Detailed syntax breakdown of Definition df-pco
| Step | Hyp | Ref
| Expression |
| 1 | | cpco 25033 |
. 2
class
*𝑝 |
| 2 | | vj |
. . 3
setvar 𝑗 |
| 3 | | ctop 22899 |
. . 3
class
Top |
| 4 | | vf |
. . . 4
setvar 𝑓 |
| 5 | | vg |
. . . 4
setvar 𝑔 |
| 6 | | cii 24901 |
. . . . 5
class
II |
| 7 | 2 | cv 1539 |
. . . . 5
class 𝑗 |
| 8 | | ccn 23232 |
. . . . 5
class
Cn |
| 9 | 6, 7, 8 | co 7431 |
. . . 4
class (II Cn
𝑗) |
| 10 | | vx |
. . . . 5
setvar 𝑥 |
| 11 | | cc0 11155 |
. . . . . 6
class
0 |
| 12 | | c1 11156 |
. . . . . 6
class
1 |
| 13 | | cicc 13390 |
. . . . . 6
class
[,] |
| 14 | 11, 12, 13 | co 7431 |
. . . . 5
class
(0[,]1) |
| 15 | 10 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 16 | | c2 12321 |
. . . . . . . 8
class
2 |
| 17 | | cdiv 11920 |
. . . . . . . 8
class
/ |
| 18 | 12, 16, 17 | co 7431 |
. . . . . . 7
class (1 /
2) |
| 19 | | cle 11296 |
. . . . . . 7
class
≤ |
| 20 | 15, 18, 19 | wbr 5143 |
. . . . . 6
wff 𝑥 ≤ (1 / 2) |
| 21 | | cmul 11160 |
. . . . . . . 8
class
· |
| 22 | 16, 15, 21 | co 7431 |
. . . . . . 7
class (2
· 𝑥) |
| 23 | 4 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 24 | 22, 23 | cfv 6561 |
. . . . . 6
class (𝑓‘(2 · 𝑥)) |
| 25 | | cmin 11492 |
. . . . . . . 8
class
− |
| 26 | 22, 12, 25 | co 7431 |
. . . . . . 7
class ((2
· 𝑥) −
1) |
| 27 | 5 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 28 | 26, 27 | cfv 6561 |
. . . . . 6
class (𝑔‘((2 · 𝑥) − 1)) |
| 29 | 20, 24, 28 | cif 4525 |
. . . . 5
class if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))) |
| 30 | 10, 14, 29 | cmpt 5225 |
. . . 4
class (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))) |
| 31 | 4, 5, 9, 9, 30 | cmpo 7433 |
. . 3
class (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) |
| 32 | 2, 3, 31 | cmpt 5225 |
. 2
class (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |
| 33 | 1, 32 | wceq 1540 |
1
wff
*𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |