (cf. dfdisjALTV 38673), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. Lemma for the Partition Equivalence Theorem pet2 38810. (Contributed by Peter Mazsa, 18-Sep-2021.) |
| ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → Disj 𝑅) ⇒ ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | ||
| Theorem | petlemi 38773 | If you can prove disjointness (e.g. disjALTV0 38714, disjALTVid 38715, disjALTVidres 38716, disjALTVxrnidres 38718, search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV 38673), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021.) |
| ⊢ Disj 𝑅 ⇒ ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | ||
| Theorem | pet02 38774 | Class 𝐴 is a partition by the null class if and only if the cosets by the null class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴) ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴)) | ||
| Theorem | pet0 38775 | Class 𝐴 is a partition by the null class if and only if the cosets by the null class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴) | ||
| Theorem | petid2 38776 | Class 𝐴 is a partition by the identity class if and only if the cosets by the identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj I ∧ (dom I / I ) = 𝐴) ↔ ( EqvRel ≀ I ∧ (dom ≀ I / ≀ I ) = 𝐴)) | ||
| Theorem | petid 38777 | A class is a partition by the identity class if and only if the cosets by the identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴) | ||
| Theorem | petidres2 38778 | Class 𝐴 is a partition by the identity class restricted to it if and only if the cosets by the restricted identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj ( I ↾ 𝐴) ∧ (dom ( I ↾ 𝐴) / ( I ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ≀ ( I ↾ 𝐴) ∧ (dom ≀ ( I ↾ 𝐴) / ≀ ( I ↾ 𝐴)) = 𝐴)) | ||
| Theorem | petidres 38779 | A class is a partition by identity class restricted to it if and only if the cosets by the restricted identity class are in equivalence relation on it, cf. eqvrel1cossidres 38750. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( I ↾ 𝐴) Part 𝐴 ↔ ≀ ( I ↾ 𝐴) ErALTV 𝐴) | ||
| Theorem | petinidres2 38780 | Class 𝐴 is a partition by an intersection with the identity class restricted to it if and only if the cosets by the intersection are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( I ↾ 𝐴)) / (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( I ↾ 𝐴)) / ≀ (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴)) | ||
| Theorem | petinidres 38781 | A class is a partition by an intersection with the identity class restricted to it if and only if the cosets by the intersection are in equivalence relation on it. Cf. br1cossinidres 38409, disjALTVinidres 38717 and eqvrel1cossinidres 38751. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝑅 ∩ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( I ↾ 𝐴)) ErALTV 𝐴) | ||
| Theorem | petxrnidres2 38782 | Class 𝐴 is a partition by a range Cartesian product with the identity class restricted to it if and only if the cosets by the range Cartesian product are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( I ↾ 𝐴)) / (𝑅 ⋉ ( I ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( I ↾ 𝐴)) / ≀ (𝑅 ⋉ ( I ↾ 𝐴))) = 𝐴)) | ||
| Theorem | petxrnidres 38783 | A class is a partition by a range Cartesian product with the identity class restricted to it if and only if the cosets by the range Cartesian product are in equivalence relation on it. Cf. br1cossxrnidres 38411, disjALTVxrnidres 38718 and eqvrel1cossxrnidres 38752. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝑅 ⋉ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( I ↾ 𝐴)) ErALTV 𝐴) | ||
| Theorem | eqvreldisj1 38784* | The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj2 38785, eqvreldisj3 38786). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 3-Dec-2024.) |
| ⊢ ( EqvRel 𝑅 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | ||
| Theorem | eqvreldisj2 38785 | The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj3 38786). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 19-Sep-2021.) |
| ⊢ ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅)) | ||
| Theorem | eqvreldisj3 38786 | The elements of the quotient set of an equivalence relation are disjoint (cf. qsdisj2 8817). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 20-Jun-2019.) (Revised by Peter Mazsa, 19-Sep-2021.) |
| ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐴 / 𝑅))) | ||
| Theorem | eqvreldisj4 38787 | Intersection with the converse epsilon relation restricted to the quotient set of an equivalence relation is disjoint. (Contributed by Peter Mazsa, 30-May-2020.) (Revised by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( EqvRel 𝑅 → Disj (𝑆 ∩ (◡ E ↾ (𝐵 / 𝑅)))) | ||
| Theorem | eqvreldisj5 38788 | Range Cartesian product with converse epsilon relation restricted to the quotient set of an equivalence relation is disjoint. (Contributed by Peter Mazsa, 30-May-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ ( EqvRel 𝑅 → Disj (𝑆 ⋉ (◡ E ↾ (𝐵 / 𝑅)))) | ||
| Theorem | eqvrelqseqdisj2 38789 | Implication of eqvreldisj2 38785, lemma for The Main Theorem of Equivalences mainer 38794. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ElDisj 𝐴) | ||
| Theorem | fences3 38790 | Implication of eqvrelqseqdisj2 38789 and n0eldmqseq 38609, see comment of fences 38804. (Contributed by Peter Mazsa, 30-Dec-2024.) |
| ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | ||
| Theorem | eqvrelqseqdisj3 38791 | Implication of eqvreldisj3 38786, lemma for the Member Partition Equivalence Theorem mpet3 38796. (Contributed by Peter Mazsa, 27-Oct-2020.) (Revised by Peter Mazsa, 24-Sep-2021.) |
| ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ 𝐴)) | ||
| Theorem | eqvrelqseqdisj4 38792 | Lemma for petincnvepres2 38808. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (𝑆 ∩ (◡ E ↾ 𝐴))) | ||
| Theorem | eqvrelqseqdisj5 38793 | Lemma for the Partition-Equivalence Theorem pet2 38810. (Contributed by Peter Mazsa, 15-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (𝑆 ⋉ (◡ E ↾ 𝐴))) | ||
| Theorem | mainer 38794 | The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) | ||
| Theorem | partimcomember 38795 | Partition with general 𝑅 (in addition to the member partition cf. mpet 38799 and mpet2 38800) implies equivalent comembers. (Contributed by Peter Mazsa, 23-Sep-2021.) (Revised by Peter Mazsa, 22-Dec-2024.) |
| ⊢ (𝑅 Part 𝐴 → CoMembEr 𝐴) | ||
| Theorem | mpet3 38796 | Member Partition-Equivalence Theorem. Together with mpet 38799 mpet2 38800, mostly in its conventional cpet 38798 and cpet2 38797 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38810 with general 𝑅). (Contributed by Peter Mazsa, 4-May-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
| ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | cpet2 38797 | The conventional form of the Member Partition-Equivalence Theorem. In the conventional case there is no (general) disjoint and no (general) partition concept: mathematicians have called disjoint or partition what we call element disjoint or member partition, see also cpet 38798. Together with cpet 38798, mpet 38799 mpet2 38800, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38810 with general 𝑅). (Contributed by Peter Mazsa, 30-Dec-2024.) |
| ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | cpet 38798 | The conventional form of Member Partition-Equivalence Theorem. In the conventional case there is no (general) disjoint and no (general) partition concept: mathematicians have been calling disjoint or partition what we call element disjoint or member partition, see also cpet2 38797. Cf. mpet 38799, mpet2 38800 and mpet3 38796 for unconventional forms of Member Partition-Equivalence Theorem. Cf. pet 38811 and pet2 38810 for Partition-Equivalence Theorem with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| ⊢ ( MembPart 𝐴 ↔ ( EqvRel ∼ 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | mpet 38799 | Member Partition-Equivalence Theorem in almost its shortest possible form, cf. the 0-ary version mpets 38802. Member partition and comember equivalence relation are the same (or: each element of 𝐴 have equivalent comembers if and only if 𝐴 is a member partition). Together with mpet2 38800, mpet3 38796, and with the conventional cpet 38798 and cpet2 38797, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38810 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.) |
| ⊢ ( MembPart 𝐴 ↔ CoMembEr 𝐴) | ||
| Theorem | mpet2 38800 | Member Partition-Equivalence Theorem in a shorter form. Together with mpet 38799 mpet3 38796, mostly in its conventional cpet 38798 and cpet2 38797 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38810 with general 𝑅). (Contributed by Peter Mazsa, 24-Sep-2021.) |
| ⊢ ((◡ E ↾ 𝐴) Part 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |