| Metamath
Proof Explorer Theorem List (p. 388 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | disjdmqseqeq1 38701 | Lemma for the equality theorem for partition parteq1 38738. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ (𝑅 = 𝑆 → (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( Disj 𝑆 ∧ (dom 𝑆 / 𝑆) = 𝐴))) | ||
| Theorem | eldisjss 38702 | Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝐴 ⊆ 𝐵 → ( ElDisj 𝐵 → ElDisj 𝐴)) | ||
| Theorem | eldisjssi 38703 | Subclass theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ( ElDisj 𝐵 → ElDisj 𝐴) | ||
| Theorem | eldisjssd 38704 | Subclass theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐵 → ElDisj 𝐴)) | ||
| Theorem | eldisjeq 38705 | Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
| Theorem | eldisjeqi 38706 | Equality theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ( ElDisj 𝐴 ↔ ElDisj 𝐵) | ||
| Theorem | eldisjeqd 38707 | Equality theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) | ||
| Theorem | disjres 38708* | Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| ⊢ (Rel 𝑅 → ( Disj (𝑅 ↾ 𝐴) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅))) | ||
| Theorem | eldisjn0elb 38709 | Two forms of disjoint elements when the empty set is not an element of the class. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( Disj (◡ E ↾ 𝐴) ∧ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴)) | ||
| Theorem | disjxrn 38710 | Two ways of saying that a range Cartesian product is disjoint. (Contributed by Peter Mazsa, 17-Jun-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ ( Disj (𝑅 ⋉ 𝑆) ↔ ( ≀ ◡𝑅 ∩ ≀ ◡𝑆) ⊆ I ) | ||
| Theorem | disjxrnres5 38711* | Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| ⊢ ( Disj (𝑅 ⋉ (𝑆 ↾ 𝐴)) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ 𝑆) ∩ [𝑣](𝑅 ⋉ 𝑆)) = ∅)) | ||
| Theorem | disjorimxrn 38712 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ (( Disj 𝑅 ∨ Disj 𝑆) → Disj (𝑅 ⋉ 𝑆)) | ||
| Theorem | disjimxrn 38713 | Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 15-Dec-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ 𝑆)) | ||
| Theorem | disjimres 38714 | Disjointness condition for restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ ( Disj 𝑅 → Disj (𝑅 ↾ 𝐴)) | ||
| Theorem | disjimin 38715 | Disjointness condition for intersection. (Contributed by Peter Mazsa, 11-Jun-2021.) (Revised by Peter Mazsa, 28-Sep-2021.) |
| ⊢ ( Disj 𝑆 → Disj (𝑅 ∩ 𝑆)) | ||
| Theorem | disjiminres 38716 | Disjointness condition for intersection with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ ( Disj 𝑆 → Disj (𝑅 ∩ (𝑆 ↾ 𝐴))) | ||
| Theorem | disjimxrnres 38717 | Disjointness condition for range Cartesian product with restriction. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ ( Disj 𝑆 → Disj (𝑅 ⋉ (𝑆 ↾ 𝐴))) | ||
| Theorem | disjALTV0 38718 | The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021.) |
| ⊢ Disj ∅ | ||
| Theorem | disjALTVid 38719 | The class of identity relations is disjoint. (Contributed by Peter Mazsa, 20-Jun-2021.) |
| ⊢ Disj I | ||
| Theorem | disjALTVidres 38720 | The class of identity relations restricted is disjoint. (Contributed by Peter Mazsa, 28-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
| ⊢ Disj ( I ↾ 𝐴) | ||
| Theorem | disjALTVinidres 38721 | The intersection with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ Disj (𝑅 ∩ ( I ↾ 𝐴)) | ||
| Theorem | disjALTVxrnidres 38722 | The class of range Cartesian product with restricted identity relation is disjoint. (Contributed by Peter Mazsa, 25-Jun-2020.) (Revised by Peter Mazsa, 27-Sep-2021.) |
| ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) | ||
| Theorem | disjsuc 38723* | Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → ( Disj (𝑅 ⋉ (◡ E ↾ suc 𝐴)) ↔ ( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) | ||
| Definition | df-antisymrel 38724 | Define the antisymmetric relation predicate. (Read: 𝑅 is an antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024.) |
| ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) | ||
| Theorem | dfantisymrel4 38725 | Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
| ⊢ ( AntisymRel 𝑅 ↔ ((𝑅 ∩ ◡𝑅) ⊆ I ∧ Rel 𝑅)) | ||
| Theorem | dfantisymrel5 38726* | Alternate definition of the antisymmetric relation predicate. (Contributed by Peter Mazsa, 24-Jun-2024.) |
| ⊢ ( AntisymRel 𝑅 ↔ (∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ Rel 𝑅)) | ||
| Theorem | antisymrelres 38727* | (Contributed by Peter Mazsa, 25-Jun-2024.) |
| ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | ||
| Theorem | antisymrelressn 38728 | (Contributed by Peter Mazsa, 29-Jun-2024.) |
| ⊢ AntisymRel (𝑅 ↾ {𝐴}) | ||
| Definition | df-parts 38729 |
Define the class of all partitions, cf. the comment of df-disjs 38668.
Partitions are disjoints on domain quotients (or: domain quotients
restricted to disjoints).
This is a more general meaning of partition than we we are familiar with: the conventional meaning of partition (e.g. partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 38668) is what we call membership partition here, cf. dfmembpart2 38734. The binary partitions relation and the partition predicate are the same, that is, (𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴) if 𝐴 and 𝑅 are sets, cf. brpartspart 38737. (Contributed by Peter Mazsa, 26-Jun-2021.) |
| ⊢ Parts = ( DomainQss ↾ Disjs ) | ||
| Definition | df-part 38730 | Define the partition predicate (read: 𝐴 is a partition by 𝑅). Alternative definition is dfpart2 38733. The binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets, cf. brpartspart 38737. (Contributed by Peter Mazsa, 12-Aug-2021.) |
| ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) | ||
| Definition | df-membparts 38731 | Define the class of member partition relations on their domain quotients. (Contributed by Peter Mazsa, 26-Jun-2021.) |
| ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} | ||
| Definition | df-membpart 38732 |
Define the member partition predicate, or the disjoint restricted element
relation on its domain quotient predicate. (Read: 𝐴 is a member
partition.) A alternative definition is dfmembpart2 38734.
Member partition is the conventional meaning of partition (see the notes of df-parts 38729 and dfmembpart2 38734), we generalize the concept in df-parts 38729 and df-part 38730. Member partition and comember equivalence are the same by mpet 38803. (Contributed by Peter Mazsa, 26-Jun-2021.) |
| ⊢ ( MembPart 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴) | ||
| Theorem | dfpart2 38733 | Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | ||
| Theorem | dfmembpart2 38734 | Alternate definition of the conventional membership case of partition. Partition 𝐴 of 𝑋, [Halmos] p. 28: "A partition of 𝑋 is a disjoint collection 𝐴 of non-empty subsets of 𝑋 whose union is 𝑋", or Definition 35, [Suppes] p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021.) |
| ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | ||
| Theorem | brparts 38735 | Binary partitions relation. (Contributed by Peter Mazsa, 23-Jul-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴))) | ||
| Theorem | brparts2 38736 | Binary partitions relation. (Contributed by Peter Mazsa, 30-Dec-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ (dom 𝑅 / 𝑅) = 𝐴))) | ||
| Theorem | brpartspart 38737 | Binary partition and the partition predicate are the same if 𝐴 and 𝑅 are sets. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ 𝑅 Part 𝐴)) | ||
| Theorem | parteq1 38738 | Equality theorem for partition. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ (𝑅 = 𝑆 → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴)) | ||
| Theorem | parteq2 38739 | Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.) |
| ⊢ (𝐴 = 𝐵 → (𝑅 Part 𝐴 ↔ 𝑅 Part 𝐵)) | ||
| Theorem | parteq12 38740 | Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024.) |
| ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐵)) | ||
| Theorem | parteq1i 38741 | Equality theorem for partition, inference version. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ 𝑅 = 𝑆 ⇒ ⊢ (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴) | ||
| Theorem | parteq1d 38742 | Equality theorem for partition, deduction version. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → (𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴)) | ||
| Theorem | partsuc2 38743 | Property of the partition. (Contributed by Peter Mazsa, 24-Jul-2024.) |
| ⊢ (((𝑅 ↾ (𝐴 ∪ {𝐴})) ∖ (𝑅 ↾ {𝐴})) Part ((𝐴 ∪ {𝐴}) ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴) | ||
| Theorem | partsuc 38744 | Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024.) |
| ⊢ (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴) | ||
| Theorem | disjim 38745 | The "Divide et Aequivalere" Theorem: every disjoint relation generates equivalent cosets by the relation: generalization of the former prter1 38843, cf. eldisjim 38748. (Contributed by Peter Mazsa, 3-May-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
| ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) | ||
| Theorem | disjimi 38746 | Every disjoint relation generates equivalent cosets by the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021.) |
| ⊢ Disj 𝑅 ⇒ ⊢ EqvRel ≀ 𝑅 | ||
| Theorem | detlem 38747 | If a relation is disjoint, then it is equivalent to the equivalent cosets of the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021.) |
| ⊢ Disj 𝑅 ⇒ ⊢ ( Disj 𝑅 ↔ EqvRel ≀ 𝑅) | ||
| Theorem | eldisjim 38748 | If the elements of 𝐴 are disjoint, then it has equivalent coelements (former prter1 38843). Special case of disjim 38745. (Contributed by Rodolfo Medina, 13-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018.) ( Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴) | ||
| Theorem | eldisjim2 38749 | Alternate form of eldisjim 38748. (Contributed by Peter Mazsa, 30-Dec-2024.) |
| ⊢ ( ElDisj 𝐴 → EqvRel ∼ 𝐴) | ||
| Theorem | eqvrel0 38750 | The null class is an equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel ∅ | ||
| Theorem | det0 38751 | The cosets by the null class are in equivalence relation if and only if the null class is disjoint (which it is, see disjALTV0 38718). (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj ∅ ↔ EqvRel ≀ ∅) | ||
| Theorem | eqvrelcoss0 38752 | The cosets by the null class are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| ⊢ EqvRel ≀ ∅ | ||
| Theorem | eqvrelid 38753 | The identity relation is an equivalence relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel I | ||
| Theorem | eqvrel1cossidres 38754 | The cosets by a restricted identity relation is an equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel ≀ ( I ↾ 𝐴) | ||
| Theorem | eqvrel1cossinidres 38755 | The cosets by an intersection with a restricted identity relation are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)) | ||
| Theorem | eqvrel1cossxrnidres 38756 | The cosets by a range Cartesian product with a restricted identity relation are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)) | ||
| Theorem | detid 38757 | The cosets by the identity relation are in equivalence relation if and only if the identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj I ↔ EqvRel ≀ I ) | ||
| Theorem | eqvrelcossid 38758 | The cosets by the identity class are in equivalence relation. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| ⊢ EqvRel ≀ I | ||
| Theorem | detidres 38759 | The cosets by the restricted identity relation are in equivalence relation if and only if the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj ( I ↾ 𝐴) ↔ EqvRel ≀ ( I ↾ 𝐴)) | ||
| Theorem | detinidres 38760 | The cosets by the intersection with the restricted identity relation are in equivalence relation if and only if the intersection with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj (𝑅 ∩ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴))) | ||
| Theorem | detxrnidres 38761 | The cosets by the range Cartesian product with the restricted identity relation are in equivalence relation if and only if the range Cartesian product with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴))) | ||
| Theorem | disjlem14 38762* | Lemma for disjdmqseq 38769, partim2 38771 and petlem 38776 via disjlem17 38763, (general version of the former prtlem14 38838). (Contributed by Peter Mazsa, 10-Sep-2021.) |
| ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅) → ((𝐴 ∈ [𝑥]𝑅 ∧ 𝐴 ∈ [𝑦]𝑅) → [𝑥]𝑅 = [𝑦]𝑅))) | ||
| Theorem | disjlem17 38763* | Lemma for disjdmqseq 38769, partim2 38771 and petlem 38776 via disjlem18 38764, (general version of the former prtlem17 38840). (Contributed by Peter Mazsa, 10-Sep-2021.) |
| ⊢ ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (∃𝑦 ∈ dom 𝑅(𝐴 ∈ [𝑦]𝑅 ∧ 𝐵 ∈ [𝑦]𝑅) → 𝐵 ∈ [𝑥]𝑅))) | ||
| Theorem | disjlem18 38764* | Lemma for disjdmqseq 38769, partim2 38771 and petlem 38776 via disjlem19 38765, (general version of the former prtlem18 38841). (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → (𝐵 ∈ [𝑥]𝑅 ↔ 𝐴 ≀ 𝑅𝐵)))) | ||
| Theorem | disjlem19 38765* | Lemma for disjdmqseq 38769, partim2 38771 and petlem 38776 via disjdmqs 38768, (general version of the former prtlem19 38842). (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ( Disj 𝑅 → ((𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [𝑥]𝑅) → [𝑥]𝑅 = [𝐴] ≀ 𝑅))) | ||
| Theorem | disjdmqsss 38766 | Lemma for disjdmqseq 38769 via disjdmqs 38768. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ( Disj 𝑅 → (dom 𝑅 / 𝑅) ⊆ (dom ≀ 𝑅 / ≀ 𝑅)) | ||
| Theorem | disjdmqscossss 38767 | Lemma for disjdmqseq 38769 via disjdmqs 38768. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ( Disj 𝑅 → (dom ≀ 𝑅 / ≀ 𝑅) ⊆ (dom 𝑅 / 𝑅)) | ||
| Theorem | disjdmqs 38768 | If a relation is disjoint, its domain quotient is equal to the domain quotient of the cosets by it. Lemma for partim2 38771 and petlem 38776 via disjdmqseq 38769. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ( Disj 𝑅 → (dom 𝑅 / 𝑅) = (dom ≀ 𝑅 / ≀ 𝑅)) | ||
| Theorem | disjdmqseq 38769 | If a relation is disjoint, its domain quotient is equal to a class if and only if the domain quotient of the cosets by it is equal to the class. General version of eldisjn0el 38770 (which is the closest theorem to the former prter2 38845). Lemma for partim2 38771 and petlem 38776. (Contributed by Peter Mazsa, 16-Sep-2021.) |
| ⊢ ( Disj 𝑅 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | ||
| Theorem | eldisjn0el 38770 | Special case of disjdmqseq 38769 (perhaps this is the closest theorem to the former prter2 38845). (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ ( ElDisj 𝐴 → (¬ ∅ ∈ 𝐴 ↔ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| Theorem | partim2 38771 | Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim 38772. Lemma for petlem 38776. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | ||
| Theorem | partim 38772 | Partition implies equivalence relation by the cosets of the relation on its natural domain, cf. partim2 38771. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| ⊢ (𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴) | ||
| Theorem | partimeq 38773 | Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq 38643. (Contributed by Peter Mazsa, 25-Dec-2024.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 Part 𝐴 → ∼ 𝐴 = ≀ 𝑅)) | ||
| Theorem | eldisjlem19 38774* | Special case of disjlem19 38765 (together with membpartlem19 38775, this is former prtlem19 38842). (Contributed by Peter Mazsa, 21-Oct-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ((𝑢 ∈ dom (◡ E ↾ 𝐴) ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) | ||
| Theorem | membpartlem19 38775* | Together with disjlem19 38765, this is former prtlem19 38842. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 21-Oct-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → ( MembPart 𝐴 → ((𝑢 ∈ 𝐴 ∧ 𝐵 ∈ 𝑢) → 𝑢 = [𝐵] ∼ 𝐴))) | ||
| Theorem | petlem 38776 | If you can prove that the equivalence of cosets on their natural domain implies disjointness (e.g. eqvrelqseqdisj5 38797), or converse function (cf. dfdisjALTV 38677), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. Lemma for the Partition Equivalence Theorem pet2 38814. (Contributed by Peter Mazsa, 18-Sep-2021.) |
| ⊢ (( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴) → Disj 𝑅) ⇒ ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | ||
| Theorem | petlemi 38777 | If you can prove disjointness (e.g. disjALTV0 38718, disjALTVid 38719, disjALTVidres 38720, disjALTVxrnidres 38722, search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV 38677), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021.) |
| ⊢ Disj 𝑅 ⇒ ⊢ (( Disj 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) ↔ ( EqvRel ≀ 𝑅 ∧ (dom ≀ 𝑅 / ≀ 𝑅) = 𝐴)) | ||
| Theorem | pet02 38778 | Class 𝐴 is a partition by the null class if and only if the cosets by the null class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj ∅ ∧ (dom ∅ / ∅) = 𝐴) ↔ ( EqvRel ≀ ∅ ∧ (dom ≀ ∅ / ≀ ∅) = 𝐴)) | ||
| Theorem | pet0 38779 | Class 𝐴 is a partition by the null class if and only if the cosets by the null class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (∅ Part 𝐴 ↔ ≀ ∅ ErALTV 𝐴) | ||
| Theorem | petid2 38780 | Class 𝐴 is a partition by the identity class if and only if the cosets by the identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj I ∧ (dom I / I ) = 𝐴) ↔ ( EqvRel ≀ I ∧ (dom ≀ I / ≀ I ) = 𝐴)) | ||
| Theorem | petid 38781 | A class is a partition by the identity class if and only if the cosets by the identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( I Part 𝐴 ↔ ≀ I ErALTV 𝐴) | ||
| Theorem | petidres2 38782 | Class 𝐴 is a partition by the identity class restricted to it if and only if the cosets by the restricted identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj ( I ↾ 𝐴) ∧ (dom ( I ↾ 𝐴) / ( I ↾ 𝐴)) = 𝐴) ↔ ( EqvRel ≀ ( I ↾ 𝐴) ∧ (dom ≀ ( I ↾ 𝐴) / ≀ ( I ↾ 𝐴)) = 𝐴)) | ||
| Theorem | petidres 38783 | A class is a partition by identity class restricted to it if and only if the cosets by the restricted identity class are in equivalence relation on it, cf. eqvrel1cossidres 38754. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( I ↾ 𝐴) Part 𝐴 ↔ ≀ ( I ↾ 𝐴) ErALTV 𝐴) | ||
| Theorem | petinidres2 38784 | Class 𝐴 is a partition by an intersection with the identity class restricted to it if and only if the cosets by the intersection are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom (𝑅 ∩ ( I ↾ 𝐴)) / (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ∩ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ∩ ( I ↾ 𝐴)) / ≀ (𝑅 ∩ ( I ↾ 𝐴))) = 𝐴)) | ||
| Theorem | petinidres 38785 | A class is a partition by an intersection with the identity class restricted to it if and only if the cosets by the intersection are in equivalence relation on it. Cf. br1cossinidres 38413, disjALTVinidres 38721 and eqvrel1cossinidres 38755. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝑅 ∩ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ∩ ( I ↾ 𝐴)) ErALTV 𝐴) | ||
| Theorem | petxrnidres2 38786 | Class 𝐴 is a partition by a range Cartesian product with the identity class restricted to it if and only if the cosets by the range Cartesian product are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( I ↾ 𝐴)) / (𝑅 ⋉ ( I ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( I ↾ 𝐴)) / ≀ (𝑅 ⋉ ( I ↾ 𝐴))) = 𝐴)) | ||
| Theorem | petxrnidres 38787 | A class is a partition by a range Cartesian product with the identity class restricted to it if and only if the cosets by the range Cartesian product are in equivalence relation on it. Cf. br1cossxrnidres 38415, disjALTVxrnidres 38722 and eqvrel1cossxrnidres 38756. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝑅 ⋉ ( I ↾ 𝐴)) Part 𝐴 ↔ ≀ (𝑅 ⋉ ( I ↾ 𝐴)) ErALTV 𝐴) | ||
| Theorem | eqvreldisj1 38788* | The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj2 38789, eqvreldisj3 38790). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 3-Dec-2024.) |
| ⊢ ( EqvRel 𝑅 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | ||
| Theorem | eqvreldisj2 38789 | The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj3 38790). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 19-Sep-2021.) |
| ⊢ ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅)) | ||
| Theorem | eqvreldisj3 38790 | The elements of the quotient set of an equivalence relation are disjoint (cf. qsdisj2 8807). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 20-Jun-2019.) (Revised by Peter Mazsa, 19-Sep-2021.) |
| ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐴 / 𝑅))) | ||
| Theorem | eqvreldisj4 38791 | Intersection with the converse epsilon relation restricted to the quotient set of an equivalence relation is disjoint. (Contributed by Peter Mazsa, 30-May-2020.) (Revised by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ( EqvRel 𝑅 → Disj (𝑆 ∩ (◡ E ↾ (𝐵 / 𝑅)))) | ||
| Theorem | eqvreldisj5 38792 | Range Cartesian product with converse epsilon relation restricted to the quotient set of an equivalence relation is disjoint. (Contributed by Peter Mazsa, 30-May-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ ( EqvRel 𝑅 → Disj (𝑆 ⋉ (◡ E ↾ (𝐵 / 𝑅)))) | ||
| Theorem | eqvrelqseqdisj2 38793 | Implication of eqvreldisj2 38789, lemma for The Main Theorem of Equivalences mainer 38798. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → ElDisj 𝐴) | ||
| Theorem | fences3 38794 | Implication of eqvrelqseqdisj2 38793 and n0eldmqseq 38613, see comment of fences 38808. (Contributed by Peter Mazsa, 30-Dec-2024.) |
| ⊢ (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴)) | ||
| Theorem | eqvrelqseqdisj3 38795 | Implication of eqvreldisj3 38790, lemma for the Member Partition Equivalence Theorem mpet3 38800. (Contributed by Peter Mazsa, 27-Oct-2020.) (Revised by Peter Mazsa, 24-Sep-2021.) |
| ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (◡ E ↾ 𝐴)) | ||
| Theorem | eqvrelqseqdisj4 38796 | Lemma for petincnvepres2 38812. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (𝑆 ∩ (◡ E ↾ 𝐴))) | ||
| Theorem | eqvrelqseqdisj5 38797 | Lemma for the Partition-Equivalence Theorem pet2 38814. (Contributed by Peter Mazsa, 15-Jul-2020.) (Revised by Peter Mazsa, 22-Sep-2021.) |
| ⊢ (( EqvRel 𝑅 ∧ (𝐵 / 𝑅) = 𝐴) → Disj (𝑆 ⋉ (◡ E ↾ 𝐴))) | ||
| Theorem | mainer 38798 | The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 26-Sep-2021.) |
| ⊢ (𝑅 ErALTV 𝐴 → CoMembEr 𝐴) | ||
| Theorem | partimcomember 38799 | Partition with general 𝑅 (in addition to the member partition cf. mpet 38803 and mpet2 38804) implies equivalent comembers. (Contributed by Peter Mazsa, 23-Sep-2021.) (Revised by Peter Mazsa, 22-Dec-2024.) |
| ⊢ (𝑅 Part 𝐴 → CoMembEr 𝐴) | ||
| Theorem | mpet3 38800 | Member Partition-Equivalence Theorem. Together with mpet 38803 mpet2 38804, mostly in its conventional cpet 38802 and cpet2 38801 form, this is what we used to think of as the partition equivalence theorem (but cf. pet2 38814 with general 𝑅). (Contributed by Peter Mazsa, 4-May-2018.) (Revised by Peter Mazsa, 26-Sep-2021.) |
| ⊢ (( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴) ↔ ( CoElEqvRel 𝐴 ∧ (∪ 𝐴 / ∼ 𝐴) = 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |