![]() |
Metamath
Proof Explorer Theorem List (p. 388 of 443) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28474) |
![]() (28475-29999) |
![]() (30000-44271) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nacsfix 38701* | An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0 ∀𝑧 ∈ (ℤ≥‘𝑦)(𝐹‘𝑧) = (𝐹‘𝑦)) | ||
Theorem | constmap 38702 |
A constant (represented without dummy variables) is an element of a
function set.
_Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets._ (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}) ∈ (𝐶 ↑𝑚 𝐴)) | ||
Theorem | mapco2g 38703 | Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑𝑚 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑𝑚 𝐸)) | ||
Theorem | mapco2 38704 | Post-composition (renaming indices) of a mapping viewed as a point. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝐸 ∈ V ⇒ ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑𝑚 𝐸)) | ||
Theorem | mapfzcons 38705 | Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (𝐴 ∪ {〈𝑀, 𝐶〉}) ∈ (𝐵 ↑𝑚 (1...𝑀))) | ||
Theorem | mapfzcons1 38706 | Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ (𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) | ||
Theorem | mapfzcons1cl 38707 | A nonempty mapping has a prefix. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ (𝐴 ∈ (𝐵 ↑𝑚 (1...𝑀)) → (𝐴 ↾ (1...𝑁)) ∈ (𝐵 ↑𝑚 (1...𝑁))) | ||
Theorem | mapfzcons2 38708 | Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {〈𝑀, 𝐶〉})‘𝑀) = 𝐶) | ||
Theorem | mptfcl 38709* | Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) | ||
Syntax | cmzpcl 38710 | Extend class notation to include pre-polynomial rings. |
class mzPolyCld | ||
Syntax | cmzp 38711 | Extend class notation to include polynomial rings. |
class mzPoly | ||
Definition | df-mzpcl 38712* | Define the polynomially closed function rings over an arbitrary index set 𝑣. The set (mzPolyCld‘𝑣) contains all sets of functions from (ℤ ↑𝑚 𝑣) to ℤ which include all constants and projections and are closed under addition and multiplication. This is a "temporary" set used to define the polynomial function ring itself (mzPoly‘𝑣); see df-mzp 38713. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑣 (𝑥 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘𝑓 · 𝑔) ∈ 𝑝))}) | ||
Definition | df-mzp 38713 | Polynomials over ℤ with an arbitrary index set, that is, the smallest ring of functions containing all constant functions and all projections. This is almost the most general reasonable definition; to reach full generality, we would need to be able to replace ZZ with an arbitrary (semi)ring (and a coordinate subring), but rings have not been defined yet. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ mzPoly = (𝑣 ∈ V ↦ ∩ (mzPolyCld‘𝑣)) | ||
Theorem | mzpclval 38714* | Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘𝑓 · 𝑔) ∈ 𝑝))}) | ||
Theorem | elmzpcl 38715* | Double substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘𝑓 · 𝑔) ∈ 𝑃))))) | ||
Theorem | mzpclall 38716 | The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 38713 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∈ (mzPolyCld‘𝑉)) | ||
Theorem | mzpcln0 38717 | Corrolary of mzpclall 38716: polynomially closed function sets are not empty. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (mzPolyCld‘𝑉) ≠ ∅) | ||
Theorem | mzpcl1 38718 | Defining property 1 of a polynomially closed function set 𝑃: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑𝑚 𝑉) × {𝐹}) ∈ 𝑃) | ||
Theorem | mzpcl2 38719* | Defining property 2 of a polynomially closed function set 𝑃: it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔‘𝐹)) ∈ 𝑃) | ||
Theorem | mzpcl34 38720 | Defining properties 3 and 4 of a polynomially closed function set 𝑃: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → ((𝐹 ∘𝑓 + 𝐺) ∈ 𝑃 ∧ (𝐹 ∘𝑓 · 𝐺) ∈ 𝑃)) | ||
Theorem | mzpval 38721 | Value of the mzPoly function. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (mzPoly‘𝑉) = ∩ (mzPolyCld‘𝑉)) | ||
Theorem | dmmzp 38722 | mzPoly is defined for all index sets which are sets. This is used with elfvdm 6531 to eliminate sethood antecedents. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ dom mzPoly = V | ||
Theorem | mzpincl 38723 | Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ (𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉)) | ||
Theorem | mzpconst 38724 | Constant functions are polynomial. See also mzpconstmpt 38729. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → ((ℤ ↑𝑚 𝑉) × {𝐶}) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpf 38725 | A polynomial function is a function from the coordinate space to the integers. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ (𝐹 ∈ (mzPoly‘𝑉) → 𝐹:(ℤ ↑𝑚 𝑉)⟶ℤ) | ||
Theorem | mzpproj 38726* | A projection function is polynomial. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝑉 ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔‘𝑋)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpadd 38727 | The pointwise sum of two polynomial functions is a polynomial function. See also mzpaddmpt 38730. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴 ∘𝑓 + 𝐵) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpmul 38728 | The pointwise product of two polynomial functions is a polynomial function. See also mzpmulmpt 38731. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴 ∘𝑓 · 𝐵) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpconstmpt 38729* | A constant function expressed in maps-to notation is polynomial. This theorem and the several that follow (mzpaddmpt 38730, mzpmulmpt 38731, mzpnegmpt 38733, mzpsubmpt 38732, mzpexpmpt 38734) can be used to build proofs that functions which are "manifestly polynomial", in the sense of being a maps-to containing constants, projections, and simple arithmetic operations, are actually polynomial functions. There is no mzpprojmpt because mzpproj 38726 is already expressed using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐶) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpaddmpt 38730* | Sum of polynomial functions is polynomial. Maps-to version of mzpadd 38727. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 + 𝐵)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpmulmpt 38731* | Product of polynomial functions is polynomial. Maps-to version of mzpmulmpt 38731. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 · 𝐵)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpsubmpt 38732* | The difference of two polynomial functions is polynomial. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 − 𝐵)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpnegmpt 38733* | Negation of a polynomial function. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ -𝐴) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpexpmpt 38734* | Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ (((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴↑𝐷)) ∈ (mzPoly‘𝑉)) | ||
Theorem | mzpindd 38735* | "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
⊢ ((𝜑 ∧ 𝑓 ∈ ℤ) → 𝜒) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑉) → 𝜃) & ⊢ ((𝜑 ∧ (𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁) & ⊢ ((𝜑 ∧ (𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎) & ⊢ (𝑥 = ((ℤ ↑𝑚 𝑉) × {𝑓}) → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔‘𝑓)) → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑓 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝑔 → (𝜓 ↔ 𝜂)) & ⊢ (𝑥 = (𝑓 ∘𝑓 + 𝑔) → (𝜓 ↔ 𝜁)) & ⊢ (𝑥 = (𝑓 ∘𝑓 · 𝑔) → (𝜓 ↔ 𝜎)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜌)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (mzPoly‘𝑉)) → 𝜌) | ||
Theorem | mzpmfp 38736 | Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.) |
⊢ (mzPoly‘𝐼) = ran (𝐼 eval ℤring) | ||
Theorem | mzpsubst 38737* | Substituting polynomials for the variables of a polynomial results in a polynomial. 𝐺 is expected to depend on 𝑦 and provide the polynomials which are being substituted. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦 ∈ 𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝐹‘(𝑦 ∈ 𝑉 ↦ (𝐺‘𝑥)))) ∈ (mzPoly‘𝑊)) | ||
Theorem | mzprename 38738* | Simplified version of mzpsubst 38737 to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉⟶𝑊) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝐹‘(𝑥 ∘ 𝑅))) ∈ (mzPoly‘𝑊)) | ||
Theorem | mzpresrename 38739* | A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) | ||
Theorem | mzpcompact2lem 38740* | Lemma for mzpcompact2 38741. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) | ||
Theorem | mzpcompact2 38741* | Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) | ||
Theorem | coeq0i 38742 | coeq0 5947 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ ((𝐴:𝐶⟶𝐷 ∧ 𝐵:𝐸⟶𝐹 ∧ (𝐶 ∩ 𝐹) = ∅) → (𝐴 ∘ 𝐵) = ∅) | ||
Theorem | fzsplit1nn0 38743 | Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) | ||
Syntax | cdioph 38744 | Extend class notation to include the family of Diophantine sets. |
class Dioph | ||
Definition | df-dioph 38745* | A Diophantine set is a set of positive integers which is a projection of the zero set of some polynomial. This definition somewhat awkwardly mixes ℤ (via mzPoly) and ℕ0 (to define the zero sets); the former could be avoided by considering coincidence sets of ℕ0 polynomials at the cost of requiring two, and the second is driven by consistency with our mu-recursive functions and the requirements of the Davis-Putnam-Robinson-Matiyasevich proof. Both are avoidable at a complexity cost. In particular, it is a consequence of 4sq 16156 that implicitly restricting variables to ℕ0 adds no expressive power over allowing them to range over ℤ. While this definition stipulates a specific index set for the polynomials, there is actually flexibility here, see eldioph2b 38752. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)})) | ||
Theorem | eldiophb 38746* | Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ (𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ≥‘𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
Theorem | eldioph 38747* | Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (ℤ≥‘𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
Theorem | diophrw 38748* | Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014.) |
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0 ↑𝑚 𝑆)(𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)} = {𝑎 ∣ ∃𝑐 ∈ (ℕ0 ↑𝑚 𝑇)(𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)}) | ||
Theorem | eldioph2lem1 38749* | Lemma for eldioph2 38751. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) | ||
Theorem | eldioph2lem2 38750* | Lemma for eldioph2 38751. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1→𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) | ||
Theorem | eldioph2 38751* | Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 38741. (Contributed by Stefan O'Rear, 8-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
Theorem | eldioph2b 38752* | While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set (𝑆 ∖ (1...𝑁)). For instance, in diophin 38762 we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ (((𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
Theorem | eldiophelnn0 38753 | Remove antecedent on 𝐵 from Diophantine set constructors. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐵 ∈ ℕ0) | ||
Theorem | eldioph3b 38754* | Define Diophantine sets in terms of polynomials with variables indexed by ℕ. This avoids a quantifier over the number of witness variables and will be easier to use than eldiophb 38746 in most cases. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑𝑚 ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
Theorem | eldioph3 38755* | Inference version of eldioph3b 38754 with quantifier expanded. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑𝑚 ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
Theorem | ellz1 38756 | Membership in a lower set of integers. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ (𝐵 ∈ ℤ → (𝐴 ∈ (ℤ ∖ (ℤ≥‘(𝐵 + 1))) ↔ (𝐴 ∈ ℤ ∧ 𝐴 ≤ 𝐵))) | ||
Theorem | lzunuz 38757 | The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ≥‘(𝐴 + 1))) ∪ (ℤ≥‘𝐵)) = ℤ) | ||
Theorem | fz1eqin 38758 | Express a one-based finite range as the intersection of lower integers with ℕ. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) | ||
Theorem | lzenom 38759 | Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝑁 ∈ ℤ → (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ≈ ω) | ||
Theorem | elmapresaun 38760 | fresaun 6378 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ ((𝐹 ∈ (𝐶 ↑𝑚 𝐴) ∧ 𝐺 ∈ (𝐶 ↑𝑚 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵))) | ||
Theorem | elmapresaunres2 38761 | fresaunres2 6379 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ ((𝐹 ∈ (𝐶 ↑𝑚 𝐴) ∧ 𝐺 ∈ (𝐶 ↑𝑚 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) | ||
Theorem | diophin 38762 | If two sets are Diophantine, so is their intersection. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∩ 𝐵) ∈ (Dioph‘𝑁)) | ||
Theorem | diophun 38763 | If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∪ 𝐵) ∈ (Dioph‘𝑁)) | ||
Theorem | eldiophss 38764 | Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0 ↑𝑚 (1...𝐵))) | ||
Theorem | diophrex 38765* | Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢 ∈ 𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁)) | ||
Theorem | eq0rabdioph 38766* | This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁)) | ||
Theorem | eqrabdioph 38767* | Diophantine set builder for equality of polynomial expressions. Note that the two expressions need not be nonnegative; only variables are so constrained. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 = 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | 0dioph 38768 | The null set is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝐴 ∈ ℕ0 → ∅ ∈ (Dioph‘𝐴)) | ||
Theorem | vdioph 38769 | The "universal" set (as large as possible given eldiophss 38764) is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝐴 ∈ ℕ0 → (ℕ0 ↑𝑚 (1...𝐴)) ∈ (Dioph‘𝐴)) | ||
Theorem | anrabdioph 38770* | Diophantine set builder for conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (({𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝜑 ∧ 𝜓)} ∈ (Dioph‘𝑁)) | ||
Theorem | orrabdioph 38771* | Diophantine set builder for disjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (({𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝜑 ∨ 𝜓)} ∈ (Dioph‘𝑁)) | ||
Theorem | 3anrabdioph 38772* | Diophantine set builder for ternary conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (({𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝜒} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝜑 ∧ 𝜓 ∧ 𝜒)} ∈ (Dioph‘𝑁)) | ||
Theorem | 3orrabdioph 38773* | Diophantine set builder for ternary disjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (({𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝜒} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} ∈ (Dioph‘𝑁)) | ||
Theorem | 2sbcrex 38774* | Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) | ||
Theorem | sbcrexgOLD 38775* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 18-Aug-2018. Use sbcrex 3762 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | 2sbcrexOLD 38776* | Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7017 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) | ||
Theorem | sbc2rex 38777* | Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑) | ||
Theorem | sbc2rexgOLD 38778* | Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7017 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑)) | ||
Theorem | sbc4rex 38779* | Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 [𝐴 / 𝑎]𝜑) | ||
Theorem | sbc4rexgOLD 38780* | Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7017 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 [𝐴 / 𝑎]𝜑)) | ||
Theorem | sbcrot3 38781* | Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) | ||
Theorem | sbcrot5 38782* | Rotate a sequence of five explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) | ||
Theorem | sbccomieg 38783* | Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ (𝑎 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑 ↔ [𝐶 / 𝑏][𝐴 / 𝑎]𝜑) | ||
Theorem | rexrabdioph 38784* | Diophantine set builder for existential quantification. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ (𝑣 = (𝑡‘𝑀) → (𝜓 ↔ 𝜒)) & ⊢ (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝜒 ↔ 𝜑)) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜓} ∈ (Dioph‘𝑁)) | ||
Theorem | rexfrabdioph 38785* | Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | 2rexfrabdioph 38786* | Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | 3rexfrabdioph 38787* | Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑢 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | 4rexfrabdioph 38788* | Diophantine set builder for existential quantifier, explicit substitution, four variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) & ⊢ 𝐽 = (𝐾 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑢 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | 6rexfrabdioph 38789* | Diophantine set builder for existential quantifier, explicit substitution, six variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) & ⊢ 𝐽 = (𝐾 + 1) & ⊢ 𝐼 = (𝐽 + 1) & ⊢ 𝐻 = (𝐼 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑡‘𝐼) / 𝑧][(𝑡‘𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑢 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0 ∃𝑧 ∈ ℕ0 ∃𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | 7rexfrabdioph 38790* | Diophantine set builder for existential quantifier, explicit substitution, seven variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) & ⊢ 𝐽 = (𝐾 + 1) & ⊢ 𝐼 = (𝐽 + 1) & ⊢ 𝐻 = (𝐼 + 1) & ⊢ 𝐺 = (𝐻 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑡‘𝐼) / 𝑧][(𝑡‘𝐻) / 𝑝][(𝑡‘𝐺) / 𝑞]𝜑} ∈ (Dioph‘𝐺)) → {𝑢 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0 ∃𝑧 ∈ ℕ0 ∃𝑝 ∈ ℕ0 ∃𝑞 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | rabdiophlem1 38791* | Lemma for arithmetic diophantine sets. Convert polynomial-ness of an expression into a constraint suitable for ralimi 3111. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ) | ||
Theorem | rabdiophlem2 38792* | Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ ⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴) ∈ (mzPoly‘(1...𝑀))) | ||
Theorem | elnn0rabdioph 38793* | Diophantine set builder for nonnegativity constraints. The first builder which uses a witness variable internally; an expression is nonnegative if there is a nonnegative integer equal to it. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} ∈ (Dioph‘𝑁)) | ||
Theorem | rexzrexnn0 38794* | Rewrite a quantification over integers into a quantification over naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) | ||
Theorem | lerabdioph 38795* | Diophantine set builder for the "less than or equal to" relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≤ 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | eluzrabdioph 38796* | Diophantine set builder for membership in a fixed upper set of integers. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ∈ (ℤ≥‘𝑀)} ∈ (Dioph‘𝑁)) | ||
Theorem | elnnrabdioph 38797* | Diophantine set builder for positivity. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ} ∈ (Dioph‘𝑁)) | ||
Theorem | ltrabdioph 38798* | Diophantine set builder for the strict less than relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | nerabdioph 38799* | Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulas can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ≠ 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | dvdsrabdioph 38800* | Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ∥ 𝐵} ∈ (Dioph‘𝑁)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |